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Abstract—The emergence of cloud computing solves the 
problems that traditional data mining algorithms encounter 
when dealing with large data. This paper studies the 
FP-Growth algorithm and proposes a parallel linked 
list-based FPG algorithm based on MapReduce 
programming model, named as the PLFPG algorithm. And 
then it describes the main idea of algorithm. Finally, by 
using different data sets to test the algorithm, the 
experimental result shows that PLFPG algorithm has higher 
efficiency and better flexibility and scalability. 
 
Index Terms—Cloud computing, FP-Growth, MapReduce, 
Data mining 
 

I.  INTRODUCTION  

Association rules are one of the most active research 
methods in data mining. Association rules mining is to 
find strong association rules. That can be divided into two 
sub-problems, discovering frequent item-sets and 
generating association rules. The salient features of data 
mining technology are that it discovers implicit and 
useful knowledge from huge, complex and high-latitude 
data sets. This puts special challenges on association rules 
techniques.  

In 1994, Agrawal proposed the famous Apriori 
algorithm, but there are two drawbacks in it. First, 
because it repeatedly scans the transaction database, it 
needs a lot of I/O load; Second, it will cause huge 
candidate set. FP-Growth is a good solution to the above 
two problems. The biggest advantage of the FP-Growth 
algorithm is that it only scans database twice. It directly 
compresses the database into a frequent pattern tree 
instead of using a candidate set and finally generates 
association rules through FP-tree. 

 However, FP-tree and conditional FP-tree structure 
and traversal consume most of the time in the FP-Growth 
algorithm. There are two problems. First, for each 
recursive digging, the algorithm must generate a new 
conditional FP-tree. That affects the efficiency of the 
algorithm's time and space. This article mines recursively 
based on the form of a linked list instead of conditional 
FP-tree. It greatly saves time and space and improves 

efficiency by the way that linked lists record the 
relationship among the conditional FP-tree nodes. 

 Second, in the era of data explosion today, the data 
sets are very large and the FP-tree has a lot of long 
branches, the traditional algorithm needs to construct a 
huge FP-tree. In this situation it has defects, such as a 
small amount of processing within unit time, the long 
processing time and so on. It is difficult to achieve the 
desired effect. For this problem, combining association 
rule analysis and cloud computing to design efficient 
parallel algorithms has become an inevitable trend. 

 Hadoop is a distributed computing framework 
developed by the Apache Foundation. Users can develop 
distributed programs in the case of not understanding the 
distributed underlying details [14][15]. The framework 
makes development and parallel processing of large-scale 
data easier. Meanwhile it is high reliable, scalable, 
efficient and tolerant. It has been applied in Amazon, 
Facebook, Yahoo, IBM and other large sites. 

In this article we use the framework to implement the 
parallel FP-Growth algorithm based on the linked list, 
PLFPG to discover valuable knowledge model from 
large-scale data in a fast and efficient way. 

The remaining of the paper is organized as follows. 
Section II describes the related concepts. The main idea 
of our proposed algorithm is discussed in detail in 
Section III. Section IV illustrates experimental results and 
performance analysis. Finally Section V will give the 
conclusion. 

II.  RELATED CONCEPTS AND DESCRIPTION 

A. Item Sets Space Theory 
Agrawal et al. established the item-sets space theory 

for transactional database mining. The core principle of 
this theory is that the subsets of frequent item-sets are 
frequent item-sets; the superset of non-frequent item-sets 
is non-frequent [6]. This principle, anti-monotone 
property, has been applied as a classic data mining theory. 
In 1994, they proposed Apriori and the Apriori algorithm 
has been still widely discussed as the classic association 
rule mining algorithm. But with further research, its 
shortcomings exposed. For every k cycles, the algorithm 
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has to scan the database once to verify it whether or not 
to join Lk for each element of the candidate set Ck. If a 
frequent itemset contains 15 items, then it needs to scan 
the database 15 times at least. At the same time it will 
cause huge candidate set. That is exponential growth. 
When the number of frequent item sets is large, it will 
produce a huge candidate set. This is a challenge for time 
and memory space. 

In order to improve the efficiency of Apriori algorithm, 
it appears a series of improved algorithms, such as the 
data partitioning method, hash-based method, transaction 
compression method and so on. Although they still 
follow the above theory, due to the introduction of the 
relevant technology, these algorithms improve the 
adaptability and efficiency of Apriori algorithm to some 
extent. 

B. FP-Growth Algorithm 
Apriori is a classic algorithm for mining frequent 

item-sets, which has a very important nature: all 
non-empty subsets of frequent item-sets must are also 
frequent. But it has to scan database multiply before it 
produces frequent patterns and at the same time produces 
a large number of candidate frequent sets. That makes the 
Apriori algorithm have larger time and space complexity. 
Besides, the performance of Apriori algorithm in mining 
long frequent patterns is often low. 

In 2000, Han proposed the FP-Growth algorithm. 
Because it only scans the database twice and does not use 
the candidate set, the algorithm became very well-known 
and efficient. The basic idea is that first sweep the 
transactional database to find frequent 1-item sets, and 
then construct the FP-tree. At last it discovers conditional 
pattern base to mine frequent pattern based on the FP-tree 
[3]. 

Use transaction database data to construct FP-tree  
1) Scan database for the first time, get frequent 1- item 

sets L. 
2) Create the root of the tree with the "root" tag. Scan 

DB for the second time and create a branch for each 
transaction. 

Mining frequent patterns from the FP-tree 
1) For each item, generate its conditional pattern base 

and then its conditional FP-tree; 
2) For each new generated conditional FP-tree, repeat 

this step until the FP-tree is null or it only has unique 
branch; 

The algorithm mining frequent patterns in FP-tree is as 
follows: 

Input: the tectonic good FP-tree; transaction database 
DB; minimum support threshold Minsup. 

Output: the complete set of frequent patterns. 
Method: Call FP-growth (FP-tree, null). 
The core for mining FP-Tree algorithm is the 

FP-growth process. It achieves frequent patterns by the 
way of recursive calls. 

FP-growth algorithm is as follows, 
FP-growth (Tree, a) 
If (Tree contains only a single path P)  

then for each combination of the junction in the path 
P (denoted by b) 

  do 
generating mode bUa, its support = minimum 
support of nodes in b; 

else  
for each ai, in the header table of FP-tree (reverse)  
do begin 

produce a model bi = ai U a, its 
support=ai.support; 

     construct conditional pattern base for b and then 
construct conditional FP-tree for b, Tree b; 
If Tree b ≠ Ø, then call FP-growth (Tree b, b); 

Most of the time is consumed on the FP-tree and 
conditional FP-tree structure and traversal in traditional 
FP-Growth algorithm. When data sets are very large, time 
and space efficiency will become very low, even digging 
failure. PLFPG is a parallel algorithm based on linked list 
in cloud computing environment, which has a good 
solution to the performance bottleneck of traditional 
FP-Growth algorithm. It uses two linked lists to substitute 
conditional FP-trees constructed in each recursive and 
saves time and space. At the same time based on the 
MapReduce programming model for the distribution of 
large data sets to the individual computing nodes, the 
FP-tree constructed in each computing node is not very 
large and so it reduces the requirement for computer 
hardware. 

C. Building a Cloud Platform 
This paper builds a cloud platform to implement the 

parallel FP-Growth algorithm based on the linked list, 
PLFPG. Hadoop is able to take full advantage of the 
power of clusters to compute and store tasks in high 
speed. Hadoop is a software framework which can 
process large amounts of data distributed and is reliable, 
efficient, and scalable. Hadoop assumes that computing 
elements and storage can fail and so it maintains multiple 
working copies of data to ensure the redistribution 
process for the failed node. So it is reliable. Hadoop 
works in parallel and speeds up processing through the 
way of parallel computing. So it is efficient. Hadoop is 
scalable and capable of handling the PB level data [16]. 
Therefore, Hadoop is suitable for the algorithm. 

The structure of Hadoop components is shown in Fig. 
1. In the architecture, Hadoop Common provides a 
generic function blocks to support the Hadoop 
subprojects. MapReduce components provide Map and 
Reduce processing. HDFS complies distributed file 
storage mechanism. ZooKeeper provides basic services 
like distributed lock for building distributed applications 
[5]. The most core designs of Hadoop are HDFS and 
MapReduce computation model [4], HDFS is an 
implementation of Hadoop Distributed File System and 
provides the underlying support for distributed computing 
storage. The idea of MapReudce was first raised by one 
of Google's papers. Simple explanation for MapReduce is 
that task decomposition and a summary of the results. 
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HDFS is a highly fault-tolerant distributed system. 

Distributed File System has the following basic 
characteristics: 

1) a single namespace for the entire cluster 
2) data consistency, suitable for write-once multiple 

read model. The client can not see the existence of the 
file before it is not successfully created. 

3) the file will be divided into multiple folders. Each 
file block is allocated to store the data node. It will have 
to copy the file block to guarantee the security of the data 
according to the configuration. 

HDFS is suitable for deployment in a cheap machine. 
HDFS provides high throughput data access and ideal for 
applications on large-scale data sets. HDFS is a 
master-slave structure system. HDFS clusters are made 
from a NameNode and many DataNodes. Each node is a 
common PC.  

HDFS has three important roles, NameNode, 
DataNode,  Client. 

NameNode can be seen as a manager for the 
distributed file system. It is primarily responsible for 
managing the file system’s namespace, cluster 
configuration and storage block replication. NameNode 
will store Meta-data of the file system in memory. These 
include the file information, the file blocks information 
corresponding to each file and the information of each 
file block in DataNode. 

 DataNode is the basic unit of the file storage. It stores 
Block in the local file system and saves only the 
Meta-data of Block. At the same time it sends reports of 
all existing Blocks periodically to NameNode. 

Client is the application procedure that needs to obtain 
the distributed file system files. 

MapReduce is a programming model for large-scale 
data set (more than 1TB). Its main idea is borrowed from 
the functional programming language as well as vector 
programming language. It greatly facilitates that 
programmers make their own procedures run in the 
distributed system without knowing the parallel 
programming. Fig. 2 shows the approximate data flow 
diagrams of MapReduce. It is a highly efficient 

distributed programming model [12]. It divides 
calculation process into two phases: Map and Reduce. 
The input of each stage is a series of key-value pairs (key 
/ value), and the output of each stage is also a series of 
key-value pairs, as follows: 

Map: (k1, v1) → list (k2, v2), receives the key-values 
(k1, v1), after it processes them, user-written Map outputs 
intermediate key-value pairs (k2, v2). The MapReduce 
system will merge all intermediate values, output  (k2, 
list (v2)), and transmit to the Reduce method according to 
the key-value pairs automatically. 

Reduce: (k2, list (v2)) → list (k3, v3), receives the 
key-value pairs (k2, list (v2)) outputted by Map stage. 
After the user-written Reduce code processes them, these 
values are merged to form a smaller set of values, and 
outputted to HDFS. 

This paper designs appropriate Combiner function for 
PLFPG algorithm on the basis above. Combiner is a very 
important middle function. It reduces the data 
transmission between map and reduce tasks, saving 
bandwidth. 

 

Ⅲ.  MAIN IDEA OF PLFPG ALGORITHM  

Figure 1. Hadoop components structure 

Figure 2. MapReduce approximate data flow diagram 
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 This paper proposes a parallel FP-Growth algorithm 
based on a linked list structure named as PLFPG. It mines 
frequent items based on linked lists. It records the 
conditional FP-tree structure through the establishment of 
linked lists instead of constructing conditional FP-tree in 
each recursive process. That saves time and space. 

It is achieved in parallel with Hadoop computing 
framework [9]. At the same time it considers that tasks 
are rationally assigned. The idea of the algorithm is as 
follows. 

A. Mining Based on Link List 
Traditional FP-Growth algorithm must generate 

conditional FP-tree every recursive mining process [13]. 
When recursion depth is very big, it is unavoidable to 
frequently create sub-FP-tree. This article uses linked 
lists to record the relationship among the conditional  
FP-tree nodes. That greatly saves time and space and 
improves efficiency. Code is as follows: 

typedef struct branchNodeList 
{ 
int nodeNum; 
treeNode* nextTreeNode; 
branchNodeList * nextNode; 
}branchNodeList; 
Wherein nodeNum records the number of the branch 

endpoint item of a subtree (denoted as subTreeA) in 
recursive mining process. endPointTreeNode points to the 
branch endpoint item of subTreeA, nextNode points to 
next branch endpoint item of subTreeA. 

typedef struct nodeList 
{ 
treeNode treeSnode； 
int num; 
} nodeList; 
treeSnode means the endpoint item value of subTreeA, 

num is the total number of the endpoint item. 
As shown in Fig. 3, the article introduces the concept 

of linked list structure mining. In each recursive mining 
process it records the information of the context only 
through the linked list. The time and space efficiency of 
PLFPG has been greatly improved than that of classic 
FP-Growth algorithm [1]. 

 

B. Parallel Implementation 
Traditional FP-Growth algorithm may fail in the 

mining of large data sets, because the algorithm 
calculates the support of various items in massive data 
support and compresses all the records in the database 
into a tree. "Big Data" is the data sets in which there is 
particularly large amount of data and data categories. And 
such data sets can’t be counted, calculated and processed 
with the traditional database tools, because that requires 
the computer's computing and storage performance 
particularly high and the data continues to grow. It is 
unrealistic using the traditional FPG algorithm to handle 
massive amounts of data.  

Hadoop platform solves this problem well. MapReduce 
distributes the operations on large data sets to a master 
node and some sub-node in order to complete it together. 
Then through integration of the intermediate results of 
each node it gets the final result. PLFPG algorithm makes 
full use of various computer resources and reduces the 
requirements of traditional computer configuration. The 
following is the thought of parallel Implementation [8].  

• Distributed Statistics the Number of Items 
Table I shows a simple transaction database example. 

It is divided into a continuous several parts by 
InputFormat. Each part is a data slice. The data slice is 
stored in each computer node and then each node 
performs MapReduce statistical functions to get the 
number of each item to store in the F-List. As is shown in 
Fig. 4, we discuss that existing data sets are allocated 
evenly to three Mapper in the example. The task of each 
Mapper is responsible for adding up the number of 
individual items in the Mapper data slice. Combiner 
intermediate function merges the intermediate results 
outputted by each Mapper in order to reduce the 
transmission of data between map tasks and reduce tasks. 
Then after the MapReduce framework handles it, finally 
the output data is sent to the reduce function to get the 
final result. Count the number of each item in the 
database and store items whose support is greater than or 
equal to the minimum support in F-List (the support of 
thesis instance is 3), F-List = {I3: 7, I1: 6, I2: 6, I5: 4, I4: 
3}, F-List memories the maximum frequent item sets.  

A Combiner intermediate function is mentioned here. 
The available bandwidth of clusters limits the number of 
MapReduce jobs, so the most important thing is to try to 
avoid the transmission of data between map tasks and 
reduce tasks. Hadoop allows users to specify a merge 
function Combiner for output of map tasks. Its output is 
the input of reduce. Merge function is an optimization 
program. No matter how many times Combiner function 
is called when the program is running, the final output is 
consistent with each other [7]. 

Figure 3. Linked list structure mining 
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The pseudo-code is as follows: 
Procedure: Mapper(key, value=Ti ) 
foreach item ai in Ti do 
Call Output(<ai,’1’>); 
end 
 
Procedure: Combiner(key,value=Output(<ai,’1’>) of 

each mapper) 
C ←0; 
foreach item ‘1’ in ai do 
C← C+1; 
Call Output(<ai,C>); 
end 
 
Procedure: Reducer(key=ai , value=S(ai)) 
D← 0; 
foreach item ‘C’ in Ti do 
D ← D+C; 
end 
Call Output(<ai,D>); 

 

The transaction database is sorted in accordance with 
the frequency size of items. The results are shown in 
Table Ⅱ. 

 
• Weighing the Allocation of Tasks 

After getting the support of each item, we construct 
distributed FPtree to mine frequent itemsets. 
Inappropriate task allocation in a distributed environment 
will reduce the utilization of resources, seriously affect 
the efficiency of program execution [10] [11]. If the task 
is assigned unreasonably, it will cause the following: the 
execution time of the computer A is T, in a wait state 
because the task is finished; the execution time of the 
computer B is 10T. Due to in the distributed environment, 
it doesn’t complete the final overall computing until it 
integrates the various results after all compute nodes 
finish the calculation. The execution time of the entire 
task is 10T. It takes the maximum running time reducing 
the program's execution speed. If we want to speed up the 
overall computing speed, we need allocate tasks 
reasonably. Therefore, parallelizing FP-Growth algorithm 
and weighing the task split to construct distributed 
FP-Tree are very important issues to be considered. 

The steps of the allocation of tasks are as follows: 
1) In the process of executing it, the FP-Growth 

algorithm has sorted individual transaction records in 
accordance with the frequent item sets F-List and counted 
the end of the records sorted to build follow-up FP-Tree. 
In the data set in Table Ⅱ, the first record is {I1, I3, I5}. 
After it is sorted, it becomes {I3, I1, I5}. The number of 
i5 adds 1 (initially 0), and so, the result of the complete 
data set is expressed as LE-List = {I1: 1, I2: 2, I4: 3, I5: 
3}. 

2) LE-List is a superset of FP-Tree leaf nodes. We 
distribute leaf nodes equally. Then records containing the 
leaf nodes are assigned to the group reducer to build the 
FP-Tree. For example, for the data set in Table Ⅱ, We 
can assign them  into three tasks to build three sub 
FP-Tree according to LE-List. I1 and I2 are in a group, I4 
a group, I5 a group [2]. Three FP-Tree are shown in Fig. 
5. At last we get frequent item sets after finishing 
FP-growth algorithm based on a linked list mining in 
each computer node through MapReduce computation 
model. 

TABLE I.  

TRANSACTION DATABASE. 

TID Transaction TID Transaction 

1 I1 I3 I5 6 I1 I2 I5 

2 I1 I2 I3 7 I1 I2 I3 

3 I3 I5 8 I1 I3 

4 I2 I3 I4 9 I1 I2 I3 I4 I5 

5 I2 I4 

 

   
Figure 4. Distributed statistics the number of projects 

TABLE Ⅱ.  

SORT TRANSACTION DATABASE 

TID Transaction TID Transaction 

1 I3 I1 I5 6 I1 I2 I5 

2 I3 I1 I2 7 I3 I1 I2 

3 I3 I5 8 I3 I1 

4 I3 I2 I4 9 I3 I1 I2 I5 I4 

5 I2 I4 
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• Integration 

Integrate the frequent pattern of the previous step and 
the output form is <itemi, Frequent pattern set i>. 
Frequent pattern set i is the collection of all frequent 
patterns containing this item i. It arranged in descending 
order according to the support. 

IV.  RESULTS ANALYSIS 

A. Experimental Environment   
All experiments of this article were run on the Hadoop 

platform built in the laboratory. The platform consists of 
4 machines, the hardware configuration of these 4 
machines are identical , they all have quad-core Intel 
Corei5 processor, 16G memory. Each node is running 
Ubuntu Linux operating system. The Hadoop version is 
0.20.2, java version is 1.6.25, and between each machine 
was connected through a switch with a Gigabit Ethernet 
card.  

B. Experimental Data And Results 
The experimental data is the network log request on 

the server. In order to test the performance of the 
algorithm, the experiments used data containing 100000, 
1000000, 2000000 records to test. Transaction records 
consist of gender, game one, game two, ... , game k, the 
maximum length of which is 15. To obtain the 
relationship between gender and  games. After running 
and experimental calculations, the following results were 
shown in Table Ⅲ and Fig. 6. In Fig. 6, the abscissa is 
for the amount of data and the ordinate is for the running 
time, Seen intuitively from Fig. 6, the running efficiency 

of the PLFPG algorithm, based on the linked list parallel 
FPG algorithm with MapReduce, in dealing with massive 
data sets,  is much higher than that of the traditional 
FP-Growth algorithm.  

 
Before the advent of the huge amounts of data, 

traditional data mining algorithms can be a good solution 
to the problem and discover knowledge. But in the face of 
the massive data, traditional algorithms do not have good 
scalability and extensibility and can’t discover useful 
knowledge from the huge data quickly and accurately. In 
Fig. 7, abscissa is for the number of nodes, vertical axis is 
for the running time and the legend is for the amount of 
data. It can be seen from Fig. 7, with the increase in the 
cluster nodes, the efficiency of this algorithm is also 
increased. This also verified PLFPG algorithm has good 
scalability and extensibility and can be effectively used 
for the analysis of large-scale data mining. 

 

Figure5. Balanced to create a FP-Tree 

TABLE Ⅲ.  

THE OPERATION RESULT OF THE ALGORITHM 

model\the number of 

data 
100000 1000000 2000000 

traditional FP-Growth 108421ms 486574ms 1002430ms

4 machines running 

PLFPG 
40152ms 121560ms 210373ms

2 machines running 

PLFPG 
50305ms 198778ms 427574ms

 

Figure 6. Comparison of running time of algorithm 

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 681

© 2014 ACADEMY PUBLISHER



 
The speedup is the ratio of the running time consumed 

by the same task in a single-processor system and the 
parallel processor system. It is used to measure the 
performance and effectiveness of the parallel system or 
program parallelization. Fig. 8 shows the speedup of 
PLFPG algorithm. It can be seen from the figure, there is 
a clear acceleration of the algorithm. So it proves the 
efficiency of the distributed algorithm, PLFPG. 

 

V.  CONCLUSION 

For poor computing power, scalability defects of 
traditional data mining algorithms in dealing with huge 
amounts of data, the paper presents a parallel FPG 
algorithm based on the linked list structure running in 
MapReduce programming model, named as PLFPG. This 
algorithm improves the shortcomings of the traditional 
FP-Growth algorithm. First, it describes item-sets space 

theory, the basic idea of FP-Growth algorithm and the 
basic components of the Hadoop platform, including 
HDFS framework and MapReduce programming model. 
Then, it describes the PLFPG algorithm design ideas. 
Finally, the algorithm was validated by varying the size 
of the data set. The results show that the PLFPG 
algorithm compared with the traditional FP-Growth 
algorithm has a higher operating efficiency and better 
scalability and extensibility. It can effectively analysis 
and deal with large data sets. 
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