
Research of the FP-Growth Algorithm Based on
Cloud Environments

Lijuan Zhou

Information Engineering College, Capital Normal University, Beijing, China
Email: zlj87@139.com

Xiang Wang

Information Engineering College, Capital Normal University, Beijing, China
Email: wx3710831988@126.com

Abstract—The emergence of cloud computing solves the
problems that traditional data mining algorithms encounter
when dealing with large data. This paper studies the
FP-Growth algorithm and proposes a parallel linked
list-based FPG algorithm based on MapReduce
programming model, named as the PLFPG algorithm. And
then it describes the main idea of algorithm. Finally, by
using different data sets to test the algorithm, the
experimental result shows that PLFPG algorithm has higher
efficiency and better flexibility and scalability.

Index Terms—Cloud computing, FP-Growth, MapReduce,
Data mining

I. INTRODUCTION

Association rules are one of the most active research
methods in data mining. Association rules mining is to
find strong association rules. That can be divided into two
sub-problems, discovering frequent item-sets and
generating association rules. The salient features of data
mining technology are that it discovers implicit and
useful knowledge from huge, complex and high-latitude
data sets. This puts special challenges on association rules
techniques.

In 1994, Agrawal proposed the famous Apriori
algorithm, but there are two drawbacks in it. First,
because it repeatedly scans the transaction database, it
needs a lot of I/O load; Second, it will cause huge
candidate set. FP-Growth is a good solution to the above
two problems. The biggest advantage of the FP-Growth
algorithm is that it only scans database twice. It directly
compresses the database into a frequent pattern tree
instead of using a candidate set and finally generates
association rules through FP-tree.

 However, FP-tree and conditional FP-tree structure
and traversal consume most of the time in the FP-Growth
algorithm. There are two problems. First, for each
recursive digging, the algorithm must generate a new
conditional FP-tree. That affects the efficiency of the
algorithm's time and space. This article mines recursively
based on the form of a linked list instead of conditional
FP-tree. It greatly saves time and space and improves

efficiency by the way that linked lists record the
relationship among the conditional FP-tree nodes.

 Second, in the era of data explosion today, the data
sets are very large and the FP-tree has a lot of long
branches, the traditional algorithm needs to construct a
huge FP-tree. In this situation it has defects, such as a
small amount of processing within unit time, the long
processing time and so on. It is difficult to achieve the
desired effect. For this problem, combining association
rule analysis and cloud computing to design efficient
parallel algorithms has become an inevitable trend.

 Hadoop is a distributed computing framework
developed by the Apache Foundation. Users can develop
distributed programs in the case of not understanding the
distributed underlying details [14][15]. The framework
makes development and parallel processing of large-scale
data easier. Meanwhile it is high reliable, scalable,
efficient and tolerant. It has been applied in Amazon,
Facebook, Yahoo, IBM and other large sites.

In this article we use the framework to implement the
parallel FP-Growth algorithm based on the linked list,
PLFPG to discover valuable knowledge model from
large-scale data in a fast and efficient way.

The remaining of the paper is organized as follows.
Section II describes the related concepts. The main idea
of our proposed algorithm is discussed in detail in
Section III. Section IV illustrates experimental results and
performance analysis. Finally Section V will give the
conclusion.

II. RELATED CONCEPTS AND DESCRIPTION

A. Item Sets Space Theory
Agrawal et al. established the item-sets space theory

for transactional database mining. The core principle of
this theory is that the subsets of frequent item-sets are
frequent item-sets; the superset of non-frequent item-sets
is non-frequent [6]. This principle, anti-monotone
property, has been applied as a classic data mining theory.
In 1994, they proposed Apriori and the Apriori algorithm
has been still widely discussed as the classic association
rule mining algorithm. But with further research, its
shortcomings exposed. For every k cycles, the algorithm

676 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.3.676-683

has to scan the database once to verify it whether or not
to join Lk for each element of the candidate set Ck. If a
frequent itemset contains 15 items, then it needs to scan
the database 15 times at least. At the same time it will
cause huge candidate set. That is exponential growth.
When the number of frequent item sets is large, it will
produce a huge candidate set. This is a challenge for time
and memory space.

In order to improve the efficiency of Apriori algorithm,
it appears a series of improved algorithms, such as the
data partitioning method, hash-based method, transaction
compression method and so on. Although they still
follow the above theory, due to the introduction of the
relevant technology, these algorithms improve the
adaptability and efficiency of Apriori algorithm to some
extent.

B. FP-Growth Algorithm
Apriori is a classic algorithm for mining frequent

item-sets, which has a very important nature: all
non-empty subsets of frequent item-sets must are also
frequent. But it has to scan database multiply before it
produces frequent patterns and at the same time produces
a large number of candidate frequent sets. That makes the
Apriori algorithm have larger time and space complexity.
Besides, the performance of Apriori algorithm in mining
long frequent patterns is often low.

In 2000, Han proposed the FP-Growth algorithm.
Because it only scans the database twice and does not use
the candidate set, the algorithm became very well-known
and efficient. The basic idea is that first sweep the
transactional database to find frequent 1-item sets, and
then construct the FP-tree. At last it discovers conditional
pattern base to mine frequent pattern based on the FP-tree
[3].

Use transaction database data to construct FP-tree
1) Scan database for the first time, get frequent 1- item

sets L.
2) Create the root of the tree with the "root" tag. Scan

DB for the second time and create a branch for each
transaction.

Mining frequent patterns from the FP-tree
1) For each item, generate its conditional pattern base

and then its conditional FP-tree;
2) For each new generated conditional FP-tree, repeat

this step until the FP-tree is null or it only has unique
branch;

The algorithm mining frequent patterns in FP-tree is as
follows:

Input: the tectonic good FP-tree; transaction database
DB; minimum support threshold Minsup.

Output: the complete set of frequent patterns.
Method: Call FP-growth (FP-tree, null).
The core for mining FP-Tree algorithm is the

FP-growth process. It achieves frequent patterns by the
way of recursive calls.

FP-growth algorithm is as follows,
FP-growth (Tree, a)
If (Tree contains only a single path P)

then for each combination of the junction in the path
P (denoted by b)

 do
generating mode bUa, its support = minimum
support of nodes in b;

else
for each ai, in the header table of FP-tree (reverse)
do begin

produce a model bi = ai U a, its
support=ai.support;

 construct conditional pattern base for b and then
construct conditional FP-tree for b, Tree b;
If Tree b ≠ Ø, then call FP-growth (Tree b, b);

Most of the time is consumed on the FP-tree and
conditional FP-tree structure and traversal in traditional
FP-Growth algorithm. When data sets are very large, time
and space efficiency will become very low, even digging
failure. PLFPG is a parallel algorithm based on linked list
in cloud computing environment, which has a good
solution to the performance bottleneck of traditional
FP-Growth algorithm. It uses two linked lists to substitute
conditional FP-trees constructed in each recursive and
saves time and space. At the same time based on the
MapReduce programming model for the distribution of
large data sets to the individual computing nodes, the
FP-tree constructed in each computing node is not very
large and so it reduces the requirement for computer
hardware.

C. Building a Cloud Platform
This paper builds a cloud platform to implement the

parallel FP-Growth algorithm based on the linked list,
PLFPG. Hadoop is able to take full advantage of the
power of clusters to compute and store tasks in high
speed. Hadoop is a software framework which can
process large amounts of data distributed and is reliable,
efficient, and scalable. Hadoop assumes that computing
elements and storage can fail and so it maintains multiple
working copies of data to ensure the redistribution
process for the failed node. So it is reliable. Hadoop
works in parallel and speeds up processing through the
way of parallel computing. So it is efficient. Hadoop is
scalable and capable of handling the PB level data [16].
Therefore, Hadoop is suitable for the algorithm.

The structure of Hadoop components is shown in Fig.
1. In the architecture, Hadoop Common provides a
generic function blocks to support the Hadoop
subprojects. MapReduce components provide Map and
Reduce processing. HDFS complies distributed file
storage mechanism. ZooKeeper provides basic services
like distributed lock for building distributed applications
[5]. The most core designs of Hadoop are HDFS and
MapReduce computation model [4], HDFS is an
implementation of Hadoop Distributed File System and
provides the underlying support for distributed computing
storage. The idea of MapReudce was first raised by one
of Google's papers. Simple explanation for MapReduce is
that task decomposition and a summary of the results.

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 677

© 2014 ACADEMY PUBLISHER

HDFS is a highly fault-tolerant distributed system.

Distributed File System has the following basic
characteristics:

1) a single namespace for the entire cluster
2) data consistency, suitable for write-once multiple

read model. The client can not see the existence of the
file before it is not successfully created.

3) the file will be divided into multiple folders. Each
file block is allocated to store the data node. It will have
to copy the file block to guarantee the security of the data
according to the configuration.

HDFS is suitable for deployment in a cheap machine.
HDFS provides high throughput data access and ideal for
applications on large-scale data sets. HDFS is a
master-slave structure system. HDFS clusters are made
from a NameNode and many DataNodes. Each node is a
common PC.

HDFS has three important roles, NameNode,
DataNode, Client.

NameNode can be seen as a manager for the
distributed file system. It is primarily responsible for
managing the file system’s namespace, cluster
configuration and storage block replication. NameNode
will store Meta-data of the file system in memory. These
include the file information, the file blocks information
corresponding to each file and the information of each
file block in DataNode.

 DataNode is the basic unit of the file storage. It stores
Block in the local file system and saves only the
Meta-data of Block. At the same time it sends reports of
all existing Blocks periodically to NameNode.

Client is the application procedure that needs to obtain
the distributed file system files.

MapReduce is a programming model for large-scale
data set (more than 1TB). Its main idea is borrowed from
the functional programming language as well as vector
programming language. It greatly facilitates that
programmers make their own procedures run in the
distributed system without knowing the parallel
programming. Fig. 2 shows the approximate data flow
diagrams of MapReduce. It is a highly efficient

distributed programming model [12]. It divides
calculation process into two phases: Map and Reduce.
The input of each stage is a series of key-value pairs (key
/ value), and the output of each stage is also a series of
key-value pairs, as follows:

Map: (k1, v1) → list (k2, v2), receives the key-values
(k1, v1), after it processes them, user-written Map outputs
intermediate key-value pairs (k2, v2). The MapReduce
system will merge all intermediate values, output (k2,
list (v2)), and transmit to the Reduce method according to
the key-value pairs automatically.

Reduce: (k2, list (v2)) → list (k3, v3), receives the
key-value pairs (k2, list (v2)) outputted by Map stage.
After the user-written Reduce code processes them, these
values are merged to form a smaller set of values, and
outputted to HDFS.

This paper designs appropriate Combiner function for
PLFPG algorithm on the basis above. Combiner is a very
important middle function. It reduces the data
transmission between map and reduce tasks, saving
bandwidth.

Ⅲ. MAIN IDEA OF PLFPG ALGORITHM

Figure 1. Hadoop components structure

Figure 2. MapReduce approximate data flow diagram

678 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

 This paper proposes a parallel FP-Growth algorithm
based on a linked list structure named as PLFPG. It mines
frequent items based on linked lists. It records the
conditional FP-tree structure through the establishment of
linked lists instead of constructing conditional FP-tree in
each recursive process. That saves time and space.

It is achieved in parallel with Hadoop computing
framework [9]. At the same time it considers that tasks
are rationally assigned. The idea of the algorithm is as
follows.

A. Mining Based on Link List
Traditional FP-Growth algorithm must generate

conditional FP-tree every recursive mining process [13].
When recursion depth is very big, it is unavoidable to
frequently create sub-FP-tree. This article uses linked
lists to record the relationship among the conditional
FP-tree nodes. That greatly saves time and space and
improves efficiency. Code is as follows:

typedef struct branchNodeList
{
int nodeNum;
treeNode* nextTreeNode;
branchNodeList * nextNode;
}branchNodeList;
Wherein nodeNum records the number of the branch

endpoint item of a subtree (denoted as subTreeA) in
recursive mining process. endPointTreeNode points to the
branch endpoint item of subTreeA, nextNode points to
next branch endpoint item of subTreeA.

typedef struct nodeList
{
treeNode treeSnode；
int num;
} nodeList;
treeSnode means the endpoint item value of subTreeA,

num is the total number of the endpoint item.
As shown in Fig. 3, the article introduces the concept

of linked list structure mining. In each recursive mining
process it records the information of the context only
through the linked list. The time and space efficiency of
PLFPG has been greatly improved than that of classic
FP-Growth algorithm [1].

B. Parallel Implementation
Traditional FP-Growth algorithm may fail in the

mining of large data sets, because the algorithm
calculates the support of various items in massive data
support and compresses all the records in the database
into a tree. "Big Data" is the data sets in which there is
particularly large amount of data and data categories. And
such data sets can’t be counted, calculated and processed
with the traditional database tools, because that requires
the computer's computing and storage performance
particularly high and the data continues to grow. It is
unrealistic using the traditional FPG algorithm to handle
massive amounts of data.

Hadoop platform solves this problem well. MapReduce
distributes the operations on large data sets to a master
node and some sub-node in order to complete it together.
Then through integration of the intermediate results of
each node it gets the final result. PLFPG algorithm makes
full use of various computer resources and reduces the
requirements of traditional computer configuration. The
following is the thought of parallel Implementation [8].

• Distributed Statistics the Number of Items
Table I shows a simple transaction database example.

It is divided into a continuous several parts by
InputFormat. Each part is a data slice. The data slice is
stored in each computer node and then each node
performs MapReduce statistical functions to get the
number of each item to store in the F-List. As is shown in
Fig. 4, we discuss that existing data sets are allocated
evenly to three Mapper in the example. The task of each
Mapper is responsible for adding up the number of
individual items in the Mapper data slice. Combiner
intermediate function merges the intermediate results
outputted by each Mapper in order to reduce the
transmission of data between map tasks and reduce tasks.
Then after the MapReduce framework handles it, finally
the output data is sent to the reduce function to get the
final result. Count the number of each item in the
database and store items whose support is greater than or
equal to the minimum support in F-List (the support of
thesis instance is 3), F-List = {I3: 7, I1: 6, I2: 6, I5: 4, I4:
3}, F-List memories the maximum frequent item sets.

A Combiner intermediate function is mentioned here.
The available bandwidth of clusters limits the number of
MapReduce jobs, so the most important thing is to try to
avoid the transmission of data between map tasks and
reduce tasks. Hadoop allows users to specify a merge
function Combiner for output of map tasks. Its output is
the input of reduce. Merge function is an optimization
program. No matter how many times Combiner function
is called when the program is running, the final output is
consistent with each other [7].

Figure 3. Linked list structure mining

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 679

© 2014 ACADEMY PUBLISHER

The pseudo-code is as follows:
Procedure: Mapper(key, value=Ti)
foreach item ai in Ti do
Call Output(<ai,’1’>);
end

Procedure: Combiner(key,value=Output(<ai,’1’>) of

each mapper)
C ←0;
foreach item ‘1’ in ai do
C← C+1;
Call Output(<ai,C>);
end

Procedure: Reducer(key=ai , value=S(ai))
D← 0;
foreach item ‘C’ in Ti do
D ← D+C;
end
Call Output(<ai,D>);

The transaction database is sorted in accordance with
the frequency size of items. The results are shown in
Table Ⅱ.

• Weighing the Allocation of Tasks

After getting the support of each item, we construct
distributed FPtree to mine frequent itemsets.
Inappropriate task allocation in a distributed environment
will reduce the utilization of resources, seriously affect
the efficiency of program execution [10] [11]. If the task
is assigned unreasonably, it will cause the following: the
execution time of the computer A is T, in a wait state
because the task is finished; the execution time of the
computer B is 10T. Due to in the distributed environment,
it doesn’t complete the final overall computing until it
integrates the various results after all compute nodes
finish the calculation. The execution time of the entire
task is 10T. It takes the maximum running time reducing
the program's execution speed. If we want to speed up the
overall computing speed, we need allocate tasks
reasonably. Therefore, parallelizing FP-Growth algorithm
and weighing the task split to construct distributed
FP-Tree are very important issues to be considered.

The steps of the allocation of tasks are as follows:
1) In the process of executing it, the FP-Growth

algorithm has sorted individual transaction records in
accordance with the frequent item sets F-List and counted
the end of the records sorted to build follow-up FP-Tree.
In the data set in Table Ⅱ, the first record is {I1, I3, I5}.
After it is sorted, it becomes {I3, I1, I5}. The number of
i5 adds 1 (initially 0), and so, the result of the complete
data set is expressed as LE-List = {I1: 1, I2: 2, I4: 3, I5:
3}.

2) LE-List is a superset of FP-Tree leaf nodes. We
distribute leaf nodes equally. Then records containing the
leaf nodes are assigned to the group reducer to build the
FP-Tree. For example, for the data set in Table Ⅱ, We
can assign them into three tasks to build three sub
FP-Tree according to LE-List. I1 and I2 are in a group, I4
a group, I5 a group [2]. Three FP-Tree are shown in Fig.
5. At last we get frequent item sets after finishing
FP-growth algorithm based on a linked list mining in
each computer node through MapReduce computation
model.

TABLE I.

TRANSACTION DATABASE.

TID Transaction TID Transaction

1 I1 I3 I5 6 I1 I2 I5

2 I1 I2 I3 7 I1 I2 I3

3 I3 I5 8 I1 I3

4 I2 I3 I4 9 I1 I2 I3 I4 I5

5 I2 I4

Figure 4. Distributed statistics the number of projects

TABLE Ⅱ.

SORT TRANSACTION DATABASE

TID Transaction TID Transaction

1 I3 I1 I5 6 I1 I2 I5

2 I3 I1 I2 7 I3 I1 I2

3 I3 I5 8 I3 I1

4 I3 I2 I4 9 I3 I1 I2 I5 I4

5 I2 I4

680 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

• Integration

Integrate the frequent pattern of the previous step and
the output form is <itemi, Frequent pattern set i>.
Frequent pattern set i is the collection of all frequent
patterns containing this item i. It arranged in descending
order according to the support.

IV. RESULTS ANALYSIS

A. Experimental Environment
All experiments of this article were run on the Hadoop

platform built in the laboratory. The platform consists of
4 machines, the hardware configuration of these 4
machines are identical , they all have quad-core Intel
Corei5 processor, 16G memory. Each node is running
Ubuntu Linux operating system. The Hadoop version is
0.20.2, java version is 1.6.25, and between each machine
was connected through a switch with a Gigabit Ethernet
card.

B. Experimental Data And Results
The experimental data is the network log request on

the server. In order to test the performance of the
algorithm, the experiments used data containing 100000,
1000000, 2000000 records to test. Transaction records
consist of gender, game one, game two, ... , game k, the
maximum length of which is 15. To obtain the
relationship between gender and games. After running
and experimental calculations, the following results were
shown in Table Ⅲ and Fig. 6. In Fig. 6, the abscissa is
for the amount of data and the ordinate is for the running
time, Seen intuitively from Fig. 6, the running efficiency

of the PLFPG algorithm, based on the linked list parallel
FPG algorithm with MapReduce, in dealing with massive
data sets, is much higher than that of the traditional
FP-Growth algorithm.

Before the advent of the huge amounts of data,

traditional data mining algorithms can be a good solution
to the problem and discover knowledge. But in the face of
the massive data, traditional algorithms do not have good
scalability and extensibility and can’t discover useful
knowledge from the huge data quickly and accurately. In
Fig. 7, abscissa is for the number of nodes, vertical axis is
for the running time and the legend is for the amount of
data. It can be seen from Fig. 7, with the increase in the
cluster nodes, the efficiency of this algorithm is also
increased. This also verified PLFPG algorithm has good
scalability and extensibility and can be effectively used
for the analysis of large-scale data mining.

Figure5. Balanced to create a FP-Tree

TABLE Ⅲ.

THE OPERATION RESULT OF THE ALGORITHM

model\the number of

data
100000 1000000 2000000

traditional FP-Growth 108421ms 486574ms 1002430ms

4 machines running

PLFPG
40152ms 121560ms 210373ms

2 machines running

PLFPG
50305ms 198778ms 427574ms

Figure 6. Comparison of running time of algorithm

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 681

© 2014 ACADEMY PUBLISHER

The speedup is the ratio of the running time consumed

by the same task in a single-processor system and the
parallel processor system. It is used to measure the
performance and effectiveness of the parallel system or
program parallelization. Fig. 8 shows the speedup of
PLFPG algorithm. It can be seen from the figure, there is
a clear acceleration of the algorithm. So it proves the
efficiency of the distributed algorithm, PLFPG.

V. CONCLUSION

For poor computing power, scalability defects of
traditional data mining algorithms in dealing with huge
amounts of data, the paper presents a parallel FPG
algorithm based on the linked list structure running in
MapReduce programming model, named as PLFPG. This
algorithm improves the shortcomings of the traditional
FP-Growth algorithm. First, it describes item-sets space

theory, the basic idea of FP-Growth algorithm and the
basic components of the Hadoop platform, including
HDFS framework and MapReduce programming model.
Then, it describes the PLFPG algorithm design ideas.
Finally, the algorithm was validated by varying the size
of the data set. The results show that the PLFPG
algorithm compared with the traditional FP-Growth
algorithm has a higher operating efficiency and better
scalability and extensibility. It can effectively analysis
and deal with large data sets.

ACKNOWLEDGEMENT

This research was supported by China National Key
Technology R&D Program (2012BAH20B03),
(2013BAH19F01). National Nature Science Foundation
(31101078), Beijing Nature Science Foundation
(4122016), "The computer application technology"
Beijing municipal key construction of the discipline,
Beijing Engineering Research Center, and Beijing
Educational Committee science and technology
development plan project (KM201110028018).

REFERENCES

[1] Ming Fan, Chuan Li, “Mining Frequent Patterns in FP-tree
without Conditional FP-tree”, Computer Research and
Development, Vol. 40, No. 8, 2003.

[2] Peng Zhao, “Research Mining Frequent Items Algorithm
in Massive High-dimensional Data Sets”, Computer
Applications and Software, 2012.

[3] J. Han and M. Kamber, “Data Mining: Concepts and
Techniques”, Morgan Kaufmann, 2000.

[4] Liu Peng, “Cloud computing (second edition)”, Beijing:
Electronic Industry Press,2011:189-219.

[5] Shulan Zhao, “typical Hadoop cloud computing”,
Electronic Industry Press, Beijing, 2013.

[6] Guojun Mao, Lijuan Duan, Shi Wang, Yun Shi, “data
mining principles and algorithms (the second edition)”,
Tsinghua University Press, Beijing, 2007.

[7] Tom White, “Hadoop: The Definitive Guide, Second
Editon”, Tsinghua University Press, 2011.

[8] Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, Edward
Chang, “Pfp: Parallel Fp-Growth for Query
Recommendation”, RecSys '08 Proceedings of the 2008
ACM conference on Recommender systems, Pages
107-114 ACM New York, NY, USA ©2008.

[9] Lamine M. Aouad, Nhien-An Le-Khac, TaharM.Kechadi,
“Distributed Frequent Item-sets Mining in Heterogeneous
Platforms”, Engineering, Computing and Archtecture,
Volume 1, 2007.

[10] Le Zhou, Zhiyong Zhong, Jin Chang, Junjie Li, Huang,
J.Z., Shengzhong Feng, “Balanced parallel FP-Growth
with MapReduce”, Information Computing and
Telecommunications (YC-ICT), 2010 IEEE Youth
Conference on, Page(s): 243 -246 ,2010.

[11] Yang Liu, Maozhen Li, Alham, N.K., Hammoud, S. ,
Ponraj, M. “Load balancing in MapReduce environments
for data intensive applications”, Fuzzy Systems and
Knowledge Discovery (FSKD), 2011 Eighth International
Conference on,Page(s): 2675 - 2678 ,2011.

[12] Jeffrey Dean, Sanjay Ghemawat, “MapReduce: simplified
data processing on large clusters”, Communications of
the ACM - 50th anniversary, Volume 51 Issue 1, Pages
107-113,2008.

Figure 7. Comparison of running time of algorithm

Figure 8. speed up

682 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

[13] B.Santhosh Kumar, K.V.Rukmani, “Implementation of
Web Usage Mining Using APRIORI and FP Growth
Algorithms”, Int. J. of Advanced Networking and
Applications,Volume:01, Issue:06, Pages: 400-404 (2010).

[14] Ghalem Belalem, Samah Bouamama, Larbi Sekhri, “An
Effective Economic Management of Resources in Cloud
Computing”, Journal of Computers, Vol. 6, No. 3, March
2011.

[15] Jason C. Hung, Hsing-I Wang, “ Foreword of Special Issue
on “E-Service and Applications”, Journal of Computers,
Vol. 6, No. 3, March 2011.

[16] Jiehui Ju, Jiyi Wu, Jianqing Fu, Zhijie Lin, Jianlin Zhang,
“A Survey on Cloud Storage”, Journal of Computers, Vol.
6, No. 8, August 2011.

Lijuan Zhou received the BE degree in
Computer Application Technology from
the Heilongjiang University in 1991, the
ME degree in Computer Application
Technology from the Harbin University
of Science And Technology in 1998 and
the PhD degree in Computer Application
Technology from the Harbin
Engineering University in 2004.

She is a professor of database system
and data mining at the Capital Normal University. She has
conducted research in the areas of database systems, data
mining, data warehousing, Web mining, object-oriented
database systems, and artificial intelligence, with more than 30
journal or conference publications. Her primary research
interests are in OLAP, data mining, and data warehouse.

Xiang Wang received the Bachelor of Engineering degree in
Department of Computer Science from North China Institute of
Aerospace Engineering in 2010 and he is currently studying for
a master's degree at the Capital Normal University. His mentor
is Professor Lijuan Zhou and his main research fields are data
mining and cloud computing.

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 683

© 2014 ACADEMY PUBLISHER

