

A Fast Kd-tree Construction for Ray Tracing
based on Efficient Ray Distribution

Xiao Liang1,2

1College of Computer Science, Sichuan University, Chengdu, China
2College of Computer Science, Southwest Petroleum University, Chengdu, China

Email: xiaoliang.edu@gmail.com

Hongyu Yang1,2 and Yinling Qian1,2 and Yanci Zhang*1,2
1College of Computer Science, Sichuan University, Chengdu, China

2National Key Laboratory of Fundamental Science on Synthetic Vision, Chengdu, China
Email: yanghongyu@scu.edu.cn, arthurqian@foxmail.com, yczhang@scu.edu.cn,

Abstract—Construction of effective acceleration structure is
an essential and challenging problem in ray tracing. The
surface area heuristic (SAH), regarded as the standard cost
function for construction, is based on the assumption that
rays are uniformly distributed. This simplification ignoring
actual ray distribution results in a reduction both on
construction and rendering performance. Unlike previous
methods, we exploit ray distribution during construction in
two steps. First, we propose an improved cost metric for
constructing an efficient kd-tree by exploiting the visible
primitives to approximate the ray distribution. Then, we
device a stream based partial construction to prune the
invisible primitives from building as early as possible, and
improve memory access coherence. We also introduce a
termination criterion for two-levels hierarchical
construction to balance the construction time and memory
consumption. Our experiments demonstrate that the
algorithm can produce a kd-tree more efficient than the
standard SAH, and a significant reduction on construction
time and memory consumption.

Index Terms—ray tracing, the SAH, ray distribution, kd-
tree, partial construction

I. INTRODUCTION

Ray tracing has long been an important method for
realistic rendering using global illumination simulation,
but was limited to static scenes due to its enormous
computational demand. Visibility computation is the
primary bottleneck in ray tracing, which determines the
surface in scenes visible from eyes and light sources.
Since ray tracing requires global access to the entire
scene, it is challenging to design an optimized
acceleration structure to make visibility queries more
efficient.

The kd-tree is a well-known space partitioning data
structure for ray tracing. Traditionally, the surface area
heuristics (SAH) [2] is considered as the standard
criterion. It computes expected traversal cost for ray
tracing and minimizes the cost by selecting the optimal
splitting plane. The SAH cost function is built on the
assumption that rays are uniformly distributed, infinite

lines in space. The simplification ignoring the actual ray
distribution entirely, an important characteristic of scenes
[10], would bring two problems. First, computation of
traversal cost without considering the ray distribution
tends to reduce the accuracy of estimation. Second, the
SAH constructs an acceleration structure for the whole
scene. However, for most scenes, especially complex or
high-occluded scenes, only part of scene contribute to the
result image. Although completed construction is trivial
for small-scale scenes, when the count of primitives
grows up to more than 100K, the construction takes over
too much time in each frame, which prevents ray tracing
from interactive and dynamic scenes.

In this paper, unlike the conventional SAH methods,
we present a kd-tree building algorithm by making use of
the actual ray distribution during all the construction.
First, we introduce a new cost metric, which achieves
higher rendering performance than conventional SAH
computation by exploiting the distribution of visible
primitives to approximate the distribution of rays. Then,
we use a stream based partial construction to prune the
invisible primitives from building. Moreover, we also
provide a termination criterion for two-level hierarchical
construction to balance the construction time and memory
consumption.

II. RELATED WORK

The well-optimized SAH [1] computes the traversal
cost at the maximum and minimum projection boundary
for each primitive, and selects the slitting plane with the
least cost. This construction produces a high quality kd-
tree, but cannot be applied in interactive scenes for ray
tracing due to expensive computation, even for moderate
scenes. Wald et al. [3] provided an)log(nn algorithm
that sorted the bounding box extents of primitives in three
coordinate axes only once, and preserved and reused the
sorted list during construction. However, the algorithm
still spend much time in large scenes.

Some fast algorithms are proposed as a trade-off
between tree quality and construction time. Hunt et al. [5]

596 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.3.596-604

approximated SAH cost function with a piecewise
quadratic function. Popov et al. [6] linearly approximated
the SAH with uniformly distributed samples. These
methods only estimate the SAH cost in discrete binned
positions, then, interpolate the SAH cost function
between the bins. Fan et al. [13] developed a heuristic
algorithm to position the preferable planes.

Recently, parallel construction [11, 12, 19] have been
received much attentions. Generally, these algorithms
build a kd-tree in two steps, that is, construction of a top
tree with a fast scheme and a bottom tree with an
optimized SAH criterion. Shevtsov et al. [11] realized 4-
core parallel construction, but the quality of kd-tree was
degenerated by 15% as it used triangle-count middle
splitting in top level stage. Zhou et al. [12] introduced a
real-time kd-tree algorithm on the GPU, whose 128-core
GPU version was 4 ~ 7 times faster than single-core
algorithm. However, since the method adopts spatial
middle splitting, rendering performance is reduced by
15% once applied in large-scaled scenes with more than
100K primitives.

Some methods tend to avoid expensive reconstruction
acceleration structure. Hunt et al. [20] employed a BVH
(Bounding Volume Hierarchy) based scene graph to
accelerate construction. Based on motion decomposition,
Gunther et al. [21] constructed a kd-tree over fuzzy boxes
instead of primitives themselves. But, these methods are
limited to some particular scenes or assumptions.

Although above algorithms can generate a high-quality
or preferable kd-tree through the standard SAH or
approximation, the assumption that rays are uniformly
distributed and infinite lines essentially degenerates the
rendering performance. Some algorithms exploit the ray
distribution to compute more optimized splitting planes.

Unlike traditional assumptions, Fabianowski et al. [8]
assumed that the origins of rays are uniformly distributed
inside the scenes, and developed an alternative estimation
model. It computes the probability of entering a bounding
box for each potential origin of ray with the fractional
solid angle subtended by the box. However, the
improvement of rendering performance is just 5% than
the SAH. Bittner et al. [9] used the count of rays to
estimate the probability of rays traversing the tree nodes,
but only achieved a minor speedup. Marek et al. [23]
introduced a visibility driven algorithm to build BVH.
Choi et al. [10] established voxel-visibility based models
for primary rays and secondary rays respectively. Their
new approach helps to produce a kd-tree with 40%
performance improvement for static scenes, which
demonstrates that the visibility is the crucial factor for ray
tracing. Aiming to accelerate shadow ray traverse,
Feltman et al. [15] developed a shadow ray distribution
heuristic method which improved performance by 20%.

III. COST METRIC BASED ON RAY DISTRIBUTION

 In this section, we analyze and re-estimate traversal
cost by considering the distribution of rays. Then, we
generate a cost metric, which computes a more optimized
splitting plane by exploiting the visible primitives to
approximate the distribution of rays.

A. Estimation Of Traversal Cost With Ray Distribution
As a standard construction for kd-tree, the SAH cost

metric estimates the expected cost for traversing a voxel
by considering many features which influence space
partition [3]. Given the cost for both traverse and for ray-
triangle intersection TK and IK , the average traversal
cost is defined as follows:

 RI
V

R
LI

V

L
T NK

SA
SANK

SA
SAKC (1)

Where LSA and RSA are the surface areas of left and
right child given a candidate splitting position, VSA is the
overall surface area of the voxel for splitting, LN and

RN are the count of primitives in children. The ratio

VL SASA / and VR SASA / are probabilities that ray
intersects with children, and are denoted as LP and RP
for short.

The SAH criterion is based on the assumption that the
rays are uniformly distributed, infinite lines through
space, which violate the ray distribution in actual scenes.
Because, the rays are usually irregular distributed and are
possible be blocked due to intersecting with opaque
objects. The splitting plane computed by the SAH can not
be considered as the best split for such scenes.

Fig.1 shows an instance that only part of the scene

(marked by the colored primitives) is visible as a result of
irregularly distributed ray distribution. Assuming that P
is the best splitting plane computed by the standard SAH,
P~ is a candidate splitting plane. It is noted that P~ is
more near than P to the visible region. Notation N is
indicated the count of primitives in a node for splitting,

LN and RN are defined as the same as above. Let VN as
the count of visible primitives. In Fig.1, it is obviously
showed that L

V NN ∈ .
Then, let as the set of rays that intersect with the

node, and M as the number of rays in set . OLM ,

ORM , LRM are the number of rays entering into left child
only, right child only and both children, respectively. Set

V is the set of rays that intersect with the primitives,
and VM is the number of rays in V .

The objects are assumed to be opaque, hence all rays in
set V are blocked by primitives after intersection. It is
noted that OL

V MM .

PP~
Figure 1. A scene with irregularly distributed rays. Only colored
 primitives are visible.

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 597

© 2014 ACADEMY PUBLISHER

For set , the total traversal cost is:

)(NMNMNMKMKCost LRRORLOLITP (2)

Because only set V actually intersect with primitives,
the ideal traversal cost is:

 VV
I

V
TI NMKMKCost (3)

which is quite smaller than PCost .
 Let OLM as the rays that enter into left child without
intersecting with any primitives, so it is noted that

V
OLOL MMM . Let LN as invisible primitives in left

child, so V
LL NNN .

 Therefore, the cost difference between PCost and

ICost is as follows:

)

)(()(
NMNM

NMNNMKMMK

LRROR

L
VV

LOLI
V

TP

 (4)

Similarly, for candidate splitting plane P~ , the
difference between PCost ~ and ICost is as follows:

)~~~

~)~(~()(~

NMNM

NMNNMKMMK

LRROR

L
VV

LOLI
V

TP

(5)

Since the rays entering into right child, as in Fig. 1, are
quite few, ORM and LRM can be considered as constants

when the splitting plane is shifted from P to P~ .
Therefore, the change of NMNM LRROR is ignorable.
The difference between PCost and PCost ~ can be
approximated as:

))~()~(

)~~((

LL
VV

OLOL

LOLLOLT

NNMNMM

NMNMK

(6)

Because the value of NNL is difficult to estimate,
which is determined by the distribution of primitives. We
assume the primitives are uniformly distributed. As

OLOL MM ~ and LL NN
~ , it is viewed that

PP CostCost ~ .
From above analysis, it is observed that the SAH is not

applicable in building high-quality acceleration structure
when the rays are irregularly distributed. Moreover,
according to formula (4) and (5), we find that the
distribution of visible primitives VN , which influence
the rendering performance, can be exploited to improve
quality of kd-tree tree.

B. Improved Cost Metric
Actually, the distribution of rays is influenced by many

elements, including the size of primitives, the materials,
the position of camera and light sources and so on. In this
paper, instead of establishing an exact analytic expression,
we suppose the distribution of visible primitives is known,
and use it to approximate actual distribution of primary

rays. According to frame coherency, the prior knowledge
can be obtained straightly from last frame, hence, the
assumption is practicable.

According to above analysis, the traditional probability
computation is not applicable in scenes, especially for
high-occluded scenes. We identify such kind of
probability as SAHP , and introduce another probability
computation VisP to take actual rays distribution into
consideration.

Let VN to be the number of visible primitives of node
for splitting as previous, V

LN and V
RN to be the number

of visible primitives for left and right child. The
probability VisP is defined as follows:

 VV
RL

Vis NNP // (7)

For a high-quality kd-tree, we use bounding boxes of
primitives as the splitting candidates. In order to count
the visible primitives, we introduce some notations first.

)(iN V
L and)(iN V

R are the count of visible primitives in
left and right side relative to the ith candidate plane. Used
as proxies for primitives,)(iE and)(iS are End and Start
events [3] for current candidate plane.)(iD is to define
whether the event is visible. Before each SAH
computation, VN is counted through a global array
g_primsvislist, which is used to record whether the
corresponding primitive is visible or not in rendering
stage.)0(V

LN and)0(V
RN are initialized to 0 and the

value of VN respectively. When sweeping along each
sample location,)(/ iN V

RL is computed incrementally as
the following formula:

elseor ,0
 visibleis S(i) if,1

)(),()1()(

elseor 0,
 visibleis E(i) if,1

)(),()1()(

iVisiVisiNiN

iVisiVisiNiN

V
R

V
R

V
L

V
L

(8)

Currently, we have two kinds of probabilities, they are,
SAHP , dominated by the spatial size of primitives, and
VisP , mainly determined by the distribution of visible

ones. Because both probabilities represent different
characteristics of scenes, which influence the rendering
performance, they are employed in our cost metric. The
cost metric is defined as follows:

)(

)_-1(_ ///

RRLLIT

SAH
RL

Vis
RLRL

NPNPKKC
PVisWeightPVisWeightP

(9)

VisWeight _ is a coefficient varying from 0 to 1,
which highly depends on the ray distribution of scenes. If
the rays are nearly regularly distributed, meaning most of
the primitives are visible, we set VisWeight _ to 0, and

use SAHP instead of VisP . This is because the standard
SAH computation is applied quite well in such condition.
On the other side, if the rays are extraordinarily irregular,

598 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

that is, a great deal of primitives in current node are
occluded, we resort to VisP mainly aiming to separate
invisible part from other parts of acceleration structure. It
is noted that we set VisP to a higher value but never to 1,
because the characteristics of spatial size of primitives,
presented by SAHP cannot be totally ignored.

For other situations, the probability is the result of

linear interpolation between SAHP and VisP . Fig.2
sketches the relationship between VisWeight _ and
improvement of rendering performance. We test scenes
showed in Fig. 10 and Fig.11 with varying primitive
distribution. It is suggested the rendering time changes
little when VisWeight _ belongs to region [0.3, 0.8]. For
all tested scenes, the minimum of rendering time happens
when VisWeight _ belongs to region [0.4, 0.6]. Moreover,
a significant reduction occurs when VisWeight _
approaches to 1, which demonstrates our previous
analysis.

IV. PARTIAL CONSTRUCTION BASED ON RAY
DISTRIBUTION

 Expensive construction prevents ray tracing from
dynamic scenes. In this section, we focus on reducing
construction time and memory consumption by excluding
invisible primitives as early as possible.

A. Partial Construction of Kd-tree
Previous researchers mainly use two approaches to

construct a fast kd-tree. One is called comparison based
algorithm, which builds kd-tree in)log(nnO the
theoretical lower bound. Another is binning based
algorithm, which only places SAH samples in fixed
positions. Although it uses an)(mO radix sorting instead
of an)log(nnO sorting, the construction time is still

)log(nnO since each node needs similar computation.
The above methods share the common point that they
build the acceleration structure for the entire scene.

An observation is that construction time increases
exponentially with the growing scale of primitives.
Actually, the count of visible primitives which contribute
to the final image does not change severely, especially in
large scenes. Let v to be the count of visible primitives
and n the count of primitives in scene, it is a feature for

complex or high-occluded scene that nv . Therefore,
we tend to only construct the primitives visible to reduce
both the time and memory consumption significantly.

The visibility of primitive is only known during
rendering. Accordingly, we separate kd-tree construction
into two phases and interleave it with rendering stage,
rather than construct an overall kd-tree at once. In the
first phase, the top tree is built in top-down manner. Then,
the algorithm switches into rendering stage. We use early
primitives excluding to avoid invisible primitives from
constructing. Only when a ray intersects with the leaf of
top tree, the second phase is triggered to construct a more
refined kd-tree. Therefore, the algorithm refines the kd-
tree gradually according to the actually ray distribution,
and tends to avoid constructing invisible primitives.

Additionally, the cost to access memory ought to be
considered carefully [24], especially for large scenes.
This is because nowadays hardware architecture presents
a distinct gap between sequential and random memory
access pattern. An algorithm that tends to access data
which has recently been accessed will benefit from
caches and memory hierarchies. Conventional depth-first
order construction and ray tracing belong to random
access pattern. We devise a streaming based partial
construction combined with rendering process as
described in Fig.3.

We use breadth-first construction instead of depth-first

order in kdtreebuild() similar with [6]. After constructing
the top tree, early primitives excluding is applied to filter
the primitives to send to next construction phase.
Meanwhile, we also record the ID of each ray intersecting
with leaf of top tree as well as intersection information,
including tmin and tmax. After constructing the bottom
tree, we access rays sequentially stored in rayslist for

1: Procedure PartialConstruction(ray, node)
2: begin
 // streaming construction for top tree

3: toptree = kdtreebuild(PrimitivesSet)
 // early primitives excluding
4: while (RaysSet != NULL) do
5: leaf = Intersection(ray, toptree);
6: if (leaf != NULL) then
 // the ray intersects with the leaf of top tree
7: if (leaf.root == NULL) then
8: leaf.flag = 1;
9: end if
10: leaf.rayslist.add(ray.ID, tmin, tmax);
11: end if
12: end while
 // streaming construction for bottom tree
13: for each leaf with flag = 1 do
14: kdtreebuild(leaf);
15: end for

 // intersection between rays and the refined kd-tree
16: for each leaf with flag = 1 do
17: for each ray in leaf.rayslist do
18: Intersection(ray, leaf)
19: end for
20: end for
21: end
Figure 3. Partial construction algorithm based on ray distribution.

‐15%

‐10%

‐5%

0%

5%

10%

15%

20%

25%

0.2 0.4 0.6 0.8 1

th
e

im
pr

ov
m

en
t o

f r
en

de
ri

ng

pe
rf

or
m

an
ce

Weight_Vis

Bunny Dragon Conf_01 Sibe_03

Figure 2. The relationship between Weight_Vis and improvement of
rendering performance.

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 599

© 2014 ACADEMY PUBLISHER

each leaf of top tree, which improve memory access
coherence for primitives. It is observed that the algorithm
can also be executed in parallel platforms with little
modification, including SIMD, multi-core CPUs and
GPU.

B. Termination Criterion For Hierarchical Construction
 Previous completed kd-tree building often use constant
threshold as termination criterion for hierarchical
construction. Shevtsov et al. [11] completes the first stage
once the number of primitives is under the number of
bins. Hunt et al. [5] switches to second stage once the
number of primitives in node is less than a threshold
number. Fan et al. [13] even considers a constant spatial
size. These criterions are not self-adaptive once the
distribution of geometry is changed. Moreover, for partial
construction, the depth of the upper tree is a more
important factor, as too large or small value might cause a
nearly completed kd-tree building. Therefore, the value
should be carefully chosen so as to provide a good
balance between time and memory consumption.

We define the MaxDepth of kd-tree to be
N2log3.18 , which is referenced from pharr et al. [4]

and Kang et al. [16]. We evaluate the upper tree depth in
different values to observe how it influences construction
time and memory. Top tree depth is expressed as
MaxDepth/2 + Step, where MaxDepth/2 is a baseline and
Step is a variable relative to baseline. Fig. 4 and Fig. 5
display the results, and Table I provides the count of
visible primitives in tested scenes. All the scenes in the
paper are classified as two types. The one is scenes with
regularly distributed geometry and low occlusion. The
other is complex or high-occluded scenes with irregularly
distributed geometry. They are showed in Fig. 10 and Fig.
11, respectively.

It is viewed that the time and memory requirement are
both in a nearly U shape distribution for partial
construction. For moderate scenes, the minimum almost
appear in MaxDepth/2. For large-scale scenes, such as
Conf_01, the minimum tends to occurs on the right of
baseline. That means, for moderate scenes, MaxDepth/2
can be regarded as an applicable termination criterion for
top level tree, and for large scenes, a little higher value
should be better.

Additionally, if the count of visible primitives for a

node in top tree is lower than some threshold, we also
stop to build it. Our cost metric is prone to separate the
invisible portion from other portion. According to frame
coherency, it is advisable to apply our cost metric in top
tree levels to postpone the node with uncertain visibility
to the second stage, which tends to reduce construction
time and memory.

V. EXPERIMENTAL RESULTS

We implement the above approach on machine with
Intel I3-2100 3.00 GHz CPU, equipped with 4.0G
memory and an NVidia GeForce GTX 450 graphics card.
All the result image is produced in the resolution of
800x600. Three different types of tests have been carried
out, they are, completed construction on new cost metric,
partial construction on the SAH, and partial construction
on new cost metric. Also, we have realized optimized
SAH-based construction [3] as a benchmark algorithm.
For fair comparison, all methods are set to the same
construction parameters. The primitives of leaf is less
than 4. The maximum tree depth is N2log3.18 . The
traversal cost and intersection cost is 1 and 60,
respectively.

A. Rendering Performance With Improved Cost Metric
First, we compare our cost metric with the standard

SAH. Table II summarizes the comparison results with
low-occluded scenes of varying geometry complexity
with primitive count range from 70K to 300K, as shown
in Fig.10. It is observed that our cost metric improve
rendering performance consistently for all tested scenes.
To understand more profound behaviors of kd-tree, we

50

100

150

200

250

300

350

‐6 ‐4 ‐2 0 2 4 6

co
un

t o
f n

od
es

 c
re

at
ed

 (1
K

)

depth of top tree relative to MaxDepth/2

Sponza Conf_03 Sibe_03

Figure 5. Memory consumption influenced by the depth of top tree.

TABLE I.
COUNT OF VISIBLE PRIMITIVES

Scenes Count of visible
primitives

Sponza 10244
Conf_01 4128
Conf_03 2817
Sibe_03 6662

0

0.5

1

1.5

2

2.5

3

‐6 ‐4 ‐2 0 2 4 6

co
ns

tr
uc

tio
n

tim
e

(s
)

depth of top tree relative to MaxDepth/2

Sponza Conf_03 Sibe_03

Figure 4. Construction time influenced by the depth of top tree.

600 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

also inspect average search depth, times of ray-triangle
intersection as well as successful ratio that rays intersect
with primitives, which are essential factors influencing
rendering performance. For Bunny, Dragon and
Armadillo, the rendering performance is improved by
20%, 11% and 19%. Since the average search depth stay
mostly the same with benchmark algorithm, for such kind
of tested scenes, our method cannot increase the level of
visible portion in hierarchical tree. But we achieve in
performance primarily for a reduction on ray-primitive
intersection and a significant increase in successful hit
ratio. Particularly, the hit ratio almost is doubled in our
cost metric. In addition, for Fairy, whose distribution of
primitives is not as regular as other scenes, the improved
rendering performance is attributed to the reduction of
average search depth and times of ray-primitive
intersection. Therefore, our algorithm can produce a more
efficient kd-tree than the standard SAH cost.

For scenes with a high occlusion, we test our cost
metric in different viewpoints for Conference and Sibenik,
showed in Fig. 11 (a) ~ (d), (e) ~ (h). Table III illustrates
the comparison results. We improve rendering
performance for all test scenes, primarily due to the
obvious reduction in average search depth. For most
scenes, Fig. 7 shows that our algorithm provides 12% to
18% decrease in average search depth. This means, by
exploiting distribution of visible primitives, our cost
metric is prone to generate visible primitives in upper
node of tree. For example, for all tested viewpoints for
Conference, our method offers a speedup between 8% ~
12% for the main reason that the average search depth is
decreased by 13% ~ 18%. Particularly, it is observed that
our algorithm perform quite well in reducing average
search depth for Conf_02, which possesses with the
property of high occlusion and complexity. For all
viewpoints from Sibenik, our method provides similar
performance improvement, except Sibe_02, as it is not
satisfied with the statement that our algorithm performs
well only if nv .

B. Partial Construction With The SAH
We compare partial construction with completed

construction. Here, we use the SAH in partial
construction. We test moderate scenes and large-scale
scenes, as showed in Fig. 11. For Bigguys, it consists of

128 Bigguys with 368,234 primitives in all. Fig. 8 and
Fig. 9 describe the comparison in term of construction
time and memory consumption. For these scenes, our
algorithm is almost 2 to 4 times faster than the completed
construction, meanwhile reduces significantly in memory
requirement. For example, for Bigguy_02 and Sibe_02,
which only contain few visible primitives, our algorithm
almost speeds up the construction more than 50%, and
restricts the memory consumption to a very low value. As
the experimental results illustrate, partial construction
performs quite well for scenes which meet the
requirement that nv . Moreover, the running time and
memory requirement do not increase severely with the
expanding of the scale of scenes.

40

45

50

55

60

65

70

Conf_01 Conf_02 Conf_03 Conf_04 Sibe_01 Sibe_02 Sibe_03 Sibe_04

av
er

ag
e

se
ar

ch
 d

ep
th

Our method SAH

Figure 7. Comparison on average research depth.

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Conf_01 Conf_02 Conf_03 Conf_04 Sibe_01 Sibe_02 Sibe_03 Sibe_04

re
nd

er
in

g
tim

e
(s

)

Our method SAH

Figure 6. Comparison on rendering time.

TABLE II.
THE COMAPRISION BETWEEN OUR COST METRIC AND THE SAH FOR SCENES WITH REGULARLY DISTRIBUTION PRIMITIVES AND LOW OLLCUSION

Rendering Time (s) Average Search Depth Times of Ray-primitive
Intersection Successful Hit Rate

Scenes
Our method SAH Our method SAH Our method SAH Our method SAH

Bunny 0.28 0.34 42 42 999,885 1,637,046 17.68% 9.89%
Dragon 0.33 0.37 53 53 1,090,330 1,720,314 15.11% 8.65%

Armadillo 0.28 0.35 49 47 1,441,094 2,741,665 12.05% 5.54%
Fairy 0.62 0.7 58 61 3,473,511 3,889,453 10.5% 9.18%

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 601

© 2014 ACADEMY PUBLISHER

C. Partial Construction With Our Cost Metric
Finally, we incorporate our cost metric into partial

construction. Two cost models are used according to ray
distribution. Generally, we use new cost metric in top tree
levels and the SAH in bottom tree levels as the rays can
be regarded as nearly uniformly distributed. As showed in
Table III, our approach achieves in rendering
performance as described previously, meanwhile,
preserves the advantages of partial construction. However,
for some scenes, it performs a less efficient improvement
in construction, as new cost metric will produce more
nodes than SAH computation.

VI. CONCLUSION

In this paper, we have proposed a new cost metric for
constructing an efficient kd-tree. Unlike previous
approaches, we compute the optimal splitting plane by
exploiting the visible primitives to approximate the
distribution of rays. Then, we introduce a stream based
partial construction to prune invisible primitives and
improve memory access coherence. We have analyzed
termination criterion for two-levels hierarchical
construction to balance the construction time and memory

consumption. The experiments demonstrate that our
algorithm can produce an more efficient kd-tree than the
standard SAH computation, meanwhile provide
significant reduction in construction time and memory.

There are several directions for future work. First, the
characteristics of scene play an important part during ray
tracing. We plan to exploit both primary and secondary
rays during construction. Then, construction of object-
partition based acceleration structures, eg. BVH, are able
to be speeded up by making use of ray distribution.
Finally, as there exists code and data concurrency in
stream based partial construction, a parallel algorithm is
an interesting topic in future work.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers.
This work was supported in part by a grant from National
Natural Science Foundation of China (No. 60903118),
and National Key Technology R&D Program of the
Ministry of Science and Technology (No.
2012BAH62F03), and Youth Foundation of Southwest
Petroleum University (No. 285).

0

2

4

6

8

10

12

14

16

Bigguys_01 Bigguys_02 Conf_01 Conf_02 Sibe_02 Sibe_04 Sponza

co
ns

tr
uc

tio
n

tim
e

(s
)

our method the SAH

Figure 9. Comparison on construction time.

0

10

20

30

40

50

60

70

Bigguys_01 Bigguys_02 Conf_01 Conf_02 Sibe_02 Sibe_04 Sponza

m
em

or
y

co
m

su
m

pt
io

n
(M

B
) our method the SAH

Figure 8. Comparison on memory consumption.

TABLE III.
THE COMAPRISION BETWEEN OUR COST METRIC AND THE SAH FOR HIGH-OCCLUDED SCENES

Rendering Time (m) Average Search Depth Times of Ray-primitive
Intersection Successful Hit Rate

Scene
Our method SAH Our method SAH Our method SAH Our method SAH

Conf_01 0.86 1.01 46 52 2,728,479 3,317,793 20.27% 16.9%

Conf_02 0.89 0.98 46 54 3,090,823 3,658,523 17.72% 15.1%

Conf_03 0.85 0.96 48 54 3,260,867 3,881,159 15.38% 13.1%

Conf_04 1.06 1.15 50 58 4,003,090 4,681,948 14.12% 12.3%

Sibe_01 0.91 1.03 58 66 2,938,532 3,211,977 16.63% 15.2%

Sibe_02 0.87 0.94 51 53 2,854,815 3,546,145 17.70% 13.9%

Sibe_03 1.37 1.6 55 59 10,075,449 10,859,283 4.86% 4.55%

Sibe_04 0.86 0.96 56 65 2,665,384 2,758,844 18.30% 17.7%

602 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

REFERENCES

[1] V. Havran, “Heuristic ray shooting algorithms”, PhD
thesis, Department of Computer Science and Engineering,
Faculty of Electrical Engineering, Czech Technical
University in Prague, 2000.

[2] J. David MacDonald, Kellogg S. Booth, “Heuristics for
ray tracing using space subdivision”, The Visual
Computer, 1990, vol. 6, no. 3, pp. 153–166.

[3] I. Wald, V. Havran, “On building fast kd-trees for ray
tracing, and on doing that in o (n log n) ”, IEEE
Symposium on Interactive Ray Tracing, 2006, pp. 61–69.

[4] Matt Pharr, Greg Humphreys, “Physically Based
Rendering: From Theory to Implementation”, Morgan
Kaufman, 2004.

[5] Warren Hunt, William R. Mark and Gordon Stoll, “Fast
kd-tree construction with an adaptive error-bounded
heuristic”. IEEE Symposium on Interactive Ray Tracing,
2006, pp. 81–88.

[6] Stefan Popov, Johannes Gunther, Hans-Peter Seidel and
Philipp Slusallek, “Experiences with streaming

construction of SAH kd-trees”, IEEE Symposium on
Interactive Ray Tracing, 2006.

[7] W. Hunt, “Corrections to the surface area metric with
respect to mail-boxing”, IEEE Symposium on Interactive
Ray Tracing, 2008, pp. 77–80.

[8] B. Fabianowski, C. Fowler and J. Dingliana, “A cost
metric for scene-interior ray origins”, Eurographics, Short
Papers, 2009, pp. 49–52.

[9] J. Bittner, V. Havran, “RDH: Ray Distribution Heuristics
for Construction of Spatial Data Structures”, 25th Spring
Conference on Computer Graphics (SCCG 2009), ACM,
Budmerice, Slovakia, 2009, pp. 61–67.

[10] B. Choi, B. Chang, I. Ihm, “Construction of efficient kd-
trees for static scenes using voxel-visibility heuristic”,
Computers & Graphics, vol. 36, no. 1, 2012, pp. 38-48.

[11] Shevtsov M., Soupikov A. and Kapustin A., “Highly
Parallel Fast k-D Tree Construction for Interactive Ray
Tracing of Dynamic Scenes”, Computer Graphics Forum,
vol. 26, no. 3, 2007, pp. 395–404.

[12] Zhou K., Hou Q., Wang R., Guo B, “Real-time k-D Tree
Construction on Graphics Hardware”, SIGGRAPH Asia,
vol. 27, 2008, pp. 1–11.

(a) Conf_01 (b) Conf_02 (c) Conf_03 (d) Conf_04

(e) Sibe_01 (f) Sibe_02 (g) Sibe_03 (h) Sibe_04

(i) Biguyys_01 (j) Biguyys_02 (k) Sponza

Figure 11. Scenes with uniformly distributed primitives. (a) ~ (d) are four different viewpoints for Conference. (e) ~ (h) are different viewpoints
for Sibenik. (i) ~ (j) are Bigguys. The primitive count of Conference, Sibenik, Bigguys and Sponza are 282775, 80054, 368234, and 67461.

(a) Bunny: 69,451 (b) Dragon: 871,414 (c) Armadillo: 345,944 (d) Fairy: 173,397

Figure 10. Scenes with uniformly distributed primitives. We also list the total count of primitives below each scene.

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 603

© 2014 ACADEMY PUBLISHER

[13] Fan Wen-Shan, Wang Bing, “Fast KD-Tree Construction
Method by Probing the Optimal Splitting Plane
Heuristically”, Chinese Journal of Computers, 2009, vol.
32, no. 2, pp. 185–192.

[14] Guo Jie, Xu Xiao-yang, Pan Jin-gui, “Build KD-Tree for
Virtual Scenes in a Fast and Optimal Way”. Acta
electronica Sinica, 2011, vol. 39, no. 8, pp. 1811–1817.

[15] Nicolas Feltman, Minjae Lee, Kayvon Fatahalian. “SRDH:
Specializing BVH Construction and Traversal Order
Using Representative Shadow Ray Sets”. High
Performance Graphics, 2012, pp. 49–55

[16] Y.S. Kang, J.H. Nah, W.C. Park and S.B. Yang, “gkdtree:
A group-based parallel update kd-tree for interactive ray
tracing”, Journal of Systems Architecture, 2011.

[17] W. Hunt, W.R. Mark, D. Fussell, “Fast and lazy build of
acceleration structures from scene hierarchies”, IEEE
Symposium on Interactive Ray Tracing, 2007, pp. 47–54.

[18] Peter Djeu, Warren A. Hunt, Rui Wang, Ikrima Elhassan,
Gordon Stoll and William R. Mark. “Razor: An
architecture for dynamic multiresolution ray tracing”,
ACM Transaction Graph, 2011, vol. 30, no. 5, pp. 115.

[19] Piotr Danilewski, Stefan Popov, Philipp Slusallek.
“Binned sah kd-tree construction on a gpu”, Technical
report, Saarland University, 2010.

[20] Wald I., Mark W.R., Gunther J., Boulos S., Ize T., Hunt
W., Parker S.G., Shirley P.. “State of the Art in Ray
Tracing Animated Scenes”, Computer Graphics Forum,
2009

[21] Warren Hunt, William R. Mark, Don Fussell. “Fast and
Lazy Build of Acceleration Structures from Scene
Hierarchies”, IEEE Symposium on Interactive Ray
Tracing, 2007, pp. 47–54

[22] Johannes Gunther, Heiko Friedrich, Ingo Wald and etc.
“Ray tracing animated scenes using motion

decomposition”, Computer Graphics Forum, Proceedings
of Eurographics, 2006, 25(3): 517–525.

[23] Marek Vinklera, Vlastimil Havranb and Jiri Sochor.
“Visibility Driven BVH Build Up Algorithm for Ray
Tracing”, Journal of Computer & Graphics, 2012, 32(4):
283–296

[24] Koji Nakamaru and Yoshio Ohno. “Breadth-First Ray
Tracing Utilizing Uniform Spatial Subdivision”, IEEE
Transactions on Visualization and Computer Graphics,
1997, pp. 316–328

Xiao Liang was born in 1983. She is a Ph.D. candidate in
Sichuan University. Her research interest include realistic
rendering, computer graphics and virtual reality.

Hongyu Yang was born in 1967. She is a professor and Ph.D.
supervisor of college of computer science of Sichuan University.
She received Ph.D. degree from Sichuan University in 2008.
She is a managing director of China Society of Image and
Graphics. Her research interest include virtual reality and
computer graphics.

Yinling Qian was born in 1989. He is a Master candidate in
Sichuan University. His research interest include parallel
rendering and computer graphics.

Yanci Zhang was born in 1975. He is an associate professor
and master supervisor of college of computer science of
Sichuan University. He received Ph.D. degree from Institute of
Software Chinese Academy of Sciences. He is a professional
member of CAD and Graphics of China Computer Federation.
His research interest include global illumination, fluid
simulation and parallel rendering.

604 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

