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Abstract—Software faults could cause serious system errors 
and failures, leading to huge economic losses. But currently 
none of inspection and verification technique is able to find 
and eliminate all software faults. Software testing is an 
important way to inspect these faults and raise software 
reliability, but obviously it is a really expensive job. The 
estimation of a module’s fault-proneness is important to 
minimize the software testing resources required by guiding 
the resource allocation on the high-risk modules. 
Consequently the efficiency of software testing and the 
reliability of the software are improved. The software faults 
data sets, however, originally have the imbalanced 
distribution. A small amount of software modules holds 
most faults, while the most of modules are fault-free. Such 
imbalanced data distribution is really a challenge for the 
researchers in the field of prediction for software fault-
proneness. In this paper, we make an investigation on 
software fault-prone prediction models by employing C4.5, 
SVM, KNN, Logistic, NaiveBayes, AdaBoost and 
SMOTEBoost based on software metrics. We perform an 
empirical study on the effectiveness of these models on 
imbalanced software fault data sets obtained from NASA’s 
MDP. After a comprehensive comparison based on the 
experiment results, the SMOTEBoost reveals the 
outstanding performances than the other models on 
predicting the high-risk software modules with higher recall 
and AUC values, which demonstrates the model based on 
SMOTEBoost has a better ability to estimate a module’s 
fault-proneness and furthermore improve the efficiency of 
software testing. 
Index Terms—SMOTEBoost, software fault-prone, 
prediction model, imbalanced data sets 

I.  MOTIVATION AND INTRODUCTION 

With the fast development of software technology, 
software systems become more complex, requiring higher 
reliability and stability. Although the software would 

never be worn out, it may fail for some reasons at any 
time. The faults and mistakes in the software may lead to 
system errors and failures, resulting in huge losses in 
socio-economic activities. There are numerous similar 
cases [1, 2]. However, the current technologies are 
impossible to find and eliminate all faults in software. 
Software testing is a critical approach to ensure the 
software reliability [3], but a complete software testing is 
really time consuming and expensive. Some studies have 
proven that software development companies spend 50% 
to 80% of the costs on software testing [2]. Fault-
proneness makes the definition on the probability of fault 
detection in software [4]. An accurate prediction on 
software faults or fault-prone at an early stage of software 
development is important to make a proper plan on 
testing activities and allocate the limited resources to 
focus on those modules, consequently improving the 
efficiency of software testing and the reliability of 
software system. Unfortunately, software fault-proneness 
cannot be directly measured. It can be estimated, however, 
based on software metrics, which provide quantitative 
descriptions of program attributes. A number of studies 
provide empirical evidence that correlation exists 
between software metrics and fault-proneness [5]. 

The software faults data sets are imbalanced, which 
means the amounts of the fault modules and fault free 
modules in a software system are imbalanced [5, 6, 7] 
and rises up the imbalanced data set learning problem for 
software fault-proneness prediction models based on 
pattern recognition technologies. In other words, most of 
faults involved in a software system are located in a small 
part of modules, which is called high-risk modules or 
minority class. On the contrary, most of models are 
defects free called low-risk modules or majority class. 
The accurate prediction on these high-risk modules is 
more important, because these modules may lead to 
serious consequences. For pattern recognition approaches, 
most prediction models are based on an assumption that 
the amounts of each class samples are balanced roughly. 
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When the assumption is satisfied, most of prediction 
models reveal good performance. But in these scenarios 
that the majority class typically represents most of the 
population, these models get poor predictive accuracy 
over the minority class [8]. This is a bias. Actually the 
accuracy of the minority class is far more critical than the 
one of the majority class. When high-risk modules are 
predicted wrongly, the following testing would ignore or 
pay a little attention on these modules, and consequently 
these defects are retained in a high probability after 
testing.    

In this paper we present a comprehensive empirical 
study for software fault-proneness prediction with 
ensemble learning models on imbalanced data sets.  The 
experiments results show that SMOTEBoost model has a 
better performance on predicting the imbalanced software 
fault-proneness than other models. The layout of the rest 
of the paper is as follows. Description of over-sampling 
algorithm SMOTE [9], Boosting [10] and SMOTEBoost 
[11] algorithm is presented in Section II. In Section III, 
data sets from NASA MDP (Metrics Data Program) [12], 
software metrics and performance metrics employed in 
our experiments are presented. Section IV describes the 
prediction models built in our study: SMOTEBoost 
model, AdaBoost [13] model and single learner models, 
such as C4.5 [14], SVM [15], KNN [16], Logistic [17], 
NaiveBayes [18].  Sections V and VI, present the 
experimental results and conclusions of our comparative 
study.  

II. THE SOFTWARE FAULT-PRONENESS PREDICTION 
MODELS BASED ON IMBALANCED DATA SETS 

A.  Synthetic Minority Over-sampling Techniques 
There are many real world data mining approaches 

learning from imbalanced datasets, which always leads to 
a bias on these classifiers, very high classification 
performance on the majority class(es), however, 
unacceptable performance over those minority ones. 
Over-sampling and under-sampling approaches are 
commonly employed to deal with the problem [19]. As 
one of most successful over-sampling technologies, 
SMOTE (Synthetic Minority Over-sampling Techniques) 
[9] is an approach specifically designed for learning with 
imbalanced datasets, which operates in the “feature 
space” rather than the “data space” and generates 
synthetic samples of the minority class. In this way the 
inductive learners are able to broaden their decision 
regions for the minority class and make a better 
performance.  

B.  Boosting Algorithm 
Boosting is an ensemble-based learning algorithm, 

which is able to dramatically improve the ensemble 
classification performance by creating and combining a 
set of weak hypotheses [10, 28]. AdaBoosting, a popular 
Boosting algorithm applied in many fields [13] [20], 
builds an ensemble of classifiers iteratively and adjust the 
weights of each training sample based on the 
performance of the iteration’s classifier. These samples 

which were misclassified by pervious classifiers, will be 
assigned a bigger weight relatively, while those that were 
correctly classified have their weights decreased. 
Therefore, in the next iteration the learner is more likely 
to concentrate on those samples that were misclassified 
during the previous iterations and classify them correctly. 
At last, the classifiers built during each iteration 
participate in a weighted vote to classify unlabeled 
samples. 

C.  SMOTEBoost Algorithm 
SMOTEBoost [11] is an approach to learn from 

imbalanced data sets. More details are shown in Figure 1, 
which is based on an effective combination of the 
SMOTE algorithm and Boosting procedure. 

 

SMOTEBoost algorithm proceeds in a series of T 
iterations. In each iteration, a weak learner is called and 
presented with a different distribution tD  altered by 
emphasizing particular training samples. The distribution 
is updated to give wrong classification samples with 
higher weights than correct ones. SMOTE is introduced 
in each round of Boosting and creates more samples of 
the minority class for each learner. Thus, more learning 
information is supplied for the minority class. Then the 
entire weighted training set is given to the weak learner to 
compute the weak hypothesis th . At end, the different 
hypothesizes are combined into a final hypothesis fnh . 
Boosting procedure ensures the accuracy over the entire 
data sets and SMOTE improves the accuracy of the 
minority classes. SMOTEBoost has been applied to 
imbalanced data sets in many fields and shows a 
significant improvement in prediction performance [11]. 

 III.  EXPERIMENTAL DESIGN 

A.  Data Sets 
Our experiments are carried out on 12 data sets from 

the data metrics program NASA's MDP (Metrics Data 
Program) data repository [12]. Details about these data 

 

Figure1. SMOTEBoost algorithm. 
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sets are in TABLE I, which provides the total number of 
software modules in the dataset (Size), as well as the 
number of minority defected modules (NumMin), the 
developing language and the LOC of the dataset 
(NumLOC). 

 

All the data sets listed in the Table 1 are imbalanced 
obviously, and the percentage of the minority class of 
PC2 is 0.4% only. In MDP, all of the software are 
implemented in different languages, such as CM1 is in C, 
KC1 in C++ and KC3 in JAVA. And the software 
presented in each data set is from different projects at 
NASA. For instance, CM1 is from the spacecraft 
software instruction module, KC1 from the storage 
management module and KC3 from the data transmitting 
and receiving module. Therefore the versatility of the 
prediction model can be tested and verified. 

In our study, we take the software metric information 
of the software modules as input for the prediction model 
[5, 6]. Our study selects 22 metrics [21], which includes 
the McCabe metrics set, Halstead metrics set and Line of 
Code metrics set, etc. The details about these software 
metrics are in TABLE II. We select the first 21 metrics as 
the input for the prediction model [22] [23] and the last 
one to classify the software modules. The software 
module, whose ERROR_COUNT metric value is 0(This 
means the module contains no faults), is assigned as low-
risk or majority class, with label “0”. The rest is high-risk 
or minority class, with label “1”. 

 
For each time of our experiments, 70 percent of the 

majority class samples and minority class samples were 

randomly selected as training set respectively, the rest of 
samples is for testing. 

B.  Performance Metrics 
In this paper, we have employed two performance 

measures: a confusion matrix and the area under the ROC 
[24, 25, 26]. The confusion matrix as shown in TABLE 
III is typically used to evaluate performance of a machine 
learning algorithm.  

 

The recall (Recall) and accuracy (ACC) as the 
experiment results are reported in this paper, which are 
defined as follows:  

T PR e c a l l
T P F N

=
+

                          (1) 

TP TNACC
TP FP TN FN

+
=

+ + +
                        (2) 

   The main focus of all learning algorithms is to 
improve the recall, without sacrificing the accuracy. A 
receiver operating characteristic curve (ROC) plots the 
true positive rate (TPR = TP/(TP+FP)) on the y-axis 
versus the false positive rate (FPR = FN/(FN+TN)) on the 
x-axis. The resulting curve represents the traded off 
between correctly identifying positive class examples and 
false alarms across the complete range of possible 
decision thresholds. The area under the ROC curve is 
used to measure the classifier performance. 

IV.  PREDICTION MODELS 

In order to make a comprehensive comparison study, 
besides SMOTEBoost(SMBM), four other kinds of 
prediction models are involved in our study: AdaBoost 
(ADAM), SMOTE+AdaBoost (SADAM), single weak 
learner (SINM), SMOTE+ single weak learner (SSINM). 
In this paper, five weak learners are selected: C4.5, SVM, 
3NN, Logistic, NaiveBayes. The five learners are 
implemented in WEKA [27], an open source data mining 
suite. Except KNN, the other four learners have no 
parameters. Thus, in our study, the influence from the 
parameter setting is avoided. 

V.  EXPERIMENTS AND RESULTS 

In our study, we use 50 iterations for all Boosting 
models. In the experiments, Boosting resampling [28] 
rate is set to 80% in each iteration. Every prediction 
model runs five times of each data set independently. At 
last the mean (Mean) and variance (Var) values are 
shown in TABLE IV-TABL VIII. Bold values in the 
tables indicate SMBM resulted in the highest recall for 

TABLE II.  
SOFTWARE METRICS 

CYCLOMATIC_COMPLEXITY NUM_UNIQUE_OPERATORS
DESIGN_COMPLEXITY HALSTEAD_LENGTH 

ESSENTIAL_COMPLEXITY HALSTEAD_CONTENT 
LOC_TOTAL HALSTEAD_DIFFICULTY 

NUM_OPERANDS HALSTEAD_EFFORT 
NUM_OPERATORS HALSTEAD_ERROR_EST 

UM_UNIQUE_OPERANDS HALSTEAD_PROG_TIME 
LOC_BLANK HALSTEAD_LEVEL 

LOC_CODE_AND_COMMENT HALSTEAD_VOLUME 
LOC_COMMENTS BRANCH_COUNT 

LOC_EXECUTABLE ERROR_COUNT 

TABLE I.  
DATA SETS 

Data 
set Language Size NumMin NumLOC

CM1 C 505 48 16903 
JM1 C 10878 2102 457177 
KC1 C++ 2107 325 42963 
KC3 JAVA 522 107 7749 
MC1 C++ 9466 68 66583 
MC2 C++ 161 52 6134 
MW1 C 403 31 8134 
PC1 C 1107 76 25922 
PC2 C 5589 23 26863 
PC3 C 1563 160 36473 
PC4 C 1458 178 30055 
PC5 C++ 17186 516 161695 

 

TABLE III. 
THE CONFUSION MATRIX 

 Predicted 
class “C” 

Predicted 
class “NC” 

Actual 
class “C” 

True Positives 
(TP) 

False Negatives
(FN) 

Actual 
class “NC” 

False Positives 
(FP) 

True Negatives
(TN) 
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the given datasets. The ROC results of models with C4.5 on dataset KC1 are presented in Figure 2. 

 
In TABLE IV, C4.5 is selected as the weak learner. 

When the models are applied on the 12 datasets, SMBM 
accounts 6 highest recall results (50.0%) based on 
datasets: CM1, KC1, MC2, PC1, PC2, PC4 and PC5. 

ADAM 6 highest recall results (50.0%). The ACC values 
of all models are very close on all datasets and the 
variance of SMBM’s ACC values is 0.882. 

 
In TABLE V, SVM is employed as the weak learner. 

When the models are applied on the 12 datasets, SMBM 
accounts 5 highest recall results (41.7%) based on 
datasets: CM1, KC3, PC3, PC4, and PC5. ADAM 6 

highest recall results (50.0%) and the other models less. 
The ACC values of all models are very close on all 
datasets and the variance of SMBM’s ACC values is 
0.812. 

TABLE IV. 
 C4.5 RESULTS  

C4.5 ACC Recall 
Data sets SINM SSINM ADAM SADAM SMBM SINM SSINM ADAM SADAM SMBM

CM1 Mean 
Var 

0.901 
0 

0.880 
0 

0.903 
0 

0.891 
0 

0.902 
0 

0.061 
0.007 

0.110 
0.006 

0.162 
0.003 

0.141 
0.018 

0.191 
0.008 

JM1 Mean 
Var 

0.814 
0 

0.811 
0 

0.797 
0 

0.807 
0 

0.793 
0 

0.198 
0.002 

0.254 
0.001 

0.388 
0 

0.318 
0 

0.381 
0 

KC1 Mean 
Var 

0.851 
0 

0.851 
0 

0.845 
0 

0.851 
0 

0.853 
0 

0.272 
0.004 

0.250 
0.009 

0.412 
0.003 

0.361 
0.002 

0.452 
0.001 

KC3 Mean 
Var 

0.828 
0 

0.820 
0 

0.810 
0 

0.822 
0 

0.802 
0 

0.411 
0.02 

0.333 
0.010 

0.533 
0.003 

0.483 
0.001 

0.478 
0.001 

MC1 Mean 
Var 

0.993 
0 

0.993 
0 

0.987 
0 

0.993 
0 

0.989 
0 

0.200 
0.006 

0.217 
0.007 

0.556 
0.014 

0.400 
0.015 

0.500 
0.082 

MC2 Mean 
Var 

0.702 
0 

0.717 
0.002 

0.694 
0.003 

0.683 
0 

0.713 
0.002 

0.188 
0 

0.353 
0.017 

0.341 
0.006 

0.294 
0.019 

0.376 
0.018 

MW1 Mean 
Var 

0.919 
0 

0.887 
0 

0.891 
0 

0.887 
0.001 

0.876 
0 

0.240 
0.003 

0.200 
0.035 

0.240 
0.003 

0.200 
0 

0.180 
0.002 

PC1 Mean 
Var 

0.945 
0 

0.935 
0 

0.922 
0 

0.935 
0 

0.933 
0 

0.224 
0.004 

0.224 
0.004 

0.360 
0.012 

0.028 
0.009 

0.392 
0.006 

PC2 Mean 
Var 

0.996 
0 

0.994 
0 

0.967 
0 

0.994 
0 

0.965 
0 

0 0 0.025 
0.003 

0 0.100 
0.026 

PC3 Mean 
Var 

0.883 
0 

0.887 
0 

0.882 
0 

0.880 
0 

0.887 
0 

0.158 
0.007 

0.181 
0 

0.309 
0.002 

0.223 
0.002 

0.307 
0.005 

PC4 Mean 
Var 

0.901 
0 

0.893 
0 

0.901 
0 

0.916 
0 

0.905 
0 

0.322 
0.029 

0.442 
0.009 

0.582 
0.005 

0.582 
0.004 

0.592 
0.003 

PC5 Mean 
Var 

0.973 
0 

0.974 
0 

0.965 
0 

0.973 
0 

0.968 
0 

0.427 
0.002 

0.456 
0.002 

0.605 
0.001 

0.486 
0.003 

0.600 
0.002 

 

TABLE V. 
 SVM RESULTS 

SVM ACC Recall 
Data sets SINM SSINM ADAM SADAM SMBM SINM SSINM ADAM SADAM SMBM

CM1 Mean 
Var 

0.901 
0 

0.602 
0.013 

0.775 
0 

0.762 
0.191 

0.724 
0.002 

0 0.704 
0.032 

0.621 
0.012 

0.463 
0.021 

0.752 
0.050 

JM1 Mean 
Var 

0.809 
0 

0.669 
0.005 

0.779 
0 

0.698 
0.002 

0.779 
0 

0.01 
0 

0.590 
0.007 

0.523 
0.001 

0.475 
0.007 

0.520 
0.002 

KC1 Mean 
Var 

0.851 
0 

0.803 
0 

0.765 
0 

0.816 
0 

0.762 
0 

0.042
0.001

0.574 
0.002 

0.744 
0.002 

0.471 
0.005 

0.712 
0.001 

KC3 Mean 
Var 

0.832 
0 

0.701 
0.016 

0.829 
0 

0.770 
0.004 

0.750 
0.036 

0.206
0.007

0.222 
0.006 

0.744 
0.014 

0.472 
0.010 

0.833 
0.014 

MC1 Mean 
Var 

1 0.949 
0 

0.904 
0 

0.963 
0 

0.912 
0 

0 0.565 
0.003 

0.739 
0.002 

0.522 
0.004 

0.652 
0.002 

MC2 Mean 
Var 

0.709 
0 

0.721 
0.004 

0.743 
0.004 

0.728 
0.005 

0.713 
0 

0.141
0.008

0.341 
0.005 

0.553 
0.011 

0.388 
0.025 

0.482 
0.016 

MW1 Mean 
Var 

0.925 
0 

0.770 
0.004 

0.809 
0.002 

0.779 
0.002 

0.824 
0 

0 0.440 
0.048 

0.560 
0.033 

0.340 
0.023 

0.520 
0.057 

PC1 Mean 
Var 

0.932 
0 

0.877 
0 

0.773 
0 

0.876 
0 

0.776 
0.003 

0 0.160 
0.003 

0.656 
0.011 

0.280 
0 

0.584 
0.020 

PC2 Mean 
Var 

0.996 
0 

0.892 
0 

0.924 
0 

0.943 
0 

0.898 
0 

0 0.725 
0.011 

0.500 
0.086 

0.175 
0.005 

0.525 
0.104 

PC3 Mean 
Var 

0.898 
0 

0.833 
0 

0.825 
0 

0.845 
0 

0.825 
0 

0 0.585 
0.010 

0.619 
0.006 

0.483 
0.008 

0.660 
0.004 

PC4 Mean 
Var 

0.881 
0 

0.901 
0 

0.862 
0 

0.851 
0 

0.852 
0 

0.052
0 

0.430 
0.004 

0.623 
0.002 

0.403 
0.004 

0.664 
0.004 

PC5 Mean 
Var 

0.973 
0 

0.937 
0 

0.935 
0 

0.951 
0 

0.935 
0 

0.203
0.002

0.869 
0.003 

0.884 
0.002 

0.826 
0.002 

0.884 
0.001 
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In TABLE VI, Logistic is used as the weak learner. 

When the models are applied on the 12 datasets , SMBM 
accounts 8 highest recall results (66.7%) based on 
datasets: CM1, KC1, KC3, MC2, MW1, PC2, PC4, and 

PC5. ADAM 4 highest recall results (33.3%). The ACC 
values of all models are very close on all datasets and the 
variance of SMBM’s ACC values is 0.805. 

 
In TABLE VII, 3NN is the weak learner used. When 

the models are applied on the 12 datasets, SMBM 
accounts 9 highest recall results (75%) based on datasets: 
JM1, KC1, KC3, MC1, MW1, PC1, PC2, PC4, and PC5. 

ADAM 5 highest recall results (41.7%) and the other 
models less. The ACC values of all models are very close 
on all datasets and the variance of SMBM’s ACC values 
is 0.846. 

TABLE VI. 
LOGISTIC RESULTS 

Logistic ACC Recall 
Data sets SINM SSINM ADAM SADAM SMBM SINM SSINM ADAM SADAM SMBM

CM1 Mean 
Var 

0.901 
0 

0.803 
0.002 

0.823 
0.001 

0.791 
0.001 

0.801 
0 

0.152 
0.001 

0.392 
0.011 

0.444 
0.009 

0.352 
0.020 

0.492 
0.02 

JM1 Mean 
Var 

0.816 
0 

0.805 
0 

0.758 
0 

0.804 
0 

0.757 
0 

0.106 
0 

0.243 
0.005 

0.581 
0 

0.256 
0.005 

0.574 
0 

KC1 Mean 
Var 

0.861 
0 

0.811 
0 

0.762 
0 

0.814 
0 

0.763 
0 

0.202 
0.001 

0.420 
0.002 

0.653 
0.001 

0.400 
0.005 

0.670 
0.001 

KC3 Mean 
Var 

0.826 
0 

0.707 
0.004 

0.810 
0 

0.723 
0.003 

0.805 
0 

0.394 
0.005 

0.433 
0.004 

0.670 
0.003 

0.483 
0.007 

0.672 
0.006 

MC1 Mean 
Var 

0.992 
0 

0.984 
0 

0.908 
0 

0.985 
0 

0.915 
0 

0 0.234 
0.025 

0.722 
0.002 

0.217 
0.022 

0.678 
0.002 

MC2 Mean 
Var 

0.725 
0.003 

0.721 
0.002 

0.740 
0.002 

0.740 
0.001 

0.766 
0.004 

0.376 
0.013 

0.435 
0.020 

0.541 
0.037 

0.506 
0.018 

0.600 
0.020 

MW1 Mean 
Var 

0.912 
0 

0.760 
0.003 

0.830 
0 

0.790 
0.003 

0.542 
0.134 

0.160 
0.003 

0.420 
0.047 

0.340 
0.008 

0.380 
0.037 

0.620 
0.162 

PC1 Mean 
Var 

0.932 
0 

0.879 
0 

0.811 
0.001 

0.871 
0 

0.808 
0 

0.120 
0.006 

0.210 
0.007 

0.648 
0.005 

0.280 
0.020 

0.608 
0.008 

PC2 Mean 
Var 

0.994 
0 

0.929 
0 

0.938 
0 

0.931 
0 

0.924 
0 

0 0.225 
0.034 

0.325 
0.020 

0.200 
0.036 

0.350 
0.010 

PC3 Mean 
Var 

0.903 
0 

0.839 
0 

0.792 
0 

0.841 
0 

0.793 
0 

0.166 
0.001 

0.491 
0.005 

0.702 
0 

0.475 
0.004 

0.680 
0.003 

PC4 Mean 
Var 

0.912 
0 

0.882 
0 

0.854 
0 

0.872 
0 

0.862 
0 

0.311 
0.006 

0.503 
0.011 

0.725 
0.014 

0.491 
0.012 

0.755 
0.013 

PC5 Mean 
Var 

0.973 
0 

0.945 
0 

0.929 
0 

0.945 
0 

0.930 
0 

0.344 
0.001 

0.649 
0.002 

0.876 
0 

0.556 
0.002 

0.886 
0 

 

TABLE VII. 
3NN RESULTS 

3NN ACC Recall 
Data sets SINM SSINM ADAM SADAM SMBM SINM SSINM ADAM SADAM SMBM

CM1 Mean 
Var 

0.891 
0 

0.843 
0 

0.825 
0 

0.821 
0 

0.831 
0 

0.062 
0.004 

0.184 
0.006 

0.266 
0.030 

0.262 
0.021 

0.232 
0.031 

JM1 Mean 
Var 

0.811 
0 

0.812 
0 

0.738 
0 

0.760 
0 

0.739 
0 

0.244 
0 

0.267 
0 

0.450 
0 

0.403 
0 

0.457 
0 

KC1 Mean 
Var 

0.852 
0 

0.842 
0 

0.823 
0 

0.831 
0 

0.824 
0 

0.243 
0.001 

0.291 
0.001 

0.451 
0.001 

0.412 
0.001 

0.475 
0.001 

KC3 Mean 
Var 

0.853 
0 

0.823 
0 

0.784 
0 

0.792 
0 

0.769 
0 

0.489 
0.005 

0.489 
0.005 

0.539 
0.007 

0.483 
0.010 

0.578 
0.011 

MC1 Mean 
Var 

0.992 
0 

0.990 
0 

0.976 
0 

0.994 
0 

0.976 
0 

0 
 

0 0.778 
0.002 

0.222 
0.002 

0.778 
0.001 

MC2 Mean 
Var 

0.725 
0 

0.728 
0 

0.706 
0.002 

0.735 
0.006 

0.687 
0.003 

0.271 
0.008 

0.388 
0.018 

0.435 
0.025 

0.459 
0.026 

0.353 
0.022 

MW1 Mean 
Var 

0.913 
0 

0.813 
0 

0.825 
0 

0.830 
0 

0.831 
0 

0.260 
0.013 

0.300 
0.025 

0.340 
0.013 

0.320 
0.002 

0.340 
0.013 

PC1 Mean 
Var 

0.934 
0 

0.918 
0 

0.875 
0 

0.885 
0 

0.881 
0 

0.208 
0.003 

0.208 
0.003 

0.504 
0.007 

0.472 
0.004 

0.512 
0.001 

PC2 Mean 
Var 

0.996 
0 

0.989 
0 

0.957 
0 

0.998 
0 

0.960 
0 

0 0 0.375 
0.001 

0.250 
0.003 

0.375 
0.001 

PC3 Mean 
Var 

0.885 
0 

0.867 
0 

0.841 
0 

0.841 
0 

0.839 
0 

0.162 
0.001 

0.325 
0.008 

0.468 
0 

0.400 
0.005 

0.453 
0 

PC4 Mean 
Var 

0.901 
0 

0.891 
0 

0.843 
0 

0.844 
0 

0.845 
0 

0.382 
0.002 

0.432 
0.004 

0.531 
0 

0.522 
0 

0.553 
0.002 

PC5 Mean 
Var 

0.969 
0 

0.971 
0 

0.971 
0 

0.972 
0 

0.9720
0 

0.430 
0.002 

0.511 
0.003 

0.500 
0.002 

0.465 
0．002 

0.512 
0.001 
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In TABLE VIII, the weak learner is KNN (K=3). 

When the models are applied on the 12 datasets, SMBM 
accounts 8 highest recall results (66.7%) based on 
datasets: KC1, KC3, MC2, MW1, PC2, PC4, and PC5. 

ADAM 2 highest recall results (16.7%) and the other 
models less. The ACC values of all models are very close 
on all datasets and the variance of SMBM’s ACC values 
is 0.793. 

 
From the ROC of models based on C4.5 on KC1 

results in Figure 2.1-2.3, the AUC values of the three 
models (ADAM, SADAM, SMBM) are 0.686, 0.696, 
0.707 and SMBM gets the highest AUC value. 

 
TABLE IV-TABLE VIII shows the performance of the 

five prediction models (measured using ACC and Recall) 
for each of the datasets used in our experiments. In most 
cases, the ACC values of SMBM are close to the other 
models. And SMBM’s ACC values are around 0.800, 
which means this model has a good performance over the 
entire classes. Without sacrificing the accuracy over the 
entire data sets, SMBM accounts 36 highest recall values 
in the all 60 (60.0%). ADAM accounts 23 (38.3%) and 
the others less. From all tables, different weak learner 
causes different results. From TABLE IV to TABLE VIII, 
the number of SMBM’s highest recall results are: 6 
(50.0%), 5(41.7%), 8(66.7%), 9(75%), 8(66.7%), while 
the number of ADAM are: 6 (50.0%), 6(50.0%), 
4(33.3%), 5(41.7%), 2(16.7%) and the others’ are less. 
Except that SMBM’s recall result is worse than ADAM’s 
in TABLEV, SMBM’s recall results are better than the 

other 4 models. Therefore, SMBM has a better 
performance on the minority fault-proneness prediction 
than the rest models. The SINM and SSINM have higher 
accuracy values, but lower recall values on many datasets 
employed in our study, such as in CM1and PC2, which 
shows that the two models have a poor predictive 
accuracy over the minority class. The results of ADAM 
are close to the SMBM’s, and it is recall values are 
slightly lower than the ones of SMBM, such as on KC1, 
PC4, which means ADAM has a good performance on 
imbalanced datasets. SADAM has general ability to 
predict minority fault-proneness. 

Figure 2 reveals the SMBM has a higher AUC value 
than the other two models and the value is 0.707, which 
means SMBM has a better performance on the prediction 
of imbalanced datasets. 

TABLE VIII. 
NAIVEBAYES RESULTS 

NaiveBayes ACC Recall 
Data sets SINM SSINM ADAM SADAM SMBM SINM SSINM ADAM SADAM SMBM

CM1 Mean 
Var 

0.861 
0.001 

0.634 
0.022 

0.661 
0.005 

0.712 
0.005 

0.655 
0.011 

0.302
0.013

0.535 
0.043 

0.692 
0.030 

0.402 
0.031 

0.612 
0.031 

JM1 Mean 
Var 

0.814 
0 

0.808 
0 

0.813 
0 

0.788 
0 

0.814 
0 

0.212
0 

0.290 
0 

0.213 
0.001 

0.298 
0.012 

0.261 
0 

KC1 Mean 
Var 

0.842 
0 

0.793 
0.001 

0.795 
0.001 

0.801 
0.001 

0.711 
0.002 

0.391
0 

0.572 
0.007 

0.591 
0.011 

0.502 
0.011 

0.754 
0.004 

KC3 Mean 
Var 

0.859 
0 

0.857 
0 

0.860 
0 

0.850 
0 

0.853 
0 

0.511
0.009

0.544 
0.013 

0.556 
0.014 

0.500 
0.014 

0.622 
0.028 

MC1 Mean 
Var 

0.943 
0 

0.989 
0 

0.901 
0 

0.991 
0 

0.888 
0 

0.435
0.028

0.270 
0.003 

0.678 
0.006 

0.261 
0.003 

0.661 
0.007 

MC2 Mean 
Var 

0.762 
0.001 

0.766 
0.001 

0.758 
0 

0.774 
0.004 

0.740 
0.003 

0.435
0.023

0.470 
0.020 

0.600 
0.033 

0.517 
0.006 

0.612 
0.041 

MW1 Mean 
Var 

0.842 
0 

0.584 
0.020 

0.815 
0.005 

0.782 
0.001 

0.757 
0.006 

0.500
0.015

0.320 
0.007 

0.500 
0.005 

0.300 
0.015 

0.560 
0.023 

PC1 Mean 
Var 

0.893 
0 

0.624 
0.023 

0.880 
0 

0.798 
0.002 

0.833 
0.001 

0.320
0.006

0.208 
0.003 

0.352 
0.001 

0.200 
0.002 

0.488 
0.010 

PC2 Mean 
Var 

0.969 
0 

0.741 
0.014 

0.928 
0.009 

0.941 
0 

0.870 
0.004 

0.525
0.019

0.325 
0.044 

0.525 
0.011 

0.200 
0.028 

0.625 
0.023 

PC3 Mean 
Var 

0.481 
0.018 

0.757 
0.001 

0.732 
0.014 

0.796 
0.002 

0.706 
0.003 

0.894
0 

0.630 
0 

0.751 
0.013 

0.570 
0.013 

0.830 
0.002 

PC4 Mean 
Var 

0.881 
0 

0.772 
0.008 

0.842 
0.005 

0.841 
0 

0.790 
0.002 

0.181
0.004

0.525 
0.007 

0.601 
0.024 

0.532 
0.02 

0.722 
0.005 

PC5 Mean 
Var 

0.974 
0 

0.947 
0 

0.973 
0 

0.936 
0 

0.891 
0 

0.535
0.001

0.802 
0 

0.579 
0.002 

0.716 
0.027 

0.916 
0.002 

 

  
Figure 2.1 ADAM ROC and AUC                           Figure 2.2 SADAM ROC and AUC                    Figure 2.3 SMBM ROC and AUC 

Figure 2. The ROC of Models Based on C4.5 on KC1. 
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Therefore, the SMBM has a better performance than 
the other models in predicting the imbalanced high-risk 
minority software faults with higher recall and AUC 
values. 

VI.  CONCLUSIONS  

In this paper, we make a comprehensive investigation 
on the performances of the five types of prediction 
models with different weak learners on the MDP datasets 
that contains different degrees of imbalance and different 
sizes, thus providing a diverse test bed. The comparative 
experiment results present that the SMOTEBoost model 
has a good ability for imbalanced software fault-
proneness prediction tasks, particularly on the minority 
class samples, which means the prediction model of 
SMOTEBoost is better to guide software testing resource 
allocation and improving software reliability more likely. 
The ADABoost model also has a certain capacity for 
imbalanced software fault-proneness prediction tasks. 

SMOTEBoost algorithm combines the advantage of 
Boosting procedure and SMOTE algorithm. Boosting 
procedure is used to ensure the accuracy on the entire 
data sets. By introducing SMOTE algorithm into each 
iteration of Boosting, each weak learner is able to sample 
more of the minority class, and also better and broader 
decision regions for the minority class. In this way, 
SMOTEBoost model has a better ability of prediction on 
the imbalanced software fault-proneness. 

Manually finding bugs from complicated software is 
an expensive work for software testing engineers. This 
causes a huge challenge on collecting the large amount of 
training samples for building a predictor. In other words, 
establishing a large software metric set with fault 
information is really expensive and time consuming. To 
address this issue, the semi-supervised learning technique 
will be introduced to expand the range of training data so 
that we can employ and effectively increase the 
performance of predictor with limited fault information 
found. This will bring a greater flexibility to modeling 
and a bigger range of application of the model, and 
further improving the prediction performance.  

As we all know, it is unavoidable for people to make 
some mistakes, particularly when doing a heavy work, 
such as software testing. In other words, it is hard to 
guarantee that noise free in the bugs searching process. 
Therefore there is a very high possibility for some noise 
samples to be involved in the collection of software fault 
information or metrics. In our research plan, a noise 
tolerance learning mechanism will be introduced into 
ensemble predictor to help prevent the damage on 
predictive performance from noise samples. 
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