

An Empirical Study for Software Fault-Proneness
Prediction with Ensemble Learning Models on

Imbalanced Data Sets

Renqing Li
School of Reliability and System Engineering, Beihang University, Beijing, China
Science and Technology on Reliability and Environmental Engineering Laboratory

Email: lirenqingbuaa@dse.buaa.edu.cn

Shihai Wang*
School of Reliability and System Engineering, Beihang University, Beijing, China
Science and Technology on Reliability and Environmental Engineering Laboratory

Email: wangshihai@buaa.edu.cn

Abstract—Software faults could cause serious system errors
and failures, leading to huge economic losses. But currently
none of inspection and verification technique is able to find
and eliminate all software faults. Software testing is an
important way to inspect these faults and raise software
reliability, but obviously it is a really expensive job. The
estimation of a module’s fault-proneness is important to
minimize the software testing resources required by guiding
the resource allocation on the high-risk modules.
Consequently the efficiency of software testing and the
reliability of the software are improved. The software faults
data sets, however, originally have the imbalanced
distribution. A small amount of software modules holds
most faults, while the most of modules are fault-free. Such
imbalanced data distribution is really a challenge for the
researchers in the field of prediction for software fault-
proneness. In this paper, we make an investigation on
software fault-prone prediction models by employing C4.5,
SVM, KNN, Logistic, NaiveBayes, AdaBoost and
SMOTEBoost based on software metrics. We perform an
empirical study on the effectiveness of these models on
imbalanced software fault data sets obtained from NASA’s
MDP. After a comprehensive comparison based on the
experiment results, the SMOTEBoost reveals the
outstanding performances than the other models on
predicting the high-risk software modules with higher recall
and AUC values, which demonstrates the model based on
SMOTEBoost has a better ability to estimate a module’s
fault-proneness and furthermore improve the efficiency of
software testing.
Index Terms—SMOTEBoost, software fault-prone,
prediction model, imbalanced data sets

I. MOTIVATION AND INTRODUCTION

With the fast development of software technology,
software systems become more complex, requiring higher
reliability and stability. Although the software would

never be worn out, it may fail for some reasons at any
time. The faults and mistakes in the software may lead to
system errors and failures, resulting in huge losses in
socio-economic activities. There are numerous similar
cases [1, 2]. However, the current technologies are
impossible to find and eliminate all faults in software.
Software testing is a critical approach to ensure the
software reliability [3], but a complete software testing is
really time consuming and expensive. Some studies have
proven that software development companies spend 50%
to 80% of the costs on software testing [2]. Fault-
proneness makes the definition on the probability of fault
detection in software [4]. An accurate prediction on
software faults or fault-prone at an early stage of software
development is important to make a proper plan on
testing activities and allocate the limited resources to
focus on those modules, consequently improving the
efficiency of software testing and the reliability of
software system. Unfortunately, software fault-proneness
cannot be directly measured. It can be estimated, however,
based on software metrics, which provide quantitative
descriptions of program attributes. A number of studies
provide empirical evidence that correlation exists
between software metrics and fault-proneness [5].

The software faults data sets are imbalanced, which
means the amounts of the fault modules and fault free
modules in a software system are imbalanced [5, 6, 7]
and rises up the imbalanced data set learning problem for
software fault-proneness prediction models based on
pattern recognition technologies. In other words, most of
faults involved in a software system are located in a small
part of modules, which is called high-risk modules or
minority class. On the contrary, most of models are
defects free called low-risk modules or majority class.
The accurate prediction on these high-risk modules is
more important, because these modules may lead to
serious consequences. For pattern recognition approaches,
most prediction models are based on an assumption that
the amounts of each class samples are balanced roughly.

Manuscript received June 8, 2013; revised July 19, 2013; September
1, 2013.

This work was supported by the National Natural Science
Foundation of China (61300069).

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 697

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.3.697-704

When the assumption is satisfied, most of prediction
models reveal good performance. But in these scenarios
that the majority class typically represents most of the
population, these models get poor predictive accuracy
over the minority class [8]. This is a bias. Actually the
accuracy of the minority class is far more critical than the
one of the majority class. When high-risk modules are
predicted wrongly, the following testing would ignore or
pay a little attention on these modules, and consequently
these defects are retained in a high probability after
testing.

In this paper we present a comprehensive empirical
study for software fault-proneness prediction with
ensemble learning models on imbalanced data sets. The
experiments results show that SMOTEBoost model has a
better performance on predicting the imbalanced software
fault-proneness than other models. The layout of the rest
of the paper is as follows. Description of over-sampling
algorithm SMOTE [9], Boosting [10] and SMOTEBoost
[11] algorithm is presented in Section II. In Section III,
data sets from NASA MDP (Metrics Data Program) [12],
software metrics and performance metrics employed in
our experiments are presented. Section IV describes the
prediction models built in our study: SMOTEBoost
model, AdaBoost [13] model and single learner models,
such as C4.5 [14], SVM [15], KNN [16], Logistic [17],
NaiveBayes [18]. Sections V and VI, present the
experimental results and conclusions of our comparative
study.

II. THE SOFTWARE FAULT-PRONENESS PREDICTION
MODELS BASED ON IMBALANCED DATA SETS

A. Synthetic Minority Over-sampling Techniques
There are many real world data mining approaches

learning from imbalanced datasets, which always leads to
a bias on these classifiers, very high classification
performance on the majority class(es), however,
unacceptable performance over those minority ones.
Over-sampling and under-sampling approaches are
commonly employed to deal with the problem [19]. As
one of most successful over-sampling technologies,
SMOTE (Synthetic Minority Over-sampling Techniques)
[9] is an approach specifically designed for learning with
imbalanced datasets, which operates in the “feature
space” rather than the “data space” and generates
synthetic samples of the minority class. In this way the
inductive learners are able to broaden their decision
regions for the minority class and make a better
performance.

B. Boosting Algorithm
Boosting is an ensemble-based learning algorithm,

which is able to dramatically improve the ensemble
classification performance by creating and combining a
set of weak hypotheses [10, 28]. AdaBoosting, a popular
Boosting algorithm applied in many fields [13] [20],
builds an ensemble of classifiers iteratively and adjust the
weights of each training sample based on the
performance of the iteration’s classifier. These samples

which were misclassified by pervious classifiers, will be
assigned a bigger weight relatively, while those that were
correctly classified have their weights decreased.
Therefore, in the next iteration the learner is more likely
to concentrate on those samples that were misclassified
during the previous iterations and classify them correctly.
At last, the classifiers built during each iteration
participate in a weighted vote to classify unlabeled
samples.

C. SMOTEBoost Algorithm
SMOTEBoost [11] is an approach to learn from

imbalanced data sets. More details are shown in Figure 1,
which is based on an effective combination of the
SMOTE algorithm and Boosting procedure.

SMOTEBoost algorithm proceeds in a series of T
iterations. In each iteration, a weak learner is called and
presented with a different distribution tD altered by
emphasizing particular training samples. The distribution
is updated to give wrong classification samples with
higher weights than correct ones. SMOTE is introduced
in each round of Boosting and creates more samples of
the minority class for each learner. Thus, more learning
information is supplied for the minority class. Then the
entire weighted training set is given to the weak learner to
compute the weak hypothesis th . At end, the different
hypothesizes are combined into a final hypothesis fnh .
Boosting procedure ensures the accuracy over the entire
data sets and SMOTE improves the accuracy of the
minority classes. SMOTEBoost has been applied to
imbalanced data sets in many fields and shows a
significant improvement in prediction performance [11].

 III. EXPERIMENTAL DESIGN

A. Data Sets
Our experiments are carried out on 12 data sets from

the data metrics program NASA's MDP (Metrics Data
Program) data repository [12]. Details about these data

Figure1. SMOTEBoost algorithm.

698 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

sets are in TABLE I, which provides the total number of
software modules in the dataset (Size), as well as the
number of minority defected modules (NumMin), the
developing language and the LOC of the dataset
(NumLOC).

All the data sets listed in the Table 1 are imbalanced
obviously, and the percentage of the minority class of
PC2 is 0.4% only. In MDP, all of the software are
implemented in different languages, such as CM1 is in C,
KC1 in C++ and KC3 in JAVA. And the software
presented in each data set is from different projects at
NASA. For instance, CM1 is from the spacecraft
software instruction module, KC1 from the storage
management module and KC3 from the data transmitting
and receiving module. Therefore the versatility of the
prediction model can be tested and verified.

In our study, we take the software metric information
of the software modules as input for the prediction model
[5, 6]. Our study selects 22 metrics [21], which includes
the McCabe metrics set, Halstead metrics set and Line of
Code metrics set, etc. The details about these software
metrics are in TABLE II. We select the first 21 metrics as
the input for the prediction model [22] [23] and the last
one to classify the software modules. The software
module, whose ERROR_COUNT metric value is 0(This
means the module contains no faults), is assigned as low-
risk or majority class, with label “0”. The rest is high-risk
or minority class, with label “1”.

For each time of our experiments, 70 percent of the

majority class samples and minority class samples were

randomly selected as training set respectively, the rest of
samples is for testing.

B. Performance Metrics
In this paper, we have employed two performance

measures: a confusion matrix and the area under the ROC
[24, 25, 26]. The confusion matrix as shown in TABLE
III is typically used to evaluate performance of a machine
learning algorithm.

The recall (Recall) and accuracy (ACC) as the
experiment results are reported in this paper, which are
defined as follows:

T PR e c a l l
T P F N

=
+

 (1)

TP TNACC
TP FP TN FN

+
=

+ + +
 (2)

 The main focus of all learning algorithms is to
improve the recall, without sacrificing the accuracy. A
receiver operating characteristic curve (ROC) plots the
true positive rate (TPR = TP/(TP+FP)) on the y-axis
versus the false positive rate (FPR = FN/(FN+TN)) on the
x-axis. The resulting curve represents the traded off
between correctly identifying positive class examples and
false alarms across the complete range of possible
decision thresholds. The area under the ROC curve is
used to measure the classifier performance.

IV. PREDICTION MODELS

In order to make a comprehensive comparison study,
besides SMOTEBoost(SMBM), four other kinds of
prediction models are involved in our study: AdaBoost
(ADAM), SMOTE+AdaBoost (SADAM), single weak
learner (SINM), SMOTE+ single weak learner (SSINM).
In this paper, five weak learners are selected: C4.5, SVM,
3NN, Logistic, NaiveBayes. The five learners are
implemented in WEKA [27], an open source data mining
suite. Except KNN, the other four learners have no
parameters. Thus, in our study, the influence from the
parameter setting is avoided.

V. EXPERIMENTS AND RESULTS

In our study, we use 50 iterations for all Boosting
models. In the experiments, Boosting resampling [28]
rate is set to 80% in each iteration. Every prediction
model runs five times of each data set independently. At
last the mean (Mean) and variance (Var) values are
shown in TABLE IV-TABL VIII. Bold values in the
tables indicate SMBM resulted in the highest recall for

TABLE II.
SOFTWARE METRICS

CYCLOMATIC_COMPLEXITY NUM_UNIQUE_OPERATORS
DESIGN_COMPLEXITY HALSTEAD_LENGTH

ESSENTIAL_COMPLEXITY HALSTEAD_CONTENT
LOC_TOTAL HALSTEAD_DIFFICULTY

NUM_OPERANDS HALSTEAD_EFFORT
NUM_OPERATORS HALSTEAD_ERROR_EST

UM_UNIQUE_OPERANDS HALSTEAD_PROG_TIME
LOC_BLANK HALSTEAD_LEVEL

LOC_CODE_AND_COMMENT HALSTEAD_VOLUME
LOC_COMMENTS BRANCH_COUNT

LOC_EXECUTABLE ERROR_COUNT

TABLE I.
DATA SETS

Data
set Language Size NumMin NumLOC

CM1 C 505 48 16903
JM1 C 10878 2102 457177
KC1 C++ 2107 325 42963
KC3 JAVA 522 107 7749
MC1 C++ 9466 68 66583
MC2 C++ 161 52 6134
MW1 C 403 31 8134
PC1 C 1107 76 25922
PC2 C 5589 23 26863
PC3 C 1563 160 36473
PC4 C 1458 178 30055
PC5 C++ 17186 516 161695

TABLE III.
THE CONFUSION MATRIX

 Predicted
class “C”

Predicted
class “NC”

Actual
class “C”

True Positives
(TP)

False Negatives
(FN)

Actual
class “NC”

False Positives
(FP)

True Negatives
(TN)

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 699

© 2014 ACADEMY PUBLISHER

the given datasets. The ROC results of models with C4.5 on dataset KC1 are presented in Figure 2.

In TABLE IV, C4.5 is selected as the weak learner.

When the models are applied on the 12 datasets, SMBM
accounts 6 highest recall results (50.0%) based on
datasets: CM1, KC1, MC2, PC1, PC2, PC4 and PC5.

ADAM 6 highest recall results (50.0%). The ACC values
of all models are very close on all datasets and the
variance of SMBM’s ACC values is 0.882.

In TABLE V, SVM is employed as the weak learner.

When the models are applied on the 12 datasets, SMBM
accounts 5 highest recall results (41.7%) based on
datasets: CM1, KC3, PC3, PC4, and PC5. ADAM 6

highest recall results (50.0%) and the other models less.
The ACC values of all models are very close on all
datasets and the variance of SMBM’s ACC values is
0.812.

TABLE IV.
 C4.5 RESULTS

C4.5 ACC Recall
Data sets SINM SSINM ADAM SADAM SMBM SINM SSINM ADAM SADAM SMBM

CM1 Mean
Var

0.901
0

0.880
0

0.903
0

0.891
0

0.902
0

0.061
0.007

0.110
0.006

0.162
0.003

0.141
0.018

0.191
0.008

JM1 Mean
Var

0.814
0

0.811
0

0.797
0

0.807
0

0.793
0

0.198
0.002

0.254
0.001

0.388
0

0.318
0

0.381
0

KC1 Mean
Var

0.851
0

0.851
0

0.845
0

0.851
0

0.853
0

0.272
0.004

0.250
0.009

0.412
0.003

0.361
0.002

0.452
0.001

KC3 Mean
Var

0.828
0

0.820
0

0.810
0

0.822
0

0.802
0

0.411
0.02

0.333
0.010

0.533
0.003

0.483
0.001

0.478
0.001

MC1 Mean
Var

0.993
0

0.993
0

0.987
0

0.993
0

0.989
0

0.200
0.006

0.217
0.007

0.556
0.014

0.400
0.015

0.500
0.082

MC2 Mean
Var

0.702
0

0.717
0.002

0.694
0.003

0.683
0

0.713
0.002

0.188
0

0.353
0.017

0.341
0.006

0.294
0.019

0.376
0.018

MW1 Mean
Var

0.919
0

0.887
0

0.891
0

0.887
0.001

0.876
0

0.240
0.003

0.200
0.035

0.240
0.003

0.200
0

0.180
0.002

PC1 Mean
Var

0.945
0

0.935
0

0.922
0

0.935
0

0.933
0

0.224
0.004

0.224
0.004

0.360
0.012

0.028
0.009

0.392
0.006

PC2 Mean
Var

0.996
0

0.994
0

0.967
0

0.994
0

0.965
0

0 0 0.025
0.003

0 0.100
0.026

PC3 Mean
Var

0.883
0

0.887
0

0.882
0

0.880
0

0.887
0

0.158
0.007

0.181
0

0.309
0.002

0.223
0.002

0.307
0.005

PC4 Mean
Var

0.901
0

0.893
0

0.901
0

0.916
0

0.905
0

0.322
0.029

0.442
0.009

0.582
0.005

0.582
0.004

0.592
0.003

PC5 Mean
Var

0.973
0

0.974
0

0.965
0

0.973
0

0.968
0

0.427
0.002

0.456
0.002

0.605
0.001

0.486
0.003

0.600
0.002

TABLE V.
 SVM RESULTS

SVM ACC Recall
Data sets SINM SSINM ADAM SADAM SMBM SINM SSINM ADAM SADAM SMBM

CM1 Mean
Var

0.901
0

0.602
0.013

0.775
0

0.762
0.191

0.724
0.002

0 0.704
0.032

0.621
0.012

0.463
0.021

0.752
0.050

JM1 Mean
Var

0.809
0

0.669
0.005

0.779
0

0.698
0.002

0.779
0

0.01
0

0.590
0.007

0.523
0.001

0.475
0.007

0.520
0.002

KC1 Mean
Var

0.851
0

0.803
0

0.765
0

0.816
0

0.762
0

0.042
0.001

0.574
0.002

0.744
0.002

0.471
0.005

0.712
0.001

KC3 Mean
Var

0.832
0

0.701
0.016

0.829
0

0.770
0.004

0.750
0.036

0.206
0.007

0.222
0.006

0.744
0.014

0.472
0.010

0.833
0.014

MC1 Mean
Var

1 0.949
0

0.904
0

0.963
0

0.912
0

0 0.565
0.003

0.739
0.002

0.522
0.004

0.652
0.002

MC2 Mean
Var

0.709
0

0.721
0.004

0.743
0.004

0.728
0.005

0.713
0

0.141
0.008

0.341
0.005

0.553
0.011

0.388
0.025

0.482
0.016

MW1 Mean
Var

0.925
0

0.770
0.004

0.809
0.002

0.779
0.002

0.824
0

0 0.440
0.048

0.560
0.033

0.340
0.023

0.520
0.057

PC1 Mean
Var

0.932
0

0.877
0

0.773
0

0.876
0

0.776
0.003

0 0.160
0.003

0.656
0.011

0.280
0

0.584
0.020

PC2 Mean
Var

0.996
0

0.892
0

0.924
0

0.943
0

0.898
0

0 0.725
0.011

0.500
0.086

0.175
0.005

0.525
0.104

PC3 Mean
Var

0.898
0

0.833
0

0.825
0

0.845
0

0.825
0

0 0.585
0.010

0.619
0.006

0.483
0.008

0.660
0.004

PC4 Mean
Var

0.881
0

0.901
0

0.862
0

0.851
0

0.852
0

0.052
0

0.430
0.004

0.623
0.002

0.403
0.004

0.664
0.004

PC5 Mean
Var

0.973
0

0.937
0

0.935
0

0.951
0

0.935
0

0.203
0.002

0.869
0.003

0.884
0.002

0.826
0.002

0.884
0.001

700 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

In TABLE VI, Logistic is used as the weak learner.

When the models are applied on the 12 datasets , SMBM
accounts 8 highest recall results (66.7%) based on
datasets: CM1, KC1, KC3, MC2, MW1, PC2, PC4, and

PC5. ADAM 4 highest recall results (33.3%). The ACC
values of all models are very close on all datasets and the
variance of SMBM’s ACC values is 0.805.

In TABLE VII, 3NN is the weak learner used. When

the models are applied on the 12 datasets, SMBM
accounts 9 highest recall results (75%) based on datasets:
JM1, KC1, KC3, MC1, MW1, PC1, PC2, PC4, and PC5.

ADAM 5 highest recall results (41.7%) and the other
models less. The ACC values of all models are very close
on all datasets and the variance of SMBM’s ACC values
is 0.846.

TABLE VI.
LOGISTIC RESULTS

Logistic ACC Recall
Data sets SINM SSINM ADAM SADAM SMBM SINM SSINM ADAM SADAM SMBM

CM1 Mean
Var

0.901
0

0.803
0.002

0.823
0.001

0.791
0.001

0.801
0

0.152
0.001

0.392
0.011

0.444
0.009

0.352
0.020

0.492
0.02

JM1 Mean
Var

0.816
0

0.805
0

0.758
0

0.804
0

0.757
0

0.106
0

0.243
0.005

0.581
0

0.256
0.005

0.574
0

KC1 Mean
Var

0.861
0

0.811
0

0.762
0

0.814
0

0.763
0

0.202
0.001

0.420
0.002

0.653
0.001

0.400
0.005

0.670
0.001

KC3 Mean
Var

0.826
0

0.707
0.004

0.810
0

0.723
0.003

0.805
0

0.394
0.005

0.433
0.004

0.670
0.003

0.483
0.007

0.672
0.006

MC1 Mean
Var

0.992
0

0.984
0

0.908
0

0.985
0

0.915
0

0 0.234
0.025

0.722
0.002

0.217
0.022

0.678
0.002

MC2 Mean
Var

0.725
0.003

0.721
0.002

0.740
0.002

0.740
0.001

0.766
0.004

0.376
0.013

0.435
0.020

0.541
0.037

0.506
0.018

0.600
0.020

MW1 Mean
Var

0.912
0

0.760
0.003

0.830
0

0.790
0.003

0.542
0.134

0.160
0.003

0.420
0.047

0.340
0.008

0.380
0.037

0.620
0.162

PC1 Mean
Var

0.932
0

0.879
0

0.811
0.001

0.871
0

0.808
0

0.120
0.006

0.210
0.007

0.648
0.005

0.280
0.020

0.608
0.008

PC2 Mean
Var

0.994
0

0.929
0

0.938
0

0.931
0

0.924
0

0 0.225
0.034

0.325
0.020

0.200
0.036

0.350
0.010

PC3 Mean
Var

0.903
0

0.839
0

0.792
0

0.841
0

0.793
0

0.166
0.001

0.491
0.005

0.702
0

0.475
0.004

0.680
0.003

PC4 Mean
Var

0.912
0

0.882
0

0.854
0

0.872
0

0.862
0

0.311
0.006

0.503
0.011

0.725
0.014

0.491
0.012

0.755
0.013

PC5 Mean
Var

0.973
0

0.945
0

0.929
0

0.945
0

0.930
0

0.344
0.001

0.649
0.002

0.876
0

0.556
0.002

0.886
0

TABLE VII.
3NN RESULTS

3NN ACC Recall
Data sets SINM SSINM ADAM SADAM SMBM SINM SSINM ADAM SADAM SMBM

CM1 Mean
Var

0.891
0

0.843
0

0.825
0

0.821
0

0.831
0

0.062
0.004

0.184
0.006

0.266
0.030

0.262
0.021

0.232
0.031

JM1 Mean
Var

0.811
0

0.812
0

0.738
0

0.760
0

0.739
0

0.244
0

0.267
0

0.450
0

0.403
0

0.457
0

KC1 Mean
Var

0.852
0

0.842
0

0.823
0

0.831
0

0.824
0

0.243
0.001

0.291
0.001

0.451
0.001

0.412
0.001

0.475
0.001

KC3 Mean
Var

0.853
0

0.823
0

0.784
0

0.792
0

0.769
0

0.489
0.005

0.489
0.005

0.539
0.007

0.483
0.010

0.578
0.011

MC1 Mean
Var

0.992
0

0.990
0

0.976
0

0.994
0

0.976
0

0

0 0.778
0.002

0.222
0.002

0.778
0.001

MC2 Mean
Var

0.725
0

0.728
0

0.706
0.002

0.735
0.006

0.687
0.003

0.271
0.008

0.388
0.018

0.435
0.025

0.459
0.026

0.353
0.022

MW1 Mean
Var

0.913
0

0.813
0

0.825
0

0.830
0

0.831
0

0.260
0.013

0.300
0.025

0.340
0.013

0.320
0.002

0.340
0.013

PC1 Mean
Var

0.934
0

0.918
0

0.875
0

0.885
0

0.881
0

0.208
0.003

0.208
0.003

0.504
0.007

0.472
0.004

0.512
0.001

PC2 Mean
Var

0.996
0

0.989
0

0.957
0

0.998
0

0.960
0

0 0 0.375
0.001

0.250
0.003

0.375
0.001

PC3 Mean
Var

0.885
0

0.867
0

0.841
0

0.841
0

0.839
0

0.162
0.001

0.325
0.008

0.468
0

0.400
0.005

0.453
0

PC4 Mean
Var

0.901
0

0.891
0

0.843
0

0.844
0

0.845
0

0.382
0.002

0.432
0.004

0.531
0

0.522
0

0.553
0.002

PC5 Mean
Var

0.969
0

0.971
0

0.971
0

0.972
0

0.9720
0

0.430
0.002

0.511
0.003

0.500
0.002

0.465
0．002

0.512
0.001

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 701

© 2014 ACADEMY PUBLISHER

In TABLE VIII, the weak learner is KNN (K=3).

When the models are applied on the 12 datasets, SMBM
accounts 8 highest recall results (66.7%) based on
datasets: KC1, KC3, MC2, MW1, PC2, PC4, and PC5.

ADAM 2 highest recall results (16.7%) and the other
models less. The ACC values of all models are very close
on all datasets and the variance of SMBM’s ACC values
is 0.793.

From the ROC of models based on C4.5 on KC1

results in Figure 2.1-2.3, the AUC values of the three
models (ADAM, SADAM, SMBM) are 0.686, 0.696,
0.707 and SMBM gets the highest AUC value.

TABLE IV-TABLE VIII shows the performance of the

five prediction models (measured using ACC and Recall)
for each of the datasets used in our experiments. In most
cases, the ACC values of SMBM are close to the other
models. And SMBM’s ACC values are around 0.800,
which means this model has a good performance over the
entire classes. Without sacrificing the accuracy over the
entire data sets, SMBM accounts 36 highest recall values
in the all 60 (60.0%). ADAM accounts 23 (38.3%) and
the others less. From all tables, different weak learner
causes different results. From TABLE IV to TABLE VIII,
the number of SMBM’s highest recall results are: 6
(50.0%), 5(41.7%), 8(66.7%), 9(75%), 8(66.7%), while
the number of ADAM are: 6 (50.0%), 6(50.0%),
4(33.3%), 5(41.7%), 2(16.7%) and the others’ are less.
Except that SMBM’s recall result is worse than ADAM’s
in TABLEV, SMBM’s recall results are better than the

other 4 models. Therefore, SMBM has a better
performance on the minority fault-proneness prediction
than the rest models. The SINM and SSINM have higher
accuracy values, but lower recall values on many datasets
employed in our study, such as in CM1and PC2, which
shows that the two models have a poor predictive
accuracy over the minority class. The results of ADAM
are close to the SMBM’s, and it is recall values are
slightly lower than the ones of SMBM, such as on KC1,
PC4, which means ADAM has a good performance on
imbalanced datasets. SADAM has general ability to
predict minority fault-proneness.

Figure 2 reveals the SMBM has a higher AUC value
than the other two models and the value is 0.707, which
means SMBM has a better performance on the prediction
of imbalanced datasets.

TABLE VIII.
NAIVEBAYES RESULTS

NaiveBayes ACC Recall
Data sets SINM SSINM ADAM SADAM SMBM SINM SSINM ADAM SADAM SMBM

CM1 Mean
Var

0.861
0.001

0.634
0.022

0.661
0.005

0.712
0.005

0.655
0.011

0.302
0.013

0.535
0.043

0.692
0.030

0.402
0.031

0.612
0.031

JM1 Mean
Var

0.814
0

0.808
0

0.813
0

0.788
0

0.814
0

0.212
0

0.290
0

0.213
0.001

0.298
0.012

0.261
0

KC1 Mean
Var

0.842
0

0.793
0.001

0.795
0.001

0.801
0.001

0.711
0.002

0.391
0

0.572
0.007

0.591
0.011

0.502
0.011

0.754
0.004

KC3 Mean
Var

0.859
0

0.857
0

0.860
0

0.850
0

0.853
0

0.511
0.009

0.544
0.013

0.556
0.014

0.500
0.014

0.622
0.028

MC1 Mean
Var

0.943
0

0.989
0

0.901
0

0.991
0

0.888
0

0.435
0.028

0.270
0.003

0.678
0.006

0.261
0.003

0.661
0.007

MC2 Mean
Var

0.762
0.001

0.766
0.001

0.758
0

0.774
0.004

0.740
0.003

0.435
0.023

0.470
0.020

0.600
0.033

0.517
0.006

0.612
0.041

MW1 Mean
Var

0.842
0

0.584
0.020

0.815
0.005

0.782
0.001

0.757
0.006

0.500
0.015

0.320
0.007

0.500
0.005

0.300
0.015

0.560
0.023

PC1 Mean
Var

0.893
0

0.624
0.023

0.880
0

0.798
0.002

0.833
0.001

0.320
0.006

0.208
0.003

0.352
0.001

0.200
0.002

0.488
0.010

PC2 Mean
Var

0.969
0

0.741
0.014

0.928
0.009

0.941
0

0.870
0.004

0.525
0.019

0.325
0.044

0.525
0.011

0.200
0.028

0.625
0.023

PC3 Mean
Var

0.481
0.018

0.757
0.001

0.732
0.014

0.796
0.002

0.706
0.003

0.894
0

0.630
0

0.751
0.013

0.570
0.013

0.830
0.002

PC4 Mean
Var

0.881
0

0.772
0.008

0.842
0.005

0.841
0

0.790
0.002

0.181
0.004

0.525
0.007

0.601
0.024

0.532
0.02

0.722
0.005

PC5 Mean
Var

0.974
0

0.947
0

0.973
0

0.936
0

0.891
0

0.535
0.001

0.802
0

0.579
0.002

0.716
0.027

0.916
0.002

Figure 2.1 ADAM ROC and AUC Figure 2.2 SADAM ROC and AUC Figure 2.3 SMBM ROC and AUC

Figure 2. The ROC of Models Based on C4.5 on KC1.

702 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

Therefore, the SMBM has a better performance than
the other models in predicting the imbalanced high-risk
minority software faults with higher recall and AUC
values.

VI. CONCLUSIONS

In this paper, we make a comprehensive investigation
on the performances of the five types of prediction
models with different weak learners on the MDP datasets
that contains different degrees of imbalance and different
sizes, thus providing a diverse test bed. The comparative
experiment results present that the SMOTEBoost model
has a good ability for imbalanced software fault-
proneness prediction tasks, particularly on the minority
class samples, which means the prediction model of
SMOTEBoost is better to guide software testing resource
allocation and improving software reliability more likely.
The ADABoost model also has a certain capacity for
imbalanced software fault-proneness prediction tasks.

SMOTEBoost algorithm combines the advantage of
Boosting procedure and SMOTE algorithm. Boosting
procedure is used to ensure the accuracy on the entire
data sets. By introducing SMOTE algorithm into each
iteration of Boosting, each weak learner is able to sample
more of the minority class, and also better and broader
decision regions for the minority class. In this way,
SMOTEBoost model has a better ability of prediction on
the imbalanced software fault-proneness.

Manually finding bugs from complicated software is
an expensive work for software testing engineers. This
causes a huge challenge on collecting the large amount of
training samples for building a predictor. In other words,
establishing a large software metric set with fault
information is really expensive and time consuming. To
address this issue, the semi-supervised learning technique
will be introduced to expand the range of training data so
that we can employ and effectively increase the
performance of predictor with limited fault information
found. This will bring a greater flexibility to modeling
and a bigger range of application of the model, and
further improving the prediction performance.

As we all know, it is unavoidable for people to make
some mistakes, particularly when doing a heavy work,
such as software testing. In other words, it is hard to
guarantee that noise free in the bugs searching process.
Therefore there is a very high possibility for some noise
samples to be involved in the collection of software fault
information or metrics. In our research plan, a noise
tolerance learning mechanism will be introduced into
ensemble predictor to help prevent the damage on
predictive performance from noise samples.

REFERENCES

[1] Lions J L. Ariaen-5 flight 501 inquiry board report
[EB/OL]. http://sunnyday. mit. edu/accidents/ Ariane 5
accident report.html, 1996-02-05.

[2] Gregory T. The Economic Impacts of Inadequate
Infrastructure for Software Testing [R].RTI Health, Social,

and Economic Research, RTI Protect Number:
7007.011,2002.

[3] Gang Ye, Xianjun Li, Dan Yu, Zhongwen Li, Jie
Yin, ”The Design and Implementation of Workflow
Engine for Spacecraft Automatic Testing,” Journal of
Computers; Jun2011, Vol. 6 Issue 6, p1145.

[4] Aggarwal K.K., Singh Y., Kaur A., Malhotra R. (2008).
Empirical Analysis for Investigating the Effect of Object
Oriented Metrics on Fault Proneness: A Replicated Case
Study, Forthcoming in Software Process Improvement and
Practice, Wiley.

[5] Iker Gondra, Applying machine learning to software fault-
proneness prediction, Department of Mathematics,
Statistics, and Computer Science, St. Francis Xavier
University, P.O. Box 5000, Antigonish, Canada NS B2G
2W5,Available online 7 June 2007

[6] Menizes T, Dekhtyar A, Distefano J, Greenwald J,
Problems with Precision: A Response to “Comments on
‘Data Mining Static Code Attributes to Learn Defect
Predictors’” [J]. IEEE Trans. Softw, 2007, 33(9):637-640.

[7] Tan P N, Steinbach M, Kumar V. Introduction to Data
Mining [M]. New York: Addison Wesley, 1st edition, 2005

[8] Xin Jin, Yujian Li, Yihua Zhou, Zhi Cai, “Applying
Average Density to Example Dependent Costs SVM based
on Data Distribution,” Journal of Computers, Vol 8, No 1
(2013), 91-96, Jan 2013. doi: 10.4304/jcp.8.1.91-96.

[9] N. V. Chawla, K. W .Bowyer, L. O. Hall, and W. P.
Keglmeyer, “SMOTE: Synthetic Minority Over-Sampling
Technique,” Journal of Artificial Intelligence Research, vol.
16, pp. 321-357, June 2002.

[10] Yoav Freund, Robert E. Schapire. A Short Introduction to
Boosting. Journal of Japanese Society for Artificial
Intelligence,14(5):771-780,Sept,1999.

[11] Nitesh V. Chawla, Ar Lazarevic , Lawrence O. Hall ,
Kevin W. Bowyer, “SMOTEBoost: improving prediction
of the minority class in boosting,”7th European Conference
on Principle and Practice of Knowledge Discovery in
Database (PKDD), pp. 107 to 119 ,Dubrovnik, Croatia,
2003.

[12] NASA/WVU VI&V Facility. Metrics data program.
http://mdp.ivv.nasa.gov.

[13] Yoav Freud and Robert E. Schapire ,”Experiments with a
New Boosting Algorithm,” 1996.

[14] Quinlan, J. R. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers,1993.

[15] V. N. Vapnik, An Overview of Statistical Learning Theory,
IEEE Trans. Neural Netw. 1999, 10, 988-999.

[16] Palei, S. K.; Das, S. K. (2009). "Logistic regression model
for prediction of roof fall risks in board and pillar workings
in coal mines: An approach". Safety Science 47:
88. doi:10.1016/j.ssci.2008.01.002

[17] Gregory Shakhnarovich, Trevor Darrell, Piotr Indyk
(2006). Nearest-Neighbor Methods in Learning and
Vision. MIT Press.

[18] I.Rish. An empirical study of the NaiveBayes classifier.
[19] A. Estabrooks, T. Jo, and N. Japkowicz, “A Multiple

Resampling Method for Learning from Imbalanced Data
Sets,” Computational Intelligence, vol .20, 2004.

[20] Martha Varguez-Moo, Francisco Moo-Mena, Victor Uc-
Cetina, “Use of Classification Algorithms for Semantic
Web Services Discovery,” Journal of Computers, Vol 8,
No 7 (2013), 1810-1814, Jul 2013. doi: 10.4304/
jcp.8.7.1810 -1814.

[21] A.A.Shahrjooi Haghighi, M.Abbasi Dezfuli. Applying
Mining Schemes to Software Fault Prediction: A Proposed
Approach Aimed at Test Cost Reduction, Proceedings of

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 703

© 2014 ACADEMY PUBLISHER

the World Congress on Engineering 2012 Vol I, WCE
2012, July 4-6, 2012, London, U.K.

[22] Akalya C., Kannammal K.E., Surendiran B. A Hybrid
Feature Selection Model for Software Fault Prediction [J].
International Journal on Computational & Application,
2012, 2(2):25-35

[23] Catal C., Diri B. Investigating the Effect of Dataset Size,
Metrics Sets, and Feature Selection Techniques on
Software Fault Prediction Problem [J]. Information
Sciences, 2009, 179(8): 1040-1058

[24] Lessmann S, Baesens B, Mues C, Pietsch, S,
Benchmarking Classification Models for Software Defect
Prediction: A Proposed Framework and Novel Findings [J].
IEEE Trans. Softw. Eng. 2008, 34(4): 485-496.

[25] Jiang Y, Cukic B, Ma Y. Techniques for Evaluating Fault
Prediction Models [J]. Empirical Software Engineering,
2008, 13(5):561-595.

[26] Ling C X, Huang J, Zhang H. AUC: A Better Measure
Than Accuracy in Comparing Learning Algorithms[C]//In :
proc. ofartificial intelligence, Canad, 2003.

[27] I. H. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques. Morgn Kaufmann, San
Francisco, California, 2nd edition, 2005.

[28] Chris Seiffert, Taghi M. Khoshgoftaar, “Resampling or
Reweighting: A Comparison of Boosting
Implementations,” 2008 20th IEEE International
Conference on Tools with Artificial Intelligence.

Renqing Li received the B.Eng. degree in the school of
Reliability and System Engineering from Beihang University,
Beijing, in 2013.

Shihai Wang received his Ph.D. in Computer science from the
University of Manchester UK at 2010. He joined the school of
Reliability and System Engineering, Science and Technology on
Reliability and Environmental Engineering Laboratory Beihang
University, as a lecturer from 2011. Currently his research
interests include software testing, software fault prediction and
pattern recognition and application in software reliability.

704 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

