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Abstract— It is challenging to find a small set of data
points, so-called exemplars or landmarks, that are nice-
ly representative of itself and other data points. Affinity
propagation (AP) is an effective algorithm that identifies
exemplars among data points by recursively sending real-
valued messages between pairs of data points. AP calculates
the message using the similarity among data points. Hence,
the construction of similarity graph lies in the heart of
the AP algorithm. A common choice for similarity is
negative Euclidean distance. However, most data points,
especial high-dimensional data, lies into the non-Euclidean
space such that Euclidean distance cannot capture the
real structure of data. Moreover, Euclidean distance is
sensitive to noise and outliers such that the performance
of the algorithm will be degraded when data are grossly
corrupted. In this paper, we propose an algorithm, named
as Sparse Affinity Propagation (SAP), which adopts sparse
representation coefficient to depict the relationship among
data points. For a given data set, SAP calculates the sparse
representation for each data point by solving a convex
problem; and then, builds a similarity graph using the
representation coefficient; after that, obtains the exemplars
by performing AP over the sparse similarity graph. To verify
the efficacy of our algorithm, we carried out numerous
experiments in the context of data summarization. Empirical
studies show that SAP is superior to AP and other baseline
algorithms for image analysis in accuracy and robustness.

Index Terms— Data Summarization, Subset Selection, ℓ1-
minimization, Compressive Sensing, Message Propagation.

I. INTRODUCTION

AUTOMATIC data summarization, which attempts to
choose a set of representative data points (so-called

exemplars, landmarks, or representatives) to depict the
whole data set, is useful in massive data analysis such
as keywords extraction, video/document summarization,
information retrieval. Moreover, Finding Exemplars could
obviously dramatically reduce the computational cost for
classification. For example, one could classify the testing
sample by comparing with k exemplars but with all
n training samples, where k ≪ n. Therefore, it has
motivated a lot of works in the area of machine learning
and pattern recognition.

To select representative points from the data set, several
works have been proposed based on different assumption-
s. k-medoids [1], which is a variant of k-means clustering
algorithm, assumes that the data distributed around the
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clustering centers (i.e., exemplars). It iteratively finds the
centers from the data set by minimizing the distance
between points labeled to be in a cluster and a point
designated as the center of that cluster. When similar-
ity/dissimilarity between pairs of data points are given,
the performance of k-medoids largely depends on the
initialization. The Rank Revealing QR (RRQR) [2], [3]
assumes that the data have low-rank structure and selects
a well-conditioned sub-matrix that spans the range of the
data matrix. Moreover, some works [4]–[9] assume that
the data can be represented as a linear combination of the
exemplars, and then finding exemplars are formulated as
a sparse recovery problem.

Moreover, Affinity Propagation (AP) algorithm [10],
[11] identifies the exemplars among data points by simul-
taneously considering all data point as potential exemplars
and exchanging messages between data points until a
set of exemplars are founded. The algorithm takes a
collection of real-valued similarities between pairs of data
points as input to calculate r(i, k) and a(k, i), where
r(i, k) (so-called responsibility) denotes how well the
kth data point is suited to be the exemplar for data
point i. Moreover, AP assigns a real number a(k, k) (so-
called availability, the accumulated evidence of a(k, i))
for each data point k so that the data point with larger
value of a(k, k) is more likely to be chosen as exemplar.
In general, AP takes the negative Euclidean distance as
similarity metric, i.e., for points xi and xj , s(i, j) =
−∥xi−xj∥2. By iteratively maximizing responsibility and
minimizing availability for each data point, AP finds a
collection of exemplars and groups the data points around
these exemplars. One of main attraction of AP is that it
doesn’t requires to pre-specify the number of exemplars,
which is very useful in real applications.

AP is derived as an application of the max-sum algo-
rithm in a factor graph, i.e., it seeks for the minima of an
energy function on the basis of message passing between
pairs of data points. The performance of AP strongly
depends on the similarity metric. A common choice for
the similarity is negative Euclidean distance. With the
distance metric, AP has achieved impressive results in
attribute reduction [12], document analysis [13], gene
detection [14], [15], and recommendation system [16]. In
some applications, however, the data (e.g., facial images)
doesn’t lie into the Euclidean space such that Euclidean
distance could not capture the real relationship among
data points. Furthermore, Euclidean distance has some
demerits as the other pairwise metrics. Specifically, the
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similarity based on pairwise distance is independent from
the other points. Thus, the metric could not reflect the data
distribution, which results in indistinctive neighborhood
structure for each datum. On the other hand, the similarity
based on pairwise distance is very sensitive to data noise
such that it might be failed when data contains noises or
outliers. Indeed, the data noises are inevitable especially
for multimedia data. To address the problems, several
works have been proposed [17], [18].

In this paper, we present an algorithm, named as Sparse
Affinity Propagation (SAP), which takes sparse represen-
tation coefficient as similarity for the AP algorithm. For
a given data set, SAP calculates the sparse representation
for each datum by solving a convex optimization problem;
and then, constructs a similarity graph using the repre-
sentation; after that, performs the AP algorithm over the
graph to obtain the exemplars.

SAP owns the merits of sparse representation and the
AP algorithm. Sparse representation aims to find the
minimal entries to represent each datum, which doesn’t
consider the global structure of data set. Hence, the
optimization program of sparse representation might not
produce a compact collection of data points. By per-
forming AP over the similarity graph based on sparse
representation, SAP actually eliminates the redundancy of
sparse representation caused by transmissibility of linear
encoding. On the other hand, SAP defines the the respon-
sibility and availability using the sparse representation,
which makes SAP is more robust than AP since the
similarity between any two data points depends on not
only themselves but also the other points. Moreover, SAP
doesn’t require specifying the size of neighborhood for
each datum, and it discovers the neighbors for each point
by utilizing the intrinsic sparsity. Thus, SAP has datum-
adaptive neighborhood.

The rest of the paper is organized as follows: Section
II presents k-medoids algorithm and affinity propagation
algorithm (AP); Section III presents our Sparse Affinity
Propagation (SAP). Section IV carries out some experi-
ments to examine the effectiveness of the algorithm by
classifying testing samples using the exemplars. Finally,
Section V summaries this work.

II. PRELIMINARIES

For a given data set X = {x1, x2, · · · , xn} with
m dimensionality, AP automatically finds the exemplars
from X by considering all data points as possible ex-
emplars and exchanging real-valued message between
them until the algorithm converges (as shown in Fig. 1).
The messages are calculated using the negative Euclidean
distance among data points and are updated on the basis
of a simple rule that reflects sum-product or max-product
update rules. At any time, the magnitude in each message
reflects the possibility that the corresponding point has
been chosen as an exemplar.

Algorithm 1 shows how does AP identify exemplars
from a given data set. At the beginning, AP sets the value
of r(i, k) and a(k, i) as 0, and considers all data points as

Node 1
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Node 3

Node 4

Node 5

Node 6

(a) (b)

Figure 1. (a) AP is an algorithm for finding exemplars by performing
belief propagation in a graphical model. (b) Two kinds of message are
passed through in the graph, which are calculated based on the input
similarity. Every data point will receive availability a(i, k) and send
responsibility r(i, j) from/to node k, where a(i, k) indicates how well
the node k as exemplar for i and r(i, k) indicates the possibility that
the node k is chosen as an exemplar for i.

Algorithm 1 Affinity Propagation (AP) ( [11]).
Input: A set of data points {xi}ni=1 ∈ Rm×n, and the

similarity between pairs of data points s(i, k).
1: Initialization:

r(i, k) = 0, a(k, i) = 0 for all i, k.
2: Responsibility updates:

r(i, k)←− s(i, k)− max
j:j ̸=k

(a(j, i) + s(i, j)).

3: Availability updates:
a(k, k)←− max

j:j ̸=k
(a(j, i) + s(i, j))

a(k, i)←− min(0, r(k, k)+
∑

j:j /∈{k,i}
max(0, r(j, k)))

4: Making assignments:
c∗i ←− argmax

k
r(i, k) + a(k, i).

Output: Cluster assignments {c∗i }ni=1, where c∗i = i
indicates the ith data point is chosen as an exemplar.

candidate exemplars. Message r(i, k) is sent from point
i to candidate exemplar k, which denotes how well point
k is selected as exemplar for i. Moreover, a(i, k) is sent
from exemplar k to data point i, which indicates the pos-
sibility for point i would choose k as its exemplar. Every
data point will be cluster member and candidate exemplar,
simultaneously. The role of point only depends on which
kind of message is sent. The update of responsibility
leads to the competition in all candidate exemplars for the
ownership of a data point, and the update of availability
shows whether the corresponding exemplar would be a
good exemplar. In other words, a(k, k) = P (ck = k)
denotes the probability for point k would be chosen as an
exemplar, and r(i, k) = P (xi|xk) denotes the probability
for point i belonging to the cluster k.

The performance of the AP algorithm is sensitive to the
initialization, i.e., the similarity graph lies in the heart of
the algorithm. In general, AP obtains a similarity graph
using the negative Euclidean distance between any two
data points, i.e., s(i, j) = −∥xi − xj∥2. However, the
distance metric would degrade the performance of AP in
high-dimensional data analysis since the data locate in the
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non-Euclidean space. Thus, it is necessary to find a more
suitable measurement for the AP algorithm.

III. SPARSE AFFINITY PROPAGATION

Sparse representation assumes that each data point
x ∈ Rm can be encoded as a linear combination of
other points. In mathematically, x = Dc, where D is
a dictionary whose columns consist of some data points,
and c is the representation of x over D. If most entries
of c are zeros, then c is called a sparse representation.
Generally, it can be achieved by solving

min ∥c∥0 s.t. x = Dc, (1)

where ∥ · ∥0 denotes ℓ0-norm by counting the number of
nonzero entries in a vector.

However, ℓ0-minimization problem is difficult to solve,
for it is a NP-hard problem. Benefiting from the emer-
gence of compressive sensing theory [19], [20], the above
non-convex problems can be solved by minimizing a
convex surrogate when c is highly sparse, i.e.,

min ∥c∥1 s.t. x = Dc, (2)

where ℓ1-norm ∥·∥1 sums the absolute value of all entries
in a vector. (2) is convex and can be solved by a large
amount of convex optimization methods such as basis
pursuit [21], least angle regression [22], and augmented
lagrange multiplier method [23]. In [24], Yang et al. give
a comprehensive survey for some popular optimizers.

In many practical problems, however, the constraint
x = Dc cannot hold exactly owing to the possible noises
in x and the limited representational capability of D. So,
we relax the constraint to ∥x −Dc∥2 ≤ ε, where ε > 0
is the error tolerance. Then, (2) is rewritten as:

min ∥c∥1 s.t. ∥x−Dc∥2 ≤ ε. (3)

For a given data set, we aims to find a small portion of
data set (i.e., exemplars) that can represent the whole data
set. Thus, we use all data points except xi as dictionary
for xi, i.e.,

min ∥ci∥1 s.t. ∥xi −Xici∥2 ≤ ε, (4)

where ci is the sparse representation of the data point xi

over Xi := [x1, x2, · · · , xi−1, 0, xi+1, · · · , xn].
The ℓ1 optimization program could choose the most

representative data points to reconstruct each data point
xi. However, the sparsity caused by ℓ1-minimization is
one-dimensional, i.e., the ℓ1-norm is enforced over a
vector such that it only guarantees to choose the minimal
data points to represent each point but the whole data
set. Thus, the results of (4) cannot be directly used
for finding exemplars. Fig. 2 gives a toy example to
show the situation. We perform (4) over a subset of
AR database [25], where Fig. 2(a) shows some sample
images. From Fig. 2(b), we could see that the affinity
matrix corresponding to the collection of ci is a block-
diagonal matrix. For each data point x, only a small
number of data points are used to represent x, but all

Algorithm 2 Sparse Affinity Propagation (SAP).
Input: A set of data points {xi}ni=1 ∈ Rm×n, and error

tolerance ε.
1: Calculate the sparse representation for each data point

by solving

min ∥ci∥1 s.t. ∥xi −Xici∥2 ≤ ε.

2: Build an affinity matrix via

s(i, j) = |c(i, j)|+ |c(j, i)|,

where c(i, j) is the jth entry in ci.
3: Initialization:

r(i, k) = 0, a(k, i) = 0 for all i, k.
4: Responsibility updates:

r(i, k)←− s(i, k)− max
j:j ̸=k

(a(j, i) + s(i, j)).

5: Availability updates:
a(k, k)←− max

j:j ̸=k
(a(j, i) + s(i, j))

a(k, i)←− min(0, r(k, k)+
∑

j:j /∈{k,i}
max(0, r(j, k)))

6: Making assignments:
c∗i ←− argmax

k
r(i, k) + a(k, i).

Output: Cluster assignments {c∗i }ni=1, where c∗i = i
indicates the ith data point is chosen as an exemplar.

data points are used to represent the whole data set (see
Fig. 2(c)). This corroborates the above claims.

To find the minimal data points to represent the whole
data set, we propose Sparse Affinity Propagation (SAP)
by performing AP over the collection of the sparse
representation. From the view of sparse coding, SAP
adopts AP to eliminate the redundancy of sparse repre-
sentation caused by transmissibility of linear encoding.
In other words, SAP provides 2-dimensional sparsity by
introducing the competition in all data points for the
ownership of a data point. From the view of the AP
algorithm, SAP takes the sparse representation as input
to calculate the belief messages such that the algorithm
is more competitive in high-dimensional data analysis.
Algorithm 2 summarizes our algorithm, where Steps 3
- 6 is to perform AP over the sparse similarity graph.

IV. EXPERIMENTAL VERIFICATION AND ANALYSIS

In this section, we report the performance of SAP in the
context of image classfication from accuracy, robustness,
and computational cost. All experiments are carried out
over a E5200 2.5Ghz CPU and 2GB memory in MAT-
LAB.

A. Experimental configurations

We compared SAP with three popular methods, i.e.,
AP [11], kmedoids [1], and random sampling. SAP and
AP automatically identify the exemplars without a fixed
parameter, while kmedoids and random sampling need to
specify the number of desired exemplars. For each data
set, we perform SAP, AP, kmedoids and random sampling
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(a) (b) (c)

Figure 2. A toy example. (a) Some samples draw from the first 10 individuals of AR database. (b) The affinity matrix based on sparse representation.
(c) Similarity graph based on sparse representation.

over training data to find exemplars, and then use the
exemplars as training data to classify new data. Four state-
of-the-art classifiers are used, i.e., SVM with linear ker-
nel [26], 1NN classifier [27], Sparse Representation based
Classifier (SRC) [28], and Linear Regression Classifier
(LRC) [29]. In our experiments, SAP and SRC adopt
Homotopy optimizer [30] to solve the ℓ1-minimization
problem (4). Similar to [31], in all experiments, we tuned
the parameters of all methods to get their best results.

We examined the performance of the algorithms using
two facial image databases and one handwritten digital
database, i.e., Extended Yale Database B (YaleB) [32],
AR [25], and USPS [27]. The YaleB data set contains
2414 frontal-face images with size 192 × 168 over 38
subjects. The AR data set includes over 4000 face images
of 126 people where each subject has 26 images consist-
ing of 14 clean images, 6 images with sunglasses and 6
images with scarves. As did in [33], a subset that contains
1400 clean faces randomly selected from 50 male subjects
and 50 female subjects, is used in our experiment. USPS
is a widely-used digital data set, which consists of 11000
handwritten digital images with 256 dimensionality over
10 classes. For all the databases, we randomly split the
data into two parts of equal size, one for training, and the
other for testing. Moreover, we cropped and normalized
YaleB images from 192× 168 to 54× 48 and AR images
from 165× 120 to 55× 40. For computational efficiency,
we perform Principal Component Analysis (PCA) [34],
[35] to reduce the dimensionality of the data.

B. Model Selection

It is challenging to determine the value of parameters
in pattern recognition and computer vision. In this subsec-
tion, we report the performance of SAP with the different
value for the required parameters. SAP only needs to
pre-specify the parameters for solving ℓ1-minimization
problem (4). In our experiments, Homotopy optimizer,
which is adopted to achieve the sparse representation,
requires pre-determining two parameters, i.e., sparsity
parameter λ and error tolerance parameter δ.

We carried out experiments using a subset of AR
database which consists of 1400 clean images over 100
individuals. Fig. 3 shows the classification results of SAP
with 1NN classifier, SVM, SRC, and LRC. From the
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Figure 3. Recognition accuracy of SAP with four classifiers over AR
data set, where 167 features are extracted by PCA. (a) the recognition
rates versus the varying δ, where λ = 0.1. (b) the recognition rates
versus the varying λ, where δ = 0.1.

results, we could see that SRC and LRC perform more
stable than 1NN and SVM. Moreover, the classification
accuracies of the 1NN classifier and SVM decrease as the
parameters increase. For all the used classifiers, SRC and
LRC obtain similar recognition rate, which are superior
to SVM and 1NN by considerable performance margins.

C. Classification on Clean Images

In this subsection, we investigate the performance of
SAP with varying subject number using clean AR im-
ages. Moreover, we carry out the experiments using AR
database with 100 subjects, YaleB with 38 subjects, and
USPS with 10 subjects. In the experiments, SAP and
AP automatically determinate the number of exemplars,
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Figure 4. Classification results of SAP, AP, kmedoids, and random sampling with four different classifiers. The experiments are carried out over
the images belonging to first k subjects of AR database, where k increases from 10 to 90 with an interval of 10.

while kmedoids and random sampling set the number of
exemplar as triple of the number of subject.

Fig. 4 shows the classification results of four different
classifiers with SAP, AP, kmedoids, and random sampling.
From the results, we make the following observations:

• SAP generally outperforms the other models under
the same experimental configuration. For example,
the accuracy of SAP is at least 15.71% higher than
AP, 1.21% higher than kmedoids, and 21.43% higher
than random sampling, when SVM is adopted.

• SAP is more robust than AP which adopts negative
Euclidean distance to measure the similarity among
data points. Moreover, AP generally achieves the
worst performance in the tests. This verifies the
claim that SAP is more competitive than AP in high-
dimensional data analysis.

• SRC and LRC perform very similar and are superior
to 1NN and SVM. Moreover, SVM is more compet-
itive than 1NN.

• With the increase in the number of subject (k), the
recognition rate of AP has fallen by half. Especially,
AP is failed to find a good set of exemplars when
k > 40.

Table I - III report the results of SAP with four different
classifiers using AR, YaleB, and USPS data set, from
which we make the following observations:

• The SAP algorithm outperforms the other methods in
the tests, whereas AP achieves the worst results. For
example, SAP is at least 30.57%, 48.09%, 54.96%

higher than AP using AR, YaleB, and USPS, respec-
tively.

• For facial database (AR and YaleB), SAP identi-
fies less exemplars to represent the whole data set,
comparing with kmedoids and random sampling. For
example, SAP finds about 280 and 350 exemplars
for the AR and the YaleB, and the corresponding
numbers for kmedoids or random sampling are 300
and 380.

• SAP demonstrates an elegant balance between run-
ning time and classification quality. Although SAP
requires more time to find the representative data
points, it achieves an obvious improvement in recog-
nition rates. For example, SAP is at least 8.28%
higher than the second best method using USPS.

D. Classification on Corrupted Images

It is inevitable in real applications that the data are
contaminated by various corruptions. In this subsection,
we investigate the robustness of SAP to two kinds of
corruption using the AR data set. For each subject, we
randomly choose half of the images (7 samples per
subject) and corrupt them using white Gaussian noise or
random pixel corruption as [31] did. Then, we divide the
14 images into two groups of equal size, one for training
and the other for testing. Thus, both the training data and
the testing data may be contaminated by noise. Fig. 5
shows some samples with different levels of corruption.
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TABLE I.
RECOGNITION RATE AND TIME COST OF FOUR EXEMPLARS IDENTIFYING METHODS USING THE AR DATA SET (100 SUBJECTS). EACH AR
IMAGE IS REDUCED TO 167 DIMENSION BY USING PCA. NUMBERS IN PARENTHESES INDICATE TUNED PARAMETERS FOR ACHIEVING THE

BEST ACCURACY. SPECIFICALLY, SAP(λ, δ, NUMBER OF EXEMPLARS), AP (THE SIZE OF NEIGHBORHOOD, NUMBER OF EXEMPLARS),
KMEDOIDS (NUMBER OF EXEMPLARS), AND RANDOM SAMPLING (NUMBER OF EXEMPLARS).

Classifiers SAP AP kmedoids random sampling
accuracy time accuracy time accuracy time accuracy time

1NN 66.71 (0.1, 0.1, 281) 4.61 36.14 (1, 103) 1.80 63.71 (300) 4.38 51.29 (300) 0.07
SVM 80.86 (0.01, 0.2, 281) 4.20 12.43 (1, 103) 1.96 79.00 (300) 4.81 52.57 (300) 0.72
SRC 88.29 (0.1, 1e-3, 274) 24.07 55.86 (1, 103) 16.29 85.57 (300) 25.08 80.43 (300) 21.22
LRC 86.14 (0.1, 0.1, 281) 5.79 45.29 (1, 103) 2.85 91.71 (300) 5.89 84.29 (300) 1.22

TABLE II.
RECOGNITION RATE AND TIME COST OF FOUR EXEMPLARS IDENTIFYING METHODS USING THE EXTENDED YALE DATABASE B (YALEB WITH

38 SUBJECTS). EACH IMAGE IS REDUCED TO 167 DIMENSION BY USING PCA. NUMBERS IN PARENTHESES INDICATE TUNED PARAMETERS FOR

ACHIEVING THE BEST ACCURACY. SPECIFICALLY, SAP(λ, δ, NUMBER OF EXEMPLARS), AP (THE SIZE OF NEIGHBORHOOD, NUMBER OF

EXEMPLARS), KMEDOIDS (NUMBER OF EXEMPLARS), AND RANDOM SAMPLING (NUMBER OF EXEMPLARS).

Classifiers SAP AP kmedoids random sampling
accuracy time accuracy time accuracy time accuracy time

1NN 65.97 (0.1, 1e-3, 351) 7.07 17.88 (1, 107) 2.58 48.73 (380) 5.49 60.07 (380) 0.05
SVM 88.48 (1e-3, 0.1, 358) 7.07 21.69 (1, 107) 2.67 59.53 (380) 5.55 75.68 (380) 0.15
SRC 90.65 (0.01, 0.01, 343) 42.12 24.05 (1, 107) 27.05 69.51 (380) 28.71 84.76 (380) 33.06
LRC 94.19 (1e-4, 0.1, 355) 7.73 10.07 (1, 107) 3.08 41.38 (380) 5.96 89.56 (380) 0.83

TABLE III.
RECOGNITION RATE AND TIME COST OF FOUR EXEMPLARS IDENTIFYING METHODS USING THE USPS DATA SET WITH 256 DIMENSIONALITY.

NUMBERS IN PARENTHESES INDICATE TUNED PARAMETERS FOR ACHIEVING THE BEST ACCURACY. SPECIFICALLY, SAP(λ, δ, NUMBER OF

EXEMPLARS), AP (THE SIZE OF NEIGHBORHOOD, NUMBER OF EXEMPLARS), KMEDOIDS (NUMBER OF EXEMPLARS), AND RANDOM SAMPLING

(NUMBER OF EXEMPLARS).

Classifiers SAP AP kmedoids random sampling
accuracy time accuracy time accuracy time accuracy time

1NN 94.36 (0.1, 0.1, 1624) 162.32 39.40 (1, 52) 32.13 85.24 (100) 68.45 67.75 (100) 0.13
SVM 91.64 (0.01, 0.1, 1626) 142.17 32.40 (1, 52) 32.21 83.36 (100) 68.53 71.38 (100) 0.19
SRC 96.64 (0.01, 1e-3, 1511) 702.55 40.51 (1, 52) 127.54 86.06 (100) 176.78 72.49 (100) 128.19
LRC 90.22 (1e-4, 0.2, 1636) 169.70 31.66 (1, 52) 32.96 74.06 (100) 69.43 66.98 (100) 1.47

TABLE IV.
RECOGNITION RATE AND TIME COST OF FOUR EXEMPLARS IDENTIFYING METHODS WITH THE 1NN CLASSIFIER USING CORRUPTED AR
IMAGES. NUMBERS IN PARENTHESES INDICATE TUNED PARAMETERS FOR ACHIEVING THE BEST ACCURACY. SPECIFICALLY, SAP(λ, δ,
NUMBER OF EXEMPLARS), AP (THE SIZE OF NEIGHBORHOOD, NUMBER OF EXEMPLARS), KMEDOIDS (NUMBER OF EXEMPLARS), AND

RANDOM SAMPLING (NUMBER OF EXEMPLARS).

Corruptions Corruption Rate SAP AP kmedoids random sampling
accuracy time accuracy time accuracy time accuracy time

Gaussian

10 62.00 (0.001,0.01,20) 5.88 54.71 (1,200) 2.13 59.71 (200) 4.02 51.14 (200) 0.05
30 47.00 (0.1,0.2,208 ) 3.51 27.00 (1,103) 1.81 44.71 (200) 3.77 33.57 (200) 0.05
50 54.57 (0.001,0.2,216) 3.70 53.14 (1,199) 2.21 45.14 (200) 4.11 31.43 (200) 0.04
70 64.29 (0.01,0.001,20) 3.90 57.71 (1,200) 2.03 34.00 (200) 3.73 35.71 (200) 4.23
90 43.86 (0.1,0.001,287) 3.68 11.29 (1,102) 1.81 32.29 (200) 3.92 26.71 (200) 0.04

Random 10 52.14 (0.01,0.2,299) 3.69 49.29 (1,105) 1.78 39.00 (200) 29.74 32.14 (200) 0.04
30 49.57 (1e-5,0.2,207) 3.37 35.14 (1,118) 1.99 38.14 (200) 21.30 20.86 (200) 0.04

Pixel 50 23.71 (0.001,0.2,247) 3.15 12.43 (1,101) 1.47 22.43 (200) 21.91 15.00 (200) 0.05

Corruption 70 27.43 (0.001,0.2,276) 3.38 5.57 (1,100) 1.43 15.14 (200) 23.22 17.57 (200) 0.04
90 27.40 (1e-5,0.2,201) 2.97 2.43 (1,100) 1.41 27.86 (200) 3.67 16.86 (200) 0.03

Table IV to Table VII report the performance of SAP
with 1NN, SVM, SRC, and LRC classifiers, from which
we can see that

• SAP is more robust to the two kinds of corruptions
than AP, kmedoids, and random sampling by consid-
erable performance margins. For example, when data
contain white Gaussian noise, the accuracy of SAP
with the 1NN classifier over that of AP in the range

of [+1.43% +32.57%]. The corresponding numbers
over kmedoids and random sampling are [+2.29%
+30.29%] and [+13.43% +28.58%], respectively.

• SAP with SRC achieves the best result in the tests.
Their recognition rate is about 58.29% even though
90% data are contaminated by Gaussian noise,
whereas the second best combination (kmedoids with
SRC) only obtains a 40.43% accuracy.
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TABLE V.
RECOGNITION RATE AND TIME COST OF FOUR EXEMPLARS IDENTIFYING METHODS WITH THE SVM CLASSIFIER USING CORRUPTED AR
IMAGES. NUMBERS IN PARENTHESES INDICATE TUNED PARAMETERS FOR ACHIEVING THE BEST ACCURACY. SPECIFICALLY, SAP(λ, δ,
NUMBER OF EXEMPLARS), AP (THE SIZE OF NEIGHBORHOOD, NUMBER OF EXEMPLARS), KMEDOIDS (NUMBER OF EXEMPLARS), AND

RANDOM SAMPLING (NUMBER OF EXEMPLARS).

Corruptions Corruption Rate SAP AP kmedoids random sampling
accuracy time accuracy time accuracy time accuracy time

Gaussian

10 63.43 (1e-5,0.01,201 ) 6.91 45.29 (1,200) 2.34 62.29 (200) 4.23 52.14 (200) 0.30
30 46.00 (0.01,0.1,207) 4.49 21.29 (1,103) 1.97 46.57 (200) 3.97 40.57 (200) 0.31
50 62.14 (0.1,0.001,212) 4.35 54.14 (1,199) 2.42 51.86 (200) 4.32 30.43 (200) 0.23
70 56.86 (0.1,0.001,203) 3.54 59.43 (1,200) 2.23 47.00 (200) 3.94 31.86 (200) 23.04
90 55.86 (0.01,0.1,279) 4.58 12.57 (1,102) 1.98 40.29 (200) 4.10 22.71 (200) 0.23

Random 10 78.86 (0.1,0.001,295) 4.12 9.14 (1,105) 1.93 70.71 (200) 29.91 33.71 (200) 0.22
30 46.43 (0.1,0.2,206) 3.85 23.86 (1,118) 2.16 34.57 (200) 21.48 29.43 (200) 0.23

Pixel 50 30.29 (0.01,0.1,242) 3.75 10.86 (1,101) 1.99 25.43 (200) 22.09 16.29 (200) 0.23

Corruption 70 28.71 (1e-5,0.2,276) 3.63 10.71 (1,100) 1.54 16.00 (200) 23.39 15.57 (200) 0.23
90 18.00 (0.01,0.01,224) 5.21 3.29 (1,100) 1.53 17.86 (200) 3.89 9.43 (200) 0.24

TABLE VI.
RECOGNITION RATE AND TIME COST OF FOUR EXEMPLARS IDENTIFYING METHODS WITH THE SRC CLASSIFIER USING CORRUPTED AR
IMAGES. NUMBERS IN PARENTHESES INDICATE TUNED PARAMETERS FOR ACHIEVING THE BEST ACCURACY. SPECIFICALLY, SAP(λ, δ,
NUMBER OF EXEMPLARS), AP (THE SIZE OF NEIGHBORHOOD, NUMBER OF EXEMPLARS), KMEDOIDS (NUMBER OF EXEMPLARS), AND

RANDOM SAMPLING (NUMBER OF EXEMPLARS).

Corruptions Corruption Rate SAP AP kmedoids random sampling
accuracy time accuracy time accuracy time accuracy time

Gaussian

10 75.86 (0.1,0.001,213) 23.51 69.86 (1,200) 20.24 73.57 (200) 21.70 72.14 (200) 24.81
30 60.14 (1e-5,0.2,208) 23.36 28.86 (1,103) 19.46 60.29 (200) 25.44 54.57 (200) 31.68
50 78.57 (0.01,0.1,216) 23.79 58.57 (1,199) 21.91 65.00 (200) 22.30 49.00 (200) 24.91
70 70.71 (0.001,0.01,205) 23.78 64.14 (1,200) 19.28 44.14 (200) 21.72 48.71 (200) 24.40
90 58.29 (0.01,0.1,279) 24.88 21.14 (1,102) 22.51 40.43 (200) 19.69 38.43 (200) 21.89

Random 10 82.57 (0.1,0.001,295) 27.78 44.43 (1,105) 20.40 76.86 (200) 42.57 56.43 (200) 24.04
30 66.57 (0.001,0.001,204) 25.83 44.14 (1,118) 20.72 55.14 (200) 35.10 41.86 (200) 25.98

Pixel 50 48.86 (0.001,0.1,240) 23.56 19.14 (1,101) 14.44 40.86 (200) 35.49 28.00 (200) 27.36

Corruption 70 32.86 (1e-5,0.2,276) 22.41 9.29 (1,100) 14.63 19.57 (200) 35.90 24.57 (200) 26.10
90 30.71 (0.01,0.2,201) 23.41 3.00 (1,100) 13.61 31.00 (200) 26.02 19.43 (200) 26.49

TABLE VII.
RECOGNITION RATE AND TIME COST OF FOUR EXEMPLARS IDENTIFYING METHODS WITH THE LRC CLASSIFIER USING CORRUPTED AR
IMAGES. NUMBERS IN PARENTHESES INDICATE TUNED PARAMETERS FOR ACHIEVING THE BEST ACCURACY. SPECIFICALLY, SAP(λ, δ,
NUMBER OF EXEMPLARS), AP (THE SIZE OF NEIGHBORHOOD, NUMBER OF EXEMPLARS), KMEDOIDS (NUMBER OF EXEMPLARS), AND

RANDOM SAMPLING (NUMBER OF EXEMPLARS).

Corruptions Corruption Rate SAP AP kmedoids random sampling
accuracy time accuracy time accuracy time accuracy time

Gaussian

10 68.29 (1e-5,0.2,216) 4.99 46.86 (1,200) 3.09 60.57 (200) 5.04 79.71 (200) 1.19
30 39.57 (0.1,0.01,205) 4.71 12.71 (1,103) 3.06 32.29 (200) 4.68 60.43 (200) 1.20
50 44.57 (0.001,0.2,216) 4.65 35.71 (1,199) 3.19 40.57 (200) 5.04 33.14 (200) 1.09
70 33.43 (0.01,0.001,204) 4.84 30.29 (1,200) 3.07 30.00 (200) 4.64 27.29 (200) 1.08
90 42.43 (0.1,0.001,287) 4.79 11.86 (1,102) 3.02 30.14 (200) 4.85 20.57 (200) 1.08

Random 10 76.86 (0.01,0.1,298) 4.95 36.29 (1,105) 2.94 42.57 (200) 30.56 36.00 (200) 1.05
30 35.57 (0.001,0.01,207) 0.03 18.71 (1,118) 3.18 29.00 (200) 22.13 24.71 (200) 1.09

Pixel 50 42.14 (0.0001,0.2,247) 4.08 7.00 (1,101) 2.33 27.43 (200) 22.74 21.14 (200) 1.08

Corruption 70 17.43 (0.001,0.2,276) 4.56 6.29 (1,100) 2.27 9.00 (200) 24.03 11.43 (200) 1.06
90 25.57 (0.001,0.01,225) 5.40 2.71 (1,100) 2.26 22.57 (200) 4.64 14.86 (200) 1.10

• The tested models perform worse as increasing cor-
ruption ratio. Moreover, random pixel corruption is
more challenging than white Gaussian noise, where
the former is a kind of non-additive noise and the
latter is additive.

E. Recognition with Real Occlusions

To investigate the robustness of the algorithms to re-
al occlusions, we carry out the experiments using two
subsets of the AR database. The first subset consists of

600 clean images and 600 faces with sunglasses over 100
individuals, and the second subset consists of 600 clean
images and 600 faces with scarves. Fig. 6 shows some
sample images.

Table VIII through Table IX are the recognition rates
and time costs of the tested methods with four classifiers.
Clearly, SAP again outperforms the other approaches
in the experiments. When the faces are occluded by
sunglasses or scarves, the accuracy of SAP with LRC is
11.17% and 12.50% at least higher than the second best
method (kmedoids with LRC). For the used classifiers,
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TABLE VIII.
RECOGNITION RATE AND TIME COST OF FOUR EXEMPLARS IDENTIFYING METHODS USING THE AR IMAGES WITH SUNGLASSES (143D).

NUMBERS IN PARENTHESES INDICATE TUNED PARAMETERS FOR ACHIEVING THE BEST ACCURACY. SPECIFICALLY, SAP(λ, δ, NUMBER OF

EXEMPLARS), AP (THE SIZE OF NEIGHBORHOOD, NUMBER OF EXEMPLARS), KMEDOIDS (NUMBER OF EXEMPLARS), AND RANDOM SAMPLING

(NUMBER OF EXEMPLARS).

Classifiers SAP AP kmedoids random sampling
accuracy time accuracy time accuracy time accuracy time

1NN 21.17 (0.01,0.2,234) 3.21 16.67 (1,145) 1.96 20.00 (250) 45.51 23.67 (250) 0.03
SVM 50.00 (0.1,0.1,235 ) 3.41 29.83 (1,145) 2.12 48.67 (250) 45.42 35.67 (250) 0.22
SRC 58.33 (0.1,0.2,234 ) 24.11 41.00 (1,145) 20.95 55.83 (250) 60.25 50.17 (250) 15.98
LRC 78.00 (0.1,0.2,234 ) 3.86 12.83 (1,145) 2.86 66.83 (250) 46.09 66.33 (250) 0.90

TABLE IX.
RECOGNITION RATE AND TIME COST OF FOUR EXEMPLARS IDENTIFYING METHODS USING THE AR IMAGES WITH SCARVES (147D). NUMBERS

IN PARENTHESES INDICATE TUNED PARAMETERS FOR ACHIEVING THE BEST ACCURACY. SPECIFICALLY, SAP(λ, δ, NUMBER OF EXEMPLARS),
AP (THE SIZE OF NEIGHBORHOOD, NUMBER OF EXEMPLARS), KMEDOIDS (NUMBER OF EXEMPLARS), AND RANDOM SAMPLING (NUMBER OF

EXEMPLARS).

Classifiers SAP AP kmedoids random sampling
accuracy time accuracy time accuracy time accuracy time

1NN 21.83 (0.1,0.1,241) 3.22 16.00 (1,148) 2.14 20.67 (250) 50.03 20.83 (250) 2.84
SVM 41.83 (0.1,0.2,246) 3.27 30.00 (1,148) 2.39 45.50 (250) 50.21 32.17 (250) 0.24
SRC 55.67 (0.1,0.1,241) 25.14 41.50 (1,148) 21.20 50.83 (250) 65.19 44.67 (250) 15.88
LRC 73.00 (0.1,0.01,234) 4.34 19.67 (1,148) 3.09 60.50 (250) 50.78 60.00 (250) 0.91

Figure 5. Some sample images with corruptions. From left to right,
the corruption ratio is 10, 30, 50, 70, and 90%. The images in the first
row are contaminated by Gaussian noise; images in the second row are
contaminated by random pixel corruption.

Figure 6. Some sample images with real disguises, where the occlusion
rate of sunglasses is about 20% and that of scarves is about 40%.

LRC is superior to 1NN, SVM, and SRC. Moreover, the
methods achieves similar recognition rate even though the
occlusion ratio is largely different in two disguises.

V. CONCLUSIONS

In this paper, we proposed using sparse representation
to construct a similarity graph for the AP algorithm, The
proposed algorithm, which is named as Sparse Affinity
Propagation (SAP), eliminates the redundancy of sparse
representation caused by transmissibility of linear encod-
ing such that a small set of data points could be identified

to reconstruct the whole data set. In other words, SAP
achieves the two-dimensional sparsity by introducing the
competition in all data points for the ownership of a
data point. From the other hand, SAP takes the sparse
representation as input to calculate the belief messages
such that the algorithm is more competitive in high-
dimensional data analysis. Extensive experimental stud-
ies shows SAP outperforms AP, kmedoids, and random
sampling in the context of image classification.

Each approach has its own advantages and disad-
vantages. The improvement in accuracy of SAP is at
cost of computation time. SAP requires to solve a ℓ1-
minimization problem whose time complexity is propor-
tion to the cube of data size, i.e., O(n3) versus O(n2) of
the standard AP algorithm. Therefore, it is interesting to
explore the way to reduce the time cost.
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