
QoS Constraint Based Workflow Scheduling for
Cloud Computing Services

Guangzhen Lu1, *, Wen’an Tan1, 2, Yong Sun1, Zijian Zhang1, Anqiong Tang2

1School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing
P.R.China

2School of Computer and Information, Shanghai Second Polytechnic University, Shanghai, P.R.China
*Corresponding Author Email: lgzhnuaa@163.com

Abstract—QoS constraint based workflow scheduling
described by Directed Acyclic Graph (DAG) has been
proved to be a NP-hard problem in Cloud Computing
Services, especially for cost minimization under deadline
constraint. Due to Deadline Bottom Level (DBL) hasn’t
considered the concurrence during the real executing
process that cause much more shatter time to solve such
problem, this paper proposes a novel heuristics approach of
Concurrent Level based Workflow Scheduling (CLWS). It
stratifies all the tasks according to the concurrence among
tasks in the actual workflow execution. Then, CLWS
distributes the total redundancy time into every level
according to their concurrent degree. The simulation
experiments show that CLWS makes a better improvement
than DBL.

Index Terms—workflow scheduling, cost/time tradeoff,
heuristics, concurrent level

I. INTRODUCTION

With the rapid development of information technology,
Cloud Computing is applying to heterogeneous and
distributed environment that covers Software as a Service
(SaaS), Platform as a Service (PaaS), and Infrastructure
as a Service (IaaS) [1], which support computers’
cooperative work with great efficiency. Workflow, which
is regard as an abstract model in computers’ cooperative
work, plays a more important role in pipeline production
of enterprises, office automation, researching and so on.
Thus, workflow scheduling is becoming a hot topic. It
deals with the allocation of tasks to suitable resources so
that the object function can be minimized or maximized
while satisfying users’ QoS requirements [2]. QoS
constraint based workflow scheduling currently includes
time minimization under cost constraints and cost
minimization under time constraints [3]. This paper
focuses on discussion about latter.

To date, many algorithms or strategies, such as
Simulated Annealing Algorithm [4], Genetic Algorithm [5]
and Hybrid Particle Swarm Algorithm [6], have been
proposed to address the problem of QoS constraint
workflow scheduling. Although these algorithms can
bring an optimized result, time-consuming is still a
none-neglected shortage. Thus, many researchers turn to
heuristic workflow scheduling [7, 8, 9, 13, 14], and the
strategy of workflow task stratifying according to

workflow structure and the characteristic of service
resources has been got a great attention.

The remainder of this paper is organized as follows.
Section II introduces the related work of task stratifying
based workflow scheduling. After the problem
description in Section III, Section IV explains the
proposed workflow scheduling approach. The simulation
results are presented in Section V, followed by the
conclusion and the future work of this paper.

II. RELATED WORK

Yu et al. proposed a deadline division strategy named
Deadline Min-Cost for scheduling workflow applications
with deadline constraints [7]. It divides all the workflow
tasks into several levels according to the structure of
workflow, and then distributes the deadline into every
level. If every level could be completed within the
sub-deadline, the entire workflow could also be
completed within the overall deadline. Although such
approach is simple and can be executed efficiently, some
deficiencies still exist: firstly, tasks that can be executed
concurrently are not always in the same level; secondly,
fixing the time interval of every level will bring much
more time pieces. To address above problems of
Deadline Min-Cost, Yuan et al. proposed the Deadline
Bottom Level denoted as DBL [8]. Diffident with
Deadline Min-Cost, DBL stratifies all the tasks by the
value of maximal steps to the exit task, and every task’s
start executing time can be dynamically determined by
the actual complete execution time of its parent tasks.
From this sense, every task can choose a better service
within the extended time interval. Compared with
Deadline Min-Cost, although DBL can improve the
execution performance of workflow scheduling, some
deficiencies are also worthy of paying attention: First,
DBL does not stratify tasks under the actual executing
situation that more levels are generated, which brings
much more time pieces; Second, DBL distributes the
overall time float equally to every level, and ignores the
differences among levels; Third, when the given deadline
is lower than the lower-complete time of workflow for
DBL, this algorithm is not suitable.

 Inspired by the above two leveling approaches of
heuristic workflow scheduling, this paper proposes a
novel algorithm called Concurrent Level based

926 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.4.926-930

Workflow Scheduling (denoted as CLWS). This
proposed algorithm stratifies all the tasks according to
the concurrence among tasks in the actual executing
situation, which can decrease the task levels and increase
the utilization of overall time float. Moreover, CLWS
distributes the overall time float into every level in the
light of differences among levels, which can further
increase the utilization of overall time float.

III. PROBLEM DESCRIPTION

Directed Acyclic Graph (DAG) is typically used to
describe the workflow, while the nodes and arcs
separately represent the tasks and the relations between
tasks of the workflow. For a given workflow, let G = <V,
A> denote the DAG, where the symbol V represents the
node set, V = {1, 2, … , n}, and the arc set A = {<i,
j>|i→j, where j is the direct successor of i, and i, j∈V}.
There exists time dependence in every arc <i, j>∈A, task
j can’t execute until task i finishes its work. Suppose that
every workflow has only one entrance node denoted as
Ventr and only one exit node denoted as Vexit, as shown in
Fig. 1 [8], task 1 is the Ventr and task 16 is the Vexit.

Each computing service can provide many service
levels with differentiated service qualities, i.e., multiple
services can provide similar functionality but with
different non-functional properties, such as executing
time, cost, reliability and so on [2]. Suppose that each task
owns a service pool to manage all its services, define
SP(i) as the service pool of task i, that is SP(i) =
{ k

is =< k
it , c k

i >|1 | () |k SP i≤ ≤ }, where |SP(i)| represents
the service number of service pool SP(i), k

it and c k
i

separately represent the executing time and cost of the
k-th service of task i. The service pools of tasks in Fig. 1
are shown in Table 1 [8], to simplify the problem, this
paper let SP(Ventr)=SP(Vexit)={<0, 0>}.

Figure 1. A simple schematic diagram of workflow

TABLE 1.
THE SERVICE POOLS OF TASKS IN FIG. 1

Task number Service pool

1 {<0, 0>}

2 {<10, 6>, <8, 8>, <6, 11>}

3 {<5, 10>, <4, 12>}

4 {<6, 5>}

5 {<4, 10>, <2, 15>}

6 {<3, 5>, <2, 10>, <1, 20>}

7 {<15, 25>, <10, 30>}

8 {<3, 30>}

9 {<8, 14>, <5, 18>}

10 {<30, 100>, <20, 150>, <15, 200>}

11 {<10, 50>, <6, 80>}

12 {<9, 18>}

13 {<25, 40>, <20, 50>}

14 {<30, 80>, <20, 120>, <15, 150>}

15 {<13, 50>, <10, 60>}

16 {<0, 0>}

The problem of cost minimization under time
constraints for workflow scheduling is to let every task
select a better service to get the minimal cost according
to the given deadline:

1
1 | |

C min

i

n
k

total i
i

k SP

c
=

≤ ≤

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭
∑ (1)

To make sure the workflow can execute correctly,
several constraint conditions are shown below:

k
i i jtβ β+ ≤ (2)

n deadlinetδ ≤ (3)

Where ,i j∀ < >∈ A should satisfy (2), iβ
represents the start executing time of task i, nδ
represents the sub-deadline of task n, and

deadlinet represents the overall deadline of workflow.
The problem of cost minimization under time

constraints for workflow scheduling was proved to be
NP-hard [10], and the more time a service is taken, the
more cost it should be paid [11]. In order to get the
optimized result, CLWS tries to extend every task’s time
interval [,]β δ , and then each task can select a better
service with least cost.

IV. CONCURRENT LEVEL BASED WORKFLOW
SCHEDULING

A. Relevant Definition
Definition 1. For a given workflow G = <V, A>,

distributing the minimal time service to each task. By
adopting the algorithm of Critical Path to get the critical
path, we denote the total executing time of this path as

mint , which is the lower-complete time of G.
Definition 2. For a given workflow G = <V, A>,

denote CP as the node set of critical path computed by
Definition 1. Assigning the actual start executing time of
every task in CP as the earliest start executing time, and
allocating tasks, which can be executed concurrently with
one critical task (or several critical tasks that have time
dependence), into the same level. And make sure that
every task’s time interval should be within its level’s
time interval. Detail description is shown as (4), let the
concurrent level of G denote as CL, and |CL| represents
the total number of concurrent levels of the given

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 927

© 2014 ACADEMY PUBLISHER

workflow.

{ }

{ }

CL
1 | |

1 | |

min

max

,

,

i k
k i

i

i k
k i

i

i i

i i

VV CL CP
k CL CP

CL VV CL CP
k CL CP

V CL i i

V CL i i

V CL

V CL

β β

δ δ

β β

δ δ

∈
≤ ≤

∈
≤ ≤

⎧ =
⎪
⎪
⎪ =⎪
⎨
⎪

≥ ∀ ∈⎪
⎪ ≤ ∀ ∈⎪⎩

∩
∩

∩
∩

 (4)

Definition 3. For a given workflow G = <V, A>, in
every level, let every single task or tasks that have time
dependence defined as subPath.

If the last task in one subPath hasn’t a direct successor
in the corresponding level, then define this subPath’s
sub-deadline as:

,
j isubPath CL j isubPath CLδ δ= ∀ ∈ (5)

If the last task denoted as V* in one subPath exists
direct successor, then define this subPath’s sub-deadline
as:

{ }*

*
()

1 | ()|

min ,
j k

k i

i

subPath V j i
V CL succ V

k CL succ V

subPath CLδ β
∈

≤ ≤

= ∀ ∈
∩
∩

 (6)

Where *()succ V represents the set of direct
successors of task V*.

For all the subPaths of the given workflow, if subPathj
has unique task V*, then its time interval is set as:

{ }* *

*

*

()
1 | ()|

max

,

k
k i

i

j

VV V CL pred V
k CL pred V

subPath j iV
subPath CL

β δ

δ δ

∈
≤ ≤

⎧ =
⎪
⎨
⎪ = ∈⎩

∩
∩ (7)

Where *()pred V represents the set of direct
predecessors of task V*.

In the same with Deadline Min-Cost [7], if a subPath
has several tasks, CLWS also uses Markov Decision
Process (MDP) [12] to deal with the sequential tasks. It
tries to extend every task’s time interval, and then each
task can select the better service with least cost. The
detail description of MDP is shown as below:

Definition 4. For a given workflow G = <V, A>, if a
subPath has several tasks, let subPath = {1, 2, …, r},
function (, ,)k

i i jf V S V represents the process that task i
selects the k-th service and turn to the next task j (j<i).
The result value of this function represents the cost of the
k-th service.

,
(, ,)

,
i

k
i V subPathk

i i j

c
f V S V

others

β β⎧ ≥⎪= ⎨
∞⎪⎩

 (8)

Definition 5. For the subPath in the definition 4, MDP
uses the equation below to achieve that task iV
selects k

iS , which can make the local cost optimum.

{ }
1 | |

() min (, ,) ()
i

k
i i i j jk SP

F V f V S V F V
≤ ≤

= + (9)

B. The Description of CLWS
Definition 6. For a given workflow G = <V, A>, if the

overall deadline is more than the lower-complete time,
let their difference as time float denoted as TF,

 mindeadlineTF t t= − (10)

Distributing the overall time float into every levels
under the difference among levels, and every level’s sub
time float can computed as below,

* | |
| | 2iCL i

TFTF CL
V

=
−

 (11)

From Table 1, it’s not useful to distribute time float to
both entrance task and exit task. It is obvious that (11)
can get a better performance than that of DBL.

After distributing the overall time float, (4) can be
modified as below,

{ }

{ }
1 | |

1 | |

min

max

,

,

i k
k i

i

i k i
k i

i

i i

i i

CL VV CL CP
k CL CP

CL V CLV CL CP
k CL CP

V CL i i

V CL i i

TF

V CL

V CL

β β

δ δ

β β

δ δ

∈
≤ ≤

∈
≤ ≤

⎧ =
⎪
⎪
⎪ = +⎪
⎨
⎪

≥ ∀ ∈⎪
⎪ ≤ ∀ ∈⎪⎩

∩
∩

∩
∩

 (12)

Above all, CLWS is explained as below:
Algorithm 1. CLWS
1) Initializing the workflow and allocating services to

every task;
2) Computing mint according to definition 1;
3) Computing the concurrent levels according to

definition 2;
4) Computing every level’s subPaths according to

definition 3;
5) If the given overall deadline is more than the

upper-complete time, then turn to step 8) and print error
message; Otherwise, compute overall time float and
distribute them into every level by (12), then compute
every level’s time interval and its subPaths’ time interval
again;

6) Scanning every subPath, if it has unique task,
computing its time interval according to (7); Otherwise,
adopting MDP to compute this task’s time interval;

7) Computing the total cost of this workflow;
8) End.

C. An illustrative Experiment
In order to validate the proposed CLWS, this section

adopts data from Fig. 1 and Table 1 to give an illustrative
experiment. We suppose that the given overall deadline
is 100. After distributing the minimal cost service to
every task, the critical path is computed as CP = {1, 2, 6,
7, 9, 12, 13, 15, 16} and this workflow’s lower-complete
time mint = 61.

Combining with the workflow’s execution, the Gannt
diagram is drawn in Fig. 2, as well as the bold lines
represent the executing process of critical task. As shown
as this Gannt diagram, all the tasks’ actual executing

928 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

process, the corresponding concurrent levels and
subPaths are obviously illustrated.

Figure 2. The Gannt diagram of the schematic workflow’s

executing process

TABLE 2.
THE TASKS’ SERVICE SELECTIONS AND ACTUAL TIME INTERVALS

OF THE SCHEMATIC WORKFLOW
Task number Service selection Time interval

1 1
1S [0, 0]

2 1
2S [0, 10]

3 1
3S [0, 5]

4 1
4S [0, 6]

5 1
5S [0, 4]

6 1
6S [17.14, 20.14]

7 1
7S [20.14, 35.14]

8 1
8S [17.14, 20.14]

9 1
9S [36.5, 44.5]

10 1
10S [36.5, 66.5]

11 1
11S [36.5, 46.7]

12 1
12S [44.5, 53.5]

13 1
13S [53.5, 78.5]

14 2
14S [66.5, 86.5]

15 2
15S [87.20, 97.20]

16 1
16S [99.98, 99.98]

The overall time float TF = 100-61 = 39 according to
(10). From (11), every level’s sub time float is computed,
and then corresponding tasks’ time interval can be
determined. Finally, the schematic workflow’s total cost
is computed as 493, and all the tasks’ service selections
and actual executing time intervals are shown in Table 2.

V. SIMULATION RESULTS

A. Experiment Environment
All the DAGs are generated by the DAG graph

random generator, in which the task numbers |V|∈ {10,
20, 30, 40, 50, 60, 70, 80, 90, 100}, the task numbers of a
subPath, |subPath| ∈ {1, 2, 3, 4}, the task’s
outDegree∈ {1, 2, 3, 4}. The length of service pool can
be randomly generated from the interval [5, 10], while
the service executing time is randomly generated from

the interval [5, 30] and the corresponding cost is
inversely proportional to the time. The overall deadline
can be computed as min max min* ()deadlinet t t tμ= + − , where
μ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5},

m axt is the corresponding upper-complete time with
lower-complete time of the workflow and each μ
comprises 10 instances.

B. Experiment results and Analysis
This section mainly discusses the executing

performances of CLWS, DBL, Deadline Min-Cost and
MCP [8]. Suppose that using algorithm A and algorithm B
to execute the same workflow, their total costs are
separately denoted as CA and CB, then the decrease rate
from algorithm A to algorithm B can be denoted as

|E () *100%A B B A BC C C= − . Every group adopts the
average values.

Figure 3. Different algorithms’ performance comparison

algorithms’ total
This part computes the decrement from CLWS, DBL

and Deadline Min-Cost to MCP. Fig. 3 displays the
compared results. Different with DBL or Deadline
Min-Cost, CLWS stratifies all the tasks according to the
concurrence among tasks in the actual execute situation,
and it can not only decrease the task levels, but also
increase the utilization of overall time float. And we can
further increase the utilization of overall time float by
adopting the approach of distributing the overall time
float into every level according to the differences among
levels. From Fig. 3 we can also obviously find that the
proposed algorithm CLWS can get a better performance
than DBL or Deadline Min-Cost.

VI. CONCLUSION

This paper proposes a novel heuristic workflow
scheduling algorithm CLWS, which it distributes task
levels by their concurrence, and adopts the efficiency
algorithm MDP to optimize the sequential tasks with
time dependency. The contributions of CLWS are that it
not only decrease the time pieces, but also can optimize
the total executing cost. The experiments’ results
demonstrate that CLWS has better performance than
DBL and Deadline Min-Cost. The future work of this
paper is to improve CLWS and address the problem of
heuristic workflow scheduling more efficiency in the
dynamic Cloud computing environment.

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 929

© 2014 ACADEMY PUBLISHER

ACKNOWLEDGEMENT

This paper was supported in part by the National
Natural Science Foundation of China under Grant No.
61272036, and key disciplines of Shanghai Second
Polytechnic University named Software Engineering
under Grant No. XXKZD1301.

REFERENCES

[1] Sushil Bhardwaj, Leena Jain, Sandeep Jain, “Cloud
Computing: A Study of Infrastructure as a Service (IAAS)”,
IJEIT, 2(1), pp.60-63, 2012.

[2] Yingchun Yuan, Xiaoping Li, “Deadline Division-based
Heuristic for Cost Optimization in Workflow Scheduling”,
Information Sciences, 2562-2575, 2009.

[3] Jia Yu, Rajkumar Buyya, Kotagiri Ramanmohanarao.
“Workflow Scheduling Algorithms for Grid Computing”,
Metaheuristics for Scheduling in Distributed Computing
Environments, Springer, pp.173-214, 2008.

[4] Hai Jin, Hanhua Chen, Zhipeng Lu, “QoS Optimizing
Model and Solving for Composite Service in CGSP Job
Manager”, Chinese Journal of Computers, 28(4): 578-588,
2005.

[5] Jianning Lin, Huizhong Wu, “Scheduling in Grid
Computing Environment Based on Genetic-algorithm”,
Journal of Computer Research and Development, 41(12):
2190-2194, 2004.

[6] Mingyuan Yu, Yihua Zhu, Ronghua Liang, “A Grid
Service-Workflow Scheduling Using Hybrid Particle
Swarm”, Journal of Huazhong University of Science and

Technology: Natural Science, 36(4): 45-47, 2008.
[7] Jia Yu, Rajkumar Buyya, Tham Chen Khong, “Cost-Based

Scheduling of Scientific Workflow Applications on Utility
Grids”, Proceedings of the 1st IEEE International
Conference on e-Science and Grid Computing, IEEE Press,
140-147, 2005.

[8] Yingchun Yuan, Xiaoping Li, Qian Wang, “Bottom Level
Based Heuristic for Workflow Scheduling in Grids”,
Chinese Journal of Computers, 31(2): 283-290, 2008.

[9] Ye Gang, Xianjun Li, Dan Yu, Zhongwen Li, Jie Yin, “The
Design and Implementation of Workflow Engine for
Spacecraft Automatic Testing”, Journal of Computers, 6(6):
1145-1151, 2011.

[10] Blythe J, Jain S, Deelman E, “Task Scheduling Strategies
for Workflow-based Applications in Grids”, Proceedings of
the IEEE International Symposium on Cluster Computing
and Grid. Cardiff, Vol.2, 759-767, 2005.

[11] Demeulemester E, Herroelen W, Elmaghraby S E,
“Optimal Procedures for the Discrete Time/Cost Trade-off
Problem in Project Networks”, European Journal of
Operational Research, 88(1): 50-68, 1996.

[12] RS Sutton, AG Barto, Reinforcement learning: An
introduction, MIT Press, USA, 1998.

[13] Guojun Yang, Ying Zheng, Gang Wang, “An Application
Research on the Workflow-based Large-scale Hospital
Information System Integration”, Journal of
Computers,6(1): 106-113, 2011.

[14] Chaokun Yan, Huimin Luo, Zhigang Hu, Xi Li, Yanping
Zhang, “Deadline Guarantee Enhanced Scheduling of
Scientific Workflow Applications in Grid”, Journal of
Computers, 8(4): 842-850, 2013.

930 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

