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Abstract—This paper presents a novel dynamic terrain 
multiresolution rendering method by utilizing the 
capabilities of current generation GPUs. Firstly, the terrain 
depth offset map texture that represents the appropriate 
offset values is generated through rendering to texture, 
which is used to deform terrain in vertex shader. Then in 
order to accurately represent the fine terrain detail created 
by deformation, an adaptive geometry tessellation technique 
is implemented in geometry shader. Moreover, to update 
deformation area texture, we apply procedural texturing 
based on constraint conditions in fragment shader. In the 
end, the experiments prove that our method is feasible and 
efficient. 
 
Index Terms—dynamic terrain, geometry tessellation, 
multiresolution, GPU 
 

I.  INTRODUCTION 

The real-time visualization of the terrain plays an 
important role in computer graphics, three-dimensional 
geographic information systems, virtual reality and 3D 
games. Many excellent algorithms are proposed to realize 
the large scale terrain rendering. Along with the terrain 
visualization technology progressing, high quality and 
reality deformable terrain systems is more desired than 
before. Deformable terrain or dynamic terrain has 
become an increasingly important requirement for 
ground-based simulation systems. When it comes to 
virtual battlefield, the dynamic terrain techniques are 
essential to the visualization of crater resulting from 
explosion. 

In this paper, we present a real-time GPU-based multi-
resolution dynamic terrain visualization method to 
simulate crater in virtual battlefield. we develop a novel 
terrain deformation algorithm based on the programmable 
Graphical Processing Unit (GPU). The core of this 
algorithm is using frame buffer object(FBO) render to 
texture functionality to store terrain deformation process. 

To ensure efficient rendering of deformed terrain mesh, 
we introduce a new adaptive tessellation scheme for 
dynamic extension of resolution in deformation area that 
works completely on the GPU. To synthesize crater 
texture, the procedural texturing method based on 
constraint conditions that totally implemented on the 
GPU is proposed. The tests prove that our method is 
feasible and high performance. Our method can be used 
in dynamic terrain systems, such as war games with 
bomb explosions, animation with terrain deformation, etc. 

The rest of the paper is structured as follows. Section 2 
reviews some related work by previous researchers. 
Section 3 presents a terrain deformation algorithm. 
Section 4 describes dynamic extension of resolution 
technique. The texturing of the deformed area is 
explained in section 5. In section 6, we implement our 
method and show the result. Section 7 presents some 
conclusions on the techniques developed and outlines 
future work. 

II.  RELATED WORK 

Although many existing terrain visualization algorithm 
focus on static terrain rending, there are still a few 
methods used for dynamic terrain. 

Sumner et al. [1] proposed an appearance-based 
solution for the display of dynamic terrains. They used a 
four step execution cycle to create a visually-convincing 
depiction of terrain surface interactivity. Their method 
needed to manually adjust rendering parameters to 
produce a visually-convincing image. The need for 
manual adjustments suggests that this technique may not 
be suited for an interactive system. 

He et al. [2] extended the ROAM (Real-Time 
Optimally Adapting Mesh) algorithm to render dynamic 
terrain mesh. Their method known as Dynamic Extension 
of Resolution(DEXTER), dynamically extended the 
geometry hierarchy only where necessary. This method 
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was a milestone in the dynamic terrain visualization. 
Wang et al. [3] proofed the maximum extension of 
transition region based on DEXTER. The ROAM 
algorithm was also extended to offer preservation of 
vertex properties and relationships with the use of a 
Direct Acyclic Graph (DAG). 

Cai et al [4]. provided a multi-samples texture 
synthesis method for dynamic terrain texturing. However 
the main shortcoming was that they did not make use of 
GPU. 

With the development of the graphic hardware, in 
order to make use of the feature of the latest graphic 
process unit, in 2006 Anthony et al. [5] presented a new 
GPU-based terrain deformation algorithm for dynamic 
terrain simulation. However, their approach did not 
dynamically extend the resolution in deformed area; 
moreover, the algorithm was relatively complicated that 
made it suboptimal.  

In 2011, Wang et al. [6] presented a real-time physics-
based method to simulate crater in virtual battlefield. 
Their crater model took account of the crater direction, 
and they used dynamically-displaced height map(DDHM) 
and crater offset map to simulate the crater deformation. 
However, the crater offset map was generated offline at 
the initialization of the whole system, so their method 
could not generate arbitrary position and shaped crater on 
the fly. Moreover they used the procedural texture 
technique to generate crater texture on the CPU, which 
was deprecated, meanwhile, the dynamic extension of 
resolution in crater was also absent. 

In 2011, Justin Crause et al. [7] presented a new terrain 
deformation framework which was able to produce 
persistent, real-time deformation by utilizing the 
capabilities of current generation GPUs. Their method 
utilized texture storage, a terrain level-of-detail scheme 
and a tile-based terrain representation to achieve high 
frame rates. To accommodate a range of hardware, they 
developed two deformation schemes: one based on 
fragment shader, and another based on geometry shader 
tessellation. 

III.  GPU-BASED TERRAIN DEFORMATION ALGORITHM 

In virtual battlefield, explosions of ammunition on soft 
terrain would change the topology of terrain surface and 
then create craters. To simulate the crater, the 
deformation algorithm must be presented. The core of the 
algorithm is using 3 framebuffer objects to generate 
initial terrain depth texture, crater depth texture, and 
depth offset map individually. 

First of all, translate the height-map texture that every 
pixel representing the original terrain height to the initial 
terrain depth texture using FBO render to color texture 
method(Fig. 1 (a)).  

Secondly, to generate crater depth texture, we need to 
draw a solid surface to represent crater shape, such as 
sphere for simplicity. Then the crater depth texture is 
generated through a special modelview and projection 
transformation using FBO render to depth texture(Fig. 1 
(b)). 

Upon completion of the upper two render steps, we 
subtract crater depth texture from initial terrain depth 
texture in fragment shader, and the result is rendered to 
depth offset map texture using FBO render to color 
texture method(Fig.1(c)). The depth offset map represents 
the vertical elevation offsets for vertices in the terrain 
depth texture that are impacted due to external force. 

Upon completion of upper three steps, in vertex shader 
program we sample the initial terrain depth texture and 
then subtract depth offset map texture sample values to 
obtain the final vertices height value before further 
subdivision described in next section(Fig. 1 (d)) 

The pseudo-code of our GPU-based dynamic terrain 
visualization algorithm is as follows: 

begin 
initialize terrain depth texture  
while no exit signal do 
begin 

generate crater depth texture 
generate terrain depth offset map 
generate deformed terrain  

end 
end 

IV  DYNAMIC EXTENSION OF RESOLUTION 

In static terrain rendering, the highest detail available 
to approximate any part of the surface is pre-determined. 
However in dynamic terrain applications, greater interest 
may be put on the deformed regions, requiring higher 
resolution there than on untouched regions. The dynamic 
extension of resolution provides additional levels of detail 
at the modified regions without wasting memory space 

x 

Figure 1. The dynamic terrain deforming algorithm 
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representing untouched terrain at unnecessarily high 
resolution. Through dynamic extension of resolution we 
can integrate a high detail crater into a coarse terrain 
mesh. 

In order to realize dynamic extension of resolution, a 
geometry tessellation technique is required after terrain 
deformation implemented in vertex shader. There are two 
tessellation technique, one is basic tessellation using the 
geometry shader [8], the other is hardware tessellation 
using the tessellation shader [9]. Since the terrain 
deformation area is local to the whole terrain, the 
geometry shader is adequate to small-scale amplification 
of vertex data [10]. 

Deformed terrain mesh vertices generated in the vertex 
shader program are then assembled into triangles in 
graphic rendering pipeline, which go to the next shader 
stage–geometry shader. If the triangle located in 
deformed area it need to be tessellated according to some 
refinement pattern. Refinement patterns define how a 
triangle will be tessellated into sub-triangles. Each pattern 
can be defined as a set of barycentric coordinates. The 
difference between these patterns is based on the 
tessellation states of three vertices that make up a triangle. 
Each vertex can be tessellated(represented as 1) or 
not(represented as 0), therefore there are 8 different 
patterns. The pattern index ρ can be calculated from the 
tessellation states ti of the three vertices v0, v1 and v2 in 
the following formula. 

0 1 22 4t t tρ = + ∗ + ∗                            (1) 
If t0=1,t1=1,t2 =0,then ρ=3, means the edge formed of 

v0 and v1 need to be subdivided. 
If t0=1,t1=0,t2 =1,then ρ=5, means the edge formed of 

v0 and v2 need to be subdivided. 
If t0=0,t1=1,t2 =1,then ρ=6, means the edge formed of 

v1 and v2 need to be subdivided. 
If t0=1,t1=1,t2 =1,then ρ=7, means all edges need to be 

subdivided. 
In other cases, ρ=0,1,2,4, means there are no two 

vertices that need to be subdivided simultaneously, so the 
triangle remains unchangeable. 

Fig. 2 presents, on the left side, an initial rectangular 
triangle whose vertices are labeled as t0, t1, and t2 
respectively. Next, the 8 tessellation patterns are 
presented, with the edges of the original triangle that need 
refinement depicted in red. 

Having different patterns is essential to combine 
tessellated and non-tessellated triangles, removing the 
occurrence of cracks and holes between triangles in 
different resolution. 

Suppose we have an original triangle mesh that is 
composed of 3 triangle strips, and each triangle strip has 
6 triangles. Fig. 3 presents one adaptive tessellation result 
to the original mesh using upper defined tessellation 
patterns. In fig. 3 the vertex, whose tessellation state ti is 
equal to 1, is described as red character T, otherwise the 
vertex is described as blue character F, meanwhile the 
edge that need to be subdivided is drawn in red. 

Furthermore, to draw a plane terrain mesh, which has a 
local deformed area in it, the vertex height value can be 
used to calculate it’s tessellation state. If the height value 
of a vertex is larger or less than the original terrain height 
value, then its tessellation state ti will be set to 1, 
otherwise will be set to 0. In addition, the subdivision 
level that represent how many segment an a edge was 
divided into can be set to other value according to system 
requirement. We just use 4 for illustrative purposes. 

V  DYNAMIC TERRAIN TEXTURING 

After subdivision, it is time to texture the deformed 
area. Aimed at restrict of the traditional dynamic terrain 
procedural texture generation [4, 6], a new dynamic 
terrain procedural texturing method based on GPU is 
proposed. The algorithm sampled multiple sample 
textures in the fragment shader, then use functions as 
constraint condition and terrain depth offset map as alpha 
map to synthesize crater texture [11]. 

We observe and study the craters on the grass. 
Considering a simple cases, the crater texture can be 
defined as 3 rings, the center of rings is the bomb point 
[12]. Each ring includes a smooth blending with two 
sample textures. The innermost ring is generated by 
blending charring texture with adustion texture, the 
middle ring is a blend of adustion texture and soil texture, 
the outermost ring is a blend of soil texture and grass 
texture, and the rest area is grass texture, just as fig. 4. 

Figure 2. Tessellation pattern. The red color indicates the edges 
that need refinement. 

Figure 3. Example of adaptive tessellation. If vertex tessellation 
state=1, then represent as T. Otherwise represent as F. 
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To generate the crater texture, the 4 sample textures 
are blended together in the fragment shader according to 
the distance between texture coordinate and the center of 
rings. So each crater texel is the result of the mix of two 
of them according to the following scheme(fig. 5). 

If the distance value is in the range [0.0, 0.17], the mix 
is done between charring texture and adustion texture. 
The red solid line represents that the charring texture 
weight value is 1 in the center of rings, and then decline 
following the increase of distance from the center. While 
in the same distance range, the green dot line explains 
that the adustion texture weight increases from 0 to 1. 

Similarly, if the distance value is in the range [0.17, 
0.34], the mix is done using adustion and soil textures. If 
the distance value is in the range [0.34, 0.5], the mix is 
done between soil and grass textures. 

The formula used to compute the weight of a texture in 
the texel is the following: 

weight=(dist - mindist) / (maxdist - mindist)       (2) 
where dist is the distance from texture coordinate to 

the center of rings, mindist is the minimum distance 
related to the first texture and maxdist is the maximum 
distance related to the second texture in the blending 
range. 

For example, if the distance value is below the limit 
value 0.17, the weight of the adustion texture  is 
computed use following formula: 

weight = (dist - 0.0) / (0.17- 0.0)                    (3) 
The weight of the charring texture will be (1.0 - 

weight). In fragment shader program it’s computed by the 
mix function in the following line of code that returns the 
final color of the crater texel: 

crater_color = mix(charring_texel, adustion_texel, 
weight); 

When texturing a crater in large grass terrain, the depth 
offset map calculated in section III can be used as the 
alpha map to texture the final deformed terrain. 

VI  IMPLEMENTATION 

We have implemented our method in a simulation of 
virtual battlefield. Our implementations are running on a 
Intel Core i3 2.9GHz computer with 2GB RAM, and 
NVIDIA GT430 graphics card with 1G RAM, under 
Windows 7 system, Visual studio 2010 and OpenGL 4.3 
environment. Our implementation uses GLSL for shader 
programming.  

The rendering system has a 1024×768 size view port. 
The size of the initial terrain height map and the 3 render 
targets are all 256×256. The algorithm is implemented as 
a research prototype with no code tuning or low-level 
code optimization, and view-frustum culling is also 
absent. The frame rate of our system is over 150 fps. Here 
is a series of screen shots of our implementation. 

In the implementation of the rendering system, we can 
change the viewpoint position easily through keyboard 
and mouse. The system includes two different rendering 
mode, fill or wire frame mode. Moreover, we can change 
the subdivision level through keyboard as needed at run 
time. 

Fig. 6 shows that after generate the vertex of deformed 
terrain in vertex shader , 4 different subdivision levels 
were used in geometry shader to generate final deformed 
terrain mesh. The choice of subdivision level offers the 
opportunity to alter the granularity of the deformation, 
which can be used to throttle the simulation and visuals 
as deemed necessary by the application. 

Fig. 7 shows the sphere that is used to generate the 
crater depth texture in the scene. From the figure we can 
observe that the crater surface envelopes the sphere.  

Figure 4. The constitution of crater texture 

blend charring 
texture with 

adustion texture

(0,0)

blend adustion texture 
with soil texture

blend soil texture 
with grass texture

grass texture

0.17 0.34 0.5

Figure 5. The constraint condition of texture blending 
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Figure 6. Geometry tessellation of deformed terrain mesh. 
From left to right and top to bottom, 4 different subdivision 

level is 1,2,3 and 4 respectively. 
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Fig. 8 shows the craters on the grass terrain. The crater 
texture getting from our method enhances the sense of 
reality. 

VII  CONCLUSION AND FUTURE WORK 

In this paper we present a multiresolution rendering 
method of crater deformation on soft terrain. Firstly, we 
present a novel crater deformation algorithm. Our method 
uses 3 framebuffer objects to generate initial terrain depth 
texture and depth offset texture, then calculate the 
deformed vertex height value in the vertex shader 
program. Then, the deformed triangles are subdivided 
into different patterns in geometry shader according to 
the vertex tessellation state, which avoid T- junctions. 
Finally, a method of procedural texture based on 
constraint conditions is implemented in fragment shader 
to generate crater texture. Unlike previous work, the 
terrain deformation, multi-resolution rendering and 
texturing are all manipulated on the GPU. The 
experiments show that our method is feasible and high 
performance.  

As a future possibility, we are working on using 
NURBS surface to generate more realistic crater shape , 
using view dependent method to calculate triangle 
subdivision level, and extending our method to realize 
large-scale dynamic terrain visualization. 
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Figure 8. Crater on soft grass terrain 

Figure 7. The sphere that partially sink into terrain is 
used to generate the crater. 
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