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Abstract—State space explosion is one of the biggest problem 
in model checking. Predicate abstraction technique is used to 
reduce the size of  state space of colored Petri net models, and 
an algorithm was proposed to obtain the abstracted state 
space of a colored Petri net model without its original state 
space generated. A method to verify safety properties of Web 
service composition by abstracted state space and the 
Counterexample-Guided Abstraction Refinement was 
proposed. The problem of state space explosion is solved to 
some extend by this way. Finally, with an example, an 
application of this method is illustrated, which its efficiency 
shown. 
 
Index Terms— model checking, web service composition, 
safety property, predicate abstraction, colored Petri net 
 

I.  INTRODUCTION 

A safety property is in the sense of means that “nothing 
bad” can happen in a system, which assert that the system 
always stays within some allowed region.  

Model checking[1-5] is an automatic formal 
verification technique which is widely used in a variety of 
fields since 1980’s. Given a state transition system and a 
property, It explores the state space of the system 
exhaustively to determine whether the system satisfies the 
property. State space explosion remains a  large of 
obstacle to use of model checking. 

Abstraction[6] is a kind of efficient ways to overcome 
the state space explosion problem. During the verification 
process, irrelevant information is removed from the 
original system and a simplified model, called abstract 
model, is obtained. In general, the abstract model has less 
states than the original. So the verification is higher 
efficient while we do it under the abstract model. By this  
verification method, we  can deal with lager-scale designs 
to a certain degree.  

For web service composition, there are some research 
works employed varieties of methods, which includes 
Petri net, process algebra, abstract state machine, SPIN, 
and automaton methods, etc[6-8]. Some researches 
employed more than one method, so we can not classify 
them accurately. 

Based on Colored Petri Net (CP-net for short) models of 
Web service composition, a new algorithm is presented to 
verify safety properties of the web service composition in 
this paper. Predicate abstraction technique is employed in 
it. 

II.  COUNTER-EXAMPLE-GUIDED ABSTRACTION 
REFINEMENT 

Program analysis must be precise and scalable for 
verification. Precision is required so that the analysis does 
not be fooled by spurious errors and dose not overlook 
genuine errors. Scalability is necessary so that the method 
is suitable for large software systems which demands most 
accurate analysis. These two features are often mutually 
exclusive and need a trade-off between them. Flow-based 
analyses[10,11] achieve scalability. It fixes a small 
domain of dataflow facts which are tracked, and computes 
flow functions over the abstract semantics of the program 
on this fixed set. For complicated properties, the set of 
facts that are tracked is too small and will lead to a high 
rate of false positives, i.e., a large number of bugs reported 
which never arise during the program execution. Some 
model checking methods, precise or path-sensitive, often 
end up tracking too many facts and lead to state explosion 
in the way of scalability. 

To avoid the pitfalls arising from using a fixed set of 
facts, much recent interest has focused on analyses that 
automatically tune the precision of the analysis using false 
positives. It is called Counterexample-Guided Abstraction 
Refinement( CEGAR for short). It is a loop[6,12-15] with 
3 steps as follows. 

Step 1 (“Abstraction”) A finite set of predicates is 
chosen, and an abstract model is built automatically as a 
finite or push-down automaton for the given program. 
States of the automaton represent truth assignments of the 
chosen predicates. 

Step 2 (“Verification”) For the desired property, The 
abstract model is checked automatically. If error-free the 
abstract model is, then so is the original program (return 
“program correct”); otherwise, an abstract 
counter-example is produced automatically which 
demonstrates how the model violates the property. 

Step 3 (“Counter-example-driven refinement”) 
Whether the abstract counter-example corresponds to a 
concrete counter-example in the original program, it is 
checked automatically. If so, then a program error has 
been found (return “program incorrect”); otherwise, the 
chosen set of predicates does not contain enough 
information to prove program correctness and new 
predicates required to be added into the set. The selection 
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of such predicates is automated, or at least guided, by the 
failure to concretize the abstract counter-example. 

Goto Step 1. 

III.  PREDICATE ABSTRACTION ON CP-NET MODELS 

Predicate abstraction was presented by S.Graf and 
H.Saidi firstly [17]. It is a kind of abstraction with keeping 
properties. It defines an equivalence relation on the initial 
model by predicates, and changes the concrete model 
which is large or contains infinite states, into an abstract 
model which has finite states and is easy to manipulate. 
Predicate abstraction can be seem as a special conservative 
abstraction.  

A.  Predicate Abstraction 
In what follows, logic predicates shall be used to 

represent sets. If a predicate P represents a set, then an 
element, x , is a member of the set if and only if ( )P x  is 
true. 

Elements of a concrete system (a system without 
abstraction) are described as follows. 

1. The set of concrete sates, denoted by C ; 
2. The concrete transition relations which are described 

by an initial state predicate :CI C bool→ , and a concrete 
transition relation predicate :CR C C bool× → . 

3. A state x is an initial state, iff ( )CI x  is true; state 
y is a concrete successor of x iff ( , )CR x y is true. 

Let 1 2 Nϕ ϕ ϕ，， ， be the abstraction predicates defined 
on the concrete system M , M is partitioned by these 
predicates equivalently, and each concrete state is mapped 
to an equivalent class which called abstract state. An 
abstract state can be represented by a vector of length N . 
The abstract set of states, A ,can be defined as : 

1 2 N{( b b ) | is a bool expression}iA b b= ，， ，   
The correspondence exists between a concrete state and 

an abstract state. A concrete state corresponds to only one 
abstract state, and an abstract state to a set of concrete 
states. This relationship can be described by abstraction 
and concretization functions. The abstraction function 
α maps each concrete state to an abstract state, and the 
concretization is the inverse of an abstraction. The 
concretization function γ maps each abstract state to the 
set of all concrete states it represents. 

Definition 1. (Abstraction and concretization 
functions)[16]. Let 1 2 Nϕ ϕ ϕ，， ， be the abstraction 
predicates defined on the concrete system M . 

1 2 NB B B， ， ， are boolean variables where each 

iB represents all concrete states satisfying the predicated 

iϕ . Abstract states are represented by a boolean 
expression 1 2 Nexp (B B B )A ， ， ， . That means that the set of 
concrete states represented by the abstract state can easily 
be computed by substituting each occurrence of each 
variable iB  by the concrete predicate iϕ which it 
represents: 

whereas the implicitly defined abstraction function as 
bellow.  

1 2 N( ) {exp (B B B ) | exp [ / ]}A A Bα ϕ ϕ ϕ= ∧ ⇒， ， ，  
where ϕ represents a vector which consists of 

1 2 Nϕ ϕ ϕ，， ， , and B  represents a vector which consists of 

1 2 NB B B， ， ， , [ / ]Bϕ  represents substitution of iϕ for iB , 
for each i . 

For each concrete state ϕ , ( )α ϕ is a conjunctive 
normal form of all formulas 1 2 Nexp (B B B )A ， ， ，  which 

satisfying exp [ / ]A Bϕ ϕ⇒ . In general it is not easy to 
compute this conjunction, so an upper approximation of 
the function α , 'α is used by Graf and Saidi[17] to 
substitute for it . 'α is less expensive to compute and 
results in a monomial on 1 2 NB B B， ， ， .  

'
i( ) {B | ,  1 }i i nα ϕ ϕ ϕ= ∧ ⇒ ≤ ≤  

(Notice: a monomial on 1 2 NB B B， ， ， means a 
conjunction of iB and iB¬ , in which iB  occurs at most 
one time, and the predicate false is seemed as a 
monomial. ) 

A method of abstract state computation from a concrete 
state was given out by S.Graf and H.. An abstract state is a 
certain assignment of N boolean variables, and is 
presented by atomic formula false or a conjuctive normal 
form 1 2 Nc c c∧ ∧ ∧ where (1 )ic i N≤ ≤ takes on value 

i iB B¬, or true.  
If the current concrete state satisfies the predicate iϕ , 

ic takes on vlaue iB . Otherwise it satisfies predicate iϕ¬ , 

ic takes on vlaue iB¬ . If neither iϕ  nor iϕ¬ it satisfies, 

ic takes value true. 
As we described previously, A is the set of states of the 

abstract system. Abstract initial states and abstract 
transition relations are complete to define an abstract 
system. 

Definition 2. (Initial state). The abstract initial states 
:AI A bool→  is defined to be ( )Cα I . 
It may be shown that the concrete and abstract initial 

states satisfy the inclusion relation ( )C AI Iγ⇒ . 
Definition 3. (Abstract transition relation). The abstract 

transition relation is represented by a predicate 
:AR A A bool× →  with two states, ,s t A∈ , as argments.  

The transition relation is defined as  
( , ) , . ( )( ) ( )( ) ( , )A CR s t x y C s x t y R x yγ γ= ∃ ∈ ∧ ∧ . 

Definition 4.(Predicate transformer) Let R be a binary 
relation on a set Q , and ( )P Qϕ ∈ represent a subset of 
Q ,then  

' ' '

' ' '

[ ]( ) . ( ( , ) ( ))
[ ]( ) . ( , ) ( )

pre R q R q q q
post R q R q q q

ϕ ϕ
ϕ ϕ

= ∀ ⇒

= ∃ ∧
 

[ ]( )pre R ϕ defines the largest set of states such that all 
its successors satisfy ϕ (the weakest precondition); 

[ ]( )post R ϕ defines the set of successors of ϕ by R (the 
1 2 N(exp (B B B )) exp [ / ]A A Bγ ϕ=， ， ，
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strongest postcondition). Let AR denote the set of 
transitions in an abstract system, and CR denote the set of 
transitions in the corresponding concrete system, then AR  
and CR  have such relevance: For each concrete transition 

jτ , we use A
jτ  to denote a transition in the abstract system 

which comes from 1 2 Nexp (B B B )A ， ， ，  and corresponds 

to jτ , that is, A
jτ  is a transition from a set of abstract states 

1 2 Nexp (B B B )A ， ， ，  to another set of abstract states which 
represents all successors of the concrete states represented 
by 1 2 Nexp (B B B )A ， ， ， . A

jτ  can be determined by  
 

 
In this formula, jg is a boolean expression and is the 

condition of jτ  occurrence. A transition occurs only when 
the system current state meets jg . while 

exp [ / ]A
jB gϕ ⇒ ¬  is satisfied 

1 2(exp ( , , , ))A A
j NB B B falseτ = . It means the abstract 

state 1 2exp ( , , , )A
NB B B  has no successor. 

exp [ / ]A
jB gϕ ⇒ means the transition condition satisfied,  

post[ ]( exp [ / ])A
j Bτ ϕ determines the value of ic  takes. 

In conclusion, given a concrete model with its set of 
initial states CI  and set of transitions CR  , an abstract 
model can be computed with  the abstract initial states set 

AI and transitions set AR , using abstract function 'α and 
abstract transition A

jτ .  
Theory 1. For any concrete state x , ( (x))(x)γ α holds. 
Theory 2. For any abstract states x, y ,and an abstract 

state s , ( )( ) ( , ) . ( , ) ( )( )C As x R x y t R s t t yγ γ∧ ⇒ ∃ ∧ holds. 
Above theories have been proved in reference [16]. 
The abstract model given in this section is conservative. 

That is, if a property holds in an abstract system, it also 
holds in the corresponding concrete system.  

Theory 3.(Conservation of abstraction) if a 
*CTL universal property holds in an abstract model, it also 

holds in the corresponding concrete model.  
This theory was presented by CLARKE, et.al. [18]. A 

universal property means no path quantifier “ ∃ ” existing 
in the negative normal form it translated.  

B.  CP-net Models 
CP-net extends the Petri net in definition of data types 

and manipulation of data values. For a same system, its 
CP-net model should be simpler and more compact than its 
Petri net model in general. CP-net has been used to 
describe some properties, for example, security 
property[19]. 

All CP-net models appear in this paper are generated by 
CPN tools[20] developed by Danish Aarhus university. 
The color set "STATE'' has bool type. Symbol "t" 
represents a bool constant "true", which denotes resources 

movement by representing a state of an activity. "MSG" is 
a color set of string type, "msg" is a variable of MSG.  

C.  Predicate Abstraction on CP-net Models 
In essence, predicate abstraction is a method of 

partitions of equivalent classes. All applications of 
predicate abstract technique authors found in references, 
work on state diagram of systems. The biggest problem for 
a state diagram is states explosion.  

To avoid analysis of big scale sate diagram, a new 
algorithm of the predicate abstraction is given in this paper. 
In this algorithm, the generation of a state diagram is 
combined with the abstraction of the same states diagram, 
the abstract states diagram was built during the state 
diagram generation. This new algorithm is based on 
CP-net algorithms of states diagram generation [21] and 
abstract states diagram generation[15] from concrete 
states diagram. Compared with algorithms available, this 
new one need not deal with concrete states diagram, so 
states explosion of the concrete states diagram is avoided.  

Formulas of relations between transitions in a concrete 
system model and that in the abstract system model are 
employed in this algorithm. A system abstract states 
diagram will be obtained directly without the generation of 
the concrete states diagram, if we move some steps out this 
algorithm. So the explosion problem of the concrete state 
space is solved to a certain degree.  

Algorithm 1. (Generations of CP-net states diagram and 
abstract states diagram) 

symbols: 
cpn:the CP-net model of a given system S 

0M :a initial mark of  cpn； 

1 2{ , , , }nϕ ϕ ϕ ϕ= : set of predicates； 
Input:cpn 
OutPut:an abstract states diagram of cpn based on the 

set of predicates ϕ , which composes of a set of 
nodes, Nodes ,and a set of arcs, Arcs ; 

Steps: 
 1. initialize the state diagram:  

0{ };  ;Nodes M Arcs φ= =  
 2. initialize the data:   0{ }Unprocessed M= ; 

1 2

[1, ]

          if exp [ / ]

,    if  post[ ]( exp [ / ])
(exp ( , , , )) otherwise.

,  if  post[ ]( exp [ / ])

A
j

A
i j iA A

j N A
i j i

i N

false B g

B B
B B B

B B

true

ϕ

τ ϕ ϕ
τ

τ ϕ ϕ
∈

⎧ ⇒ ¬
⎪
⎪ ⎧ ⎫⇒⎪ ⎪ ⎪= ⎨ ⎪ ⎪¬ ⇒ ¬⎨ ⎬⎪

⎪ ⎪⎪
⎪ ⎪⎪ ⎩ ⎭⎩

∧
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 3. compute the abstract function 'α by  the set of 
predicates ϕ : '

i( ) {B | ,  1 }i i nα ϕ ϕ ϕ= ∧ ⇒ ≤ ≤  
 4. initialize the abstract state diagram: 
   compute the initial state of the abstract state digram:  
        '

0 0 0( ) ,  A  , { }A A A
touM M Nodes Mα φ= = = ; 

     5. while(Unprocessed φ≠ ) 
｛   select a state 1M Unprocessed∈  
       1\{ }Unprocessed Unprocessed M=  
       caculate the abstract state with which 
1M correspond, '

1 1( )AM Mα= ； 
       if ( 1

A AM Nodes∉ ) { 1{ }A A ANodes Nodes M= ∪ ;} 
           //treat bindings of 1M   

      for ( each binding 2( , )b M  which satisfies   
                                                   1 2[M b M>  ) 
      {  if ( 2M Nodes∉ ) 
         {   2{ }Nodes Nodes M= ∪ . 
              2{ }Unprocessed Unprocessed M= ∪  
              caculate the abstract state with which 
                              1M correspond, '

2 2( )AM Mα= ; 
              if ( 2

A AM Nodes∉ ) 
             {  2{ }A A ANodes Nodes M= ∪ ;}} 
                1 2( , , )Arcs Arcs M b M= ∪  
                  seem 1 2( , , )M b M as a transition jτ  of the 

concrete system, calculate the abstract transition with 
which jτ correspond: 

                 2
1

2

  ,  if (M )
( )

,  if (M )j

A
i iA A

A
i i

B
M

B

ϕ
τ

ϕ
⎧ ⇒⎪= ⎨

¬ ⇒ ¬⎪⎩
. 

               1 A  A { ( )}
j

A A
tou tou Mτ= ∪         }  } 

6. put out the concrete state diagram, that is, put out the 
set Nodes and the set Arcs ; 

7. put out the abstract state diagram, that is, put out its 
initial state 0

AM , set of transitions touA , and its reachable 
states set ANodes . 

IV.  CP-NET MODEL OF WEB SERVICE COMPOSITION  

Web service composition is an error prone task in which 
service candidates interact complexly. The Business 
Process Execution Language for Web Services 
(BPEL4WS or BPEL for short) was proposed by BEA, 
IBM and Microsoft. It often is used to describe Web 
service compositions. BPEL represents a convergence of 
two languages: the Web Services Flow Language (WSFL) 
of IBM and XLANG of Microsoft. Like most languages, 
(the semantics of) BPEL is defined in English prose. Such 
descriptions, although often masterpieces of apparent 
clarity, usually suffer from inconsistency, ambiguity and 
incompleteness. 

Due to the presence of concurrency and intricate 
features like compensation handling, correlation and 

death-path-elimination, BPEL processes are also error 
prone. 

Based on CP-net, processes of Web service 
composition described by BPEL are translated into timed 
CP-net models in this paper, which have given in our other 
papers[22, 23]. Atomic activities of BPEL are seem as 
atomic operation in transitions, their execution 
successfully or not is the only factor under considered, 
which means the factor results in errors in not under 
considered, because we focus verification on web service 
compositions.  

V.  WEB SERVICE COMPOSITION VERIFICATION OF SAFETY 
PROPERTIES BY PREDICATE ABSTRACTION  

In this sector, the predicate abstraction technique and 
CEGAR are employed to verify safety properties of web 
service compositions. The algorithm 1 is used to generate 
the states diagram from the system's CP-net model, the 
abstract state diagram or the concrete state diagram. 

A.  System Description  
The system which was discussed in the BPEL 

specification[24] is used to demonstrate our work in this 
section. It is a Shopping Service, which presents a BPEL 
Abstract Process for a rudimentary shipping service. 

This service handles the shipment of orders, and orders 
are composed of a number of items. The shipping service 
offers two options, one for partial shipments where the 
items are shipped in groups until the order is fulfilled, and 
another for shipments where the items are shipped all 
together.  

B.  System Model 
The CP-net model derived from this Abstract Process’s 

instantiation is shown in fig.1. It presents the Shopping 
Service, a web service composition.  

In declarations of this model, the color set "shipOrder" 
is of record type and presents order type, its component 
"complete" is boolean and presents service options, whole 
shipment or partial shipments. The color set "shipOpaqp" 
presents a order during partial shipment. 

In this CP-net model. The place "input" is of 
"shipOrder" type and presents order’s information 
transmitted into the system. With initial token 0, the place 
"itemshipped" is of integer type and presents the mount of 
goods shipped during partial shipments. The place 
"opaque" is of "shipOpaq" type and presents all orders of 
partial shipments, while "notice" has same type and 
presents a order in each shipment. The place "ship" is of 
"shipNotice" type, its one component presents the current 
amount of goods shipped in a partial shipment and another 
presents the total amount of goods need to ship.  

In the CP-net model, the transition "receive" presents 
the acceptance of orders from the outside system, 
"invokSN1" presents the service invocation of whole 
shipment and "invokSN2" the service of partial shipments.  

Block line parts in fig.1 mean main activities of  
services of partial shipments. 
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C.  System States 
Resource movements in the system are presented by 

changes of places in CP-net models. At any time, the mark 
which consists of states of all tokens presents the system 
state. In order to describe the system state, states of tokens 
of places need to depict by predicates. The number of 
token of a place may be empty or not. If it is not empty, 
maybe a further description needed. 

With containing information of tokens in CP-nets, 
predicates do not only have values "true" or "false" simply, 
because sometimes computing its value is impossible. In 
this case, we use symbol "-" to denote this situation. In 
other words, a predicate will have one of 3 values: "true", 
"false" or "-". 

D.  System Properties Verification 
In this section, we demonstrate the method  to verify a 

safe property of the system by predicate abstractions.  
We assume the system holds a property which both 

whole shipment and partial shipment will be invoked in 
same time. That is, in the CP-net model transitions 
"invokSN1" and "invokSN2" will never be triggered at 
same time. 

Applying the algorithm 1 on the CP-net model, we 
obtain the abstract state diagram shown in Fig.2(a), where 

0
AM is the initial abstract state, the binary number in a 

circle presents a system state under the given predicates set 
1 2{ , }ϕ ϕ ,what in a square presents a transition which 

causes system states change. 

There is a path in the system of Shopping Service, 
0 3 0 1 2 0
A A A A A AM M M M M M→ → → → → , as shown in 

Fig.2(a). In its sub-path of 3 0
A AM M→ , the transition 

"invokSN1" is triggered, while in another sub-path of 
2 0
A AM M→ , the transition "invokSN2" triggered also. In 

other words, both services of the whole and the partial 
shipments are invoked during the system execution. We 
guess this conclusion is due to the rough of models and in 
predicates no enough information to prove the correction 
of the system. So new predicates need to add.   

E.  Abstraction and Concretization  
In this section, 3ϕ : (#    0)  ( 0)shipped ship or total> > , 

a new predicate added to the set of predicates. The current 
set of predicates is 1 2 3{ , , }ϕ ϕ ϕ , in which 1ϕ and 2ϕ  are the 
same as before. The predicate 3ϕ means at lest one of 
"invokSN2" and "invokSN1" be triggered. 

For this new predicates set, we obtain the abstract state 
diagram shown in Fig.2(b). 

Fig.2(b) shows none of path through both of 2
AM (or 

5
AM ) and 7

AM , which means transitions "invokSN2" and 
"invokSN1" can be both triggered during once execution 
of the system. In other words, it is impossible to invoke the 
whole shipment service and the partial shipment services 
successively.  

From above analysis we know the counter-example: 
0 3 0 1 2 0
A A A A A AM M M M M M→ → → → →  is a pseudo 

counter-example.

Figure 1. CP-net Model of the Service Process
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VI.  CONCLUSION  

Web service composition is an error prone task. One of 
the biggest problems is state space exploration during 
model checking. The predicate abstraction technique is 
one of efficient ways to solve the problem of states space 
explosion to a certain extent.  

To avoid the analysis of a big scale sate diagram, a new 
algorithm of the predicate abstraction on CP-net models is 
given in this paper. In the algorithm, the generation of a 
state diagram is combined with the abstraction of the same 
state diagram of CP-net models, the abstract state diagram 
was built during the generation.  

An example also is given to illustrate the efficient of  
the new algorithm.  
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Figure 2. (a)  abstract state space of  Shipping service; 

(b)  abstract state space of Shipping Service after new predicate added. 
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