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Abstract— In this paper, a fast method named algorithm 2
is proposed to extract all minimal siphons from maximal
unmarked siphons obtained by the MIP-based deadlock
detection method. Redundant computation is the major
disadvantage of an existing method named algorithm 1 and
it greatly decreases the computational efficiency of minimal
siphons. In order to resolve this problem, the proposed
method improves from three aspects. Firstly, no sink places
and transitions exist in the subnet of the tree. Secondly,
no equal non-null node exists in the tree. Thirdly, if the
removal of one place from a subnet node leads to the
removal of all places in this node, the same place of its son
node is unnecessary to compute repeatedly. The applications
of algorithm 2 are illustrated with FMS examples in the
following sections and comparison of algorithm 1 with
algorithm 2 is also presented. At the end, the result from
experiment shows that the proposed method has higher
efficiency.

Index Terms— deadlock,flexible manufacturing system (FM-
S),Petri net

I. I NTRODUCTION

Flexible manufacturing system (FMS) [1], [2] is charac-
terized with a high degree of resource sharing and concur-
rency. When various types of raw parts enter the system to
compete limited resources such as robots and machines,
deadlock may occur if there is no effective scheduling
and control mechanism. Deadlock can not only lead to
the stoppage of part of system or even the entire system,
but also could have catastrophic consequences in highly
automated systems such as semiconductor manufacturing
and safety-critical distributed databases. Therefore, poten-
tial deadlocks must be carefully considered and effective
control policy has to be made to ensure that deadlocks
will never occur in FMS.

Compared with other formal tools, Petri nets are char-
acterized of graphical presentation, solid theoretical foun-
dation in mathematics and various analysis methods [3]–
[5]. On base of the above three advantages, Petri nets have
been widely used to model, analyze and control discrete
event system (DES). FMS is one of the typical classes
of DES. Thus, over the past ten years, Petri nets have
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become the most important tools to deal with deadlock
problems in FMS [6]–[8].

In a Petri net formalism, deadlocks are closely tied to a
well-known structural object named siphon. A siphon is a
subset of places such that every input transition is also an
output transition of the subset. Once a siphon loses all of
its tokens, it will be unmarked permanently. That is, if a
siphon becomes unmarked at a reachable marking, some
output transitions of it will be disabled permanently. In
recent years, many deadlock control policies are proposed
based on siphons [9]–[11]. However, as we all know, the
complete siphon enumeration in a Petri net is normally
NP-complete, which makes many approaches based on
siphons suffer from the computational complexity.

In order to solve this problem, a fast deadlock detection
approach is proposed by Chu and Xie [12], it is based
on mixed integer programming (MIP) for structurally
bounded nets whose deadlocks are tied to unmarked
siphons. With this method, a maximal unmarked siphon
can be found at a given marking. Since no explicit
enumeration of siphons is required, the computational
efficiency of siphon-based deadlock prevention policy is
greatly improved. This makes it play an important role
in the development of deadlock prevention policies based
on siphons.

MIP method is firstly used to design a liveness-
enforcing supervisor by Huang et al [11]. In this method,
an algorithm is developed to derive a minimal siphon
from a maximal unmarked siphon which is obtained by
the MIP-based deadlock detection method. However, this
algorithm is incorrect on details. First, it fails to indicate
which places are included in the minimal siphon derived
from a maximal unmarked siphon. Second, the algorithm
falls into an endless loop. Furthermore, it is proved that
a siphon derived from maximal unmark siphon by this
method is not necessarily a minimal one. In spite of this,
it provides an efficient way to deal with deadlock control
problems in large-size Petri nets models. Many deadlock
prevention policies for resource allocation systems are
inspired by their preliminary work. Afterwards, a minimal
siphons extraction algorithm is proposed by Li and Liu
[13] to correct these problems, and the software package
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to extract a minimal siphon from a maximal unmarked
siphon is also provided [14]. However, a drawback of
their methods is that only one minimal siphon can be
extracted at a time.

As a result, for a structurally bounded ordinary net, a
minimal siphon can be found by solving an MIP problem
[15], [16]. Similar work on minimal siphon extraction
using MIP method is developed by Chao [12] and Li [17],
[18].

To extract the set of all minimal siphons from the
unmarked maximal siphon obtained by the MIP-based
deadlock detection method, an algorithm developed by
Wang et al [19] bases on a tree structure, named sub-
net tree, contains nodes (subnets) and edges (places).
This algorithm provides a simple, direct, and convenient
graphical representation of the minimal siphon extraction
process. However, many nodes in the tree generated by
this method are computed repeatedly and it will greatly
decrease the computational efficiency of minimal siphons.

In addition, minimal siphons can also be computed
by resource circuits [20], but it can only be used in a
subclass of Petri nets called Systems of Simple Sequential
Processes with Resources (S3PR) [8]. Elia and Carlos
[21] present a method about computation of the minimal
siphons from a generating family of siphons, but it can
be used in a subclass of Petri netsS4PR called Systems
of Sequential System with Shared Resources as well.

In this paper, based on the algorithm 1 [19], an algo-
rithm 2 of extracting all minimal siphons from unmarked
maximal siphon is proposed to improve the computational
efficiency of minimal siphons. To this end, some measures
are designed to avoid redundant computation of nodes in
the subnet tree proposed by Wang et al [19].

The rest of this paper is organized as follows. Section II
gives preliminary definitions of Petri nets as well as MIP-
based deadlock detection method proposed by Chu and
Xie [12]. Section III introduces the algorithm proposed by
Wang et al [19] for extracting all minimal siphons from
maximal unmarked siphon. The improved minimal siphon
extraction algorithm is proposed in Section IV. Section
V presents some examples to demonstrate the algorithm.
Finally, conclusions are made in section VI.

II. PRELIMINARIES

A. Basic definitions

A Petri net [22] is a four-tupleN = (P, T, F,W ) where
P andT are finite, nonempty, and disjoint sets.P is the
set of places, andT is the set of transitions.F ⊆ (P×T )∪
(T ×P ) is the incidence relation betweenP andT . The
setW : F→ N

+ is a mapping that assigns a weight to an
arc inF , whereN+={1, 2, 3,...}. Let x ∈ P ∪T is a node
of netN = (P, T, F,W ), •x = {y ∈ P∪T |(y, x) ∈ F} is
called the preset ofx, andx• = {y ∈ P ∪ T |(x, y) ∈ F}
is called the postset ofx.

The relative change of tokens for every place can be
represented by the incidence matrix [N ] when a transition
fires, where [N ] is a |P | × |T | integer matrix with
[N ](p, t) = W (t, p)−W (p, t) .

Given a Petri netN = (P, T, F,W ) , a markingM of
netN is a mapping fromP to N, whereN = {0, 1, 2, ...}.
M(p) denotes the number of tokens in placep. A place
p is marked by a markingM iff M(p) > 0. A subset
S ⊆ P is marked byM iff at least one place inS is
marked byM . The sum of tokens of all places inS is
denoted byM(S), whereM(S) = Σp∈SM(p).

Let S is a non-empty subset ofP , S is a siphon iff
•S ⊆ S•, S is a trap iff S• ⊆• S. A siphon is minimal
iff there is no other siphons contained in it as a proper
subset. A minimal siphonS is said to be strict if it does
not contain a marked trap.

Let t ∈ T is a transition of Petri netN , t is a source
transition iff •t = ∅ andt is a sink transition ifft• = ∅.
Let x ∈ P is a place of Petri netN , x is a source place
iff •x ⊆ ∅ andx is a sink place iffx• ⊆ ∅.

B. MIP-based deadlock detection method

An MIP-based deadlock detection method is firstly
proposed by Chu and Xie [12]. They point that the
algorithm of finding an unmarked siphon corresponds
with an MIP problem. Therefore, they introduce two
indicators:

vp = 1{p /∈ S} and zt = 1{t /∈ S•} (1)

whereS ∈ P is a maximal unmarked siphon of Petri
netN .

Since∀t ∈ p•, vp = 0(p ∈ S) ⇒ zt = 0(t ∈ S•) and
∀p ∈ t•, zt = 1(t /∈ S•) ⇒ vp = 1(p /∈ S), this leads to
the following formulas:

zt ≥
∑

p∈•t

vp − |•t|+ 1, ∀t ∈ T (2)

vp ≥ zt, ∀(t, p) ∈ F (3)

vp, zt ∈ {0, 1} (4)

For a structurally bounded net, we have

vp ≥ M(p)/SB(p), ∀p ∈ P (5)

whereSB(p) = max{M(p)|M = M0 + CY,M ≥
0, Y ≥ 0}

An immediate implication of this property is that the
maximal siphonS unmarked at a given markingM can be
determined by the following integer programming prob-
lem and there exist empty siphons atM iff G(M) < |P |
, whereG(M) = Minimize

∑
p∈P vp, s.t. constraints(1-

5) and

M = M0 + [N ] · Y,M ≥ 0, Y ≥ 0 (6)

III. A LL M INIMAL SIPHONSEXTRACTION

ALGORITHM

Definition 1 [19]: A tree is a two-tupleΓ = (V,E)
where V and E are two finite and disjoint sets.V is
the set of vertices andE is the set of edges withE ⊆
{(u, v)|u, v ∈ V } and each edge is assigned a label. Given
a tree-structure graphΓ = (V,E) and two nodesu, v ∈
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V , u(v) is called a father (son) node ofv(u) if there exists
an edge fromu to v, i.e, (u, v) ∈ E .

Definition 2 [19]: Let N = (P, T, F ) be a Petri net
with Px ⊂ P andTx ⊂ T . Nx = (Px, Tx, Fx) is called a
subnet generated by(Px, Tx) if Fx = F ∩ [(Px × Tx) ∪
(Tx × Px)] .

Based on the definition 1 and 2, a new approach to
extract the set of all minimal siphons from an unmarked
maximal siphon is proposed by Wang et al [19]. The al-
gorithm bases on a subnet tree contained nodes (subnets)
and edges (places). It makes the minimal siphon extrac-
tion process a simple, direct, and convenient graphical
representation. The algorithm is represented as follows,
denoted algorithm 1

Algorithm 1: Extract the set of all minimal siphons
from an unmarked maximal siphon based on trees.

Input: a maximal unmarked siphonPx.
Output: the set of all minimal siphonsΠ derived from

Px.

1) LetNx = (Px, Tx, Fx) denote the subnet generated
by (Px, Tx) whereTx = Px

• ∪• Px

2) while there exist a sink transition or a sink placep
in Nx do

3) Tx := Tx \ {t}; or Px := Px \ {p};
4) end while
5) Π := ∅;
6) while there exists a source placep in Nx do
7) Px := Px \ {p};
8) Π := ∪{p};
9) while there exists a source transitiont in Nx do

10) Tx := Tx \ {t};
11) Px := Px \ t•;
12) end while
13) end while
14) LetN0

x = (Px, Tx, Fx) denote the subset generated
by (Px, Tx)

15) LetN0
x be the root node of this tree, andN0

x be a
new node

16) Ξ := {N0
x}; /*Ξ is a set of nodes*/

17) while there exist a new node inΞ do
18) Let x := N0

x be an old node
19) for eachp ∈ Px do
20) Px := Px \ {p};
21) while there exist a source transitiont in (Px,

Tx, Fx) do
22) Tx := Tx \ {t};
23) Px := Px \ t•;
24) end while
25) LetNx = (Px, Tx, Fx) be a new node
26) Add an arcp from x to Nx

27) if Px = ∅ then
28) LetNx be a null node
29) else
30) LetNx be a new node
31) Ξ := Ξ ∪Nx;
32) end if
33) end for
34) end while

35) for eachNx ∈ Ξ do
36) if each son node ofNx is a null nodethen
37) Π := Π ∪ Px;
38) end if
39) end for
40) Output:Π
41) End
It has been proved in [19] that algorithm 1 can extract

the set of all minimal siphons from an unmarked maximal
siphon. However, many of nodes in a subnet tree created
by it are computed repeatedly, it will decrease the com-
putational efficiency seriously.

IV. I MPROVED ALGORITHM

In order to erase nodes which are computed repeatedly
in the subnet tree, in this section, we propose an improved
algorithm 2, which can quickly exact the set of all mini-
mal siphons from an unmarked maximal siphon obtained
by the MIP-based deadlock detection method.

Algorithm 2: Extract the set of all minimal siphons
from an unmarked maximal siphon based on the subnet
tree.

Input: a maximal unmarked siphonPx.
Output: the set of all minimal siphonsΠ derived from

Px.
1) LetNx = (Px, Tx, Fx) denote the subnet generated

by (Px, Tx) whereTx = Px
• ∪• Px;

2) while there exist a sink transitiont or a sink place
p in Nx do

3) Tx := Tx \ {t}; or Px := Px \ {p};
4) end while
5) Π := ∅;
6) while there exists a source placep in Nx do
7) Px := Px\{p};
8) Π := Π ∪ {p};
9) while there exists a source transitiont in Nx do

10) Tx := Tx \ {t};
11) Px := Px \ t•;
12) end while
13) end while
14) LetN∗

x = (P ∗

x , T
∗

x , P
∗

x ) denote the subnet generat-
ed by the decomposition of the subnetNx

15) LetΘ∗

x denote the subsetP ∗

x during decomposition
of N∗

x , everyΘ∗

x is associated withN∗

x , removal of
a placep ∈ Θ∗

x will trigger removal of all places of
subnetN∗

x

16) LetN0
x = (P 0

x , T
0
x , F

0
x ) denote the original subnet

generated by(Px, Tx)
17) LetN0

x be the root node of this tree, andN0
x be a

new node
18) Ξ := {N0

x} /*Ξ is a set of nodes*/
19) Θ0

x = ∅

20) while there exist a new nodeN∗

x = (P ∗

x , T
∗

x , F
∗

x )
in Ξ do

21) Let x := N∗

x be an old node
22) LetΦ := ∅; /*Φ is the subset ofP ∗

x , which
include places that have been dealt with*/

23) LetΘx denote the set ofΘ∗

x which
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associated with the father node ofN∗

x

24) Px := P ∗

x ;Tx := T ∗

x ;Fx := F ∗

x

25) for eachp ∈ Px do
26) if p ∈ Θx then
27) Add arcp from x to null node
28) else
29) Px := Px \ {p};
30) while there exist a source transitiont in

(Px, Tx, Fx) do
31) Tx := Tx \ {t};
32) Px := Px \ t•;
33) end while
34) while there exist a sink transitiont or a

sink placep in Nx do
35) Tx := Tx \ {t}; or Px := Px \ {p};
36) end while
37) if Φ ⊆ Px then
38) LetNx = (Px, Tx, Fx) be a new node
39) Add an arcp from x to Nx

40) if Px = ∅ then
41) Let Nx be a null node;
42) Θ∗

x := Θ∗

x ∪ {p};
43) else
44) Let Nx be a new node;
45) Ξ := Ξ ∪Nx;
46) end if
47) else
48) Add arcp from x to null node
49) end if
50) end if
51) Φ := Φ ∪ {p};
52) end for
53) Φ := ∅;
54) end while
55) for eachNx ∈ Ξ do
56) if each son node ofNx is a null nodethen
57) Π := Π ∪ Px;
58) end if
59) end for
60) Output:Π
61) End

Definition 3: The non-null nodeNx = (Px, Tx, Fx)
of a subnet tree is equal to the nodeNy = (Py, Ty, Fy)
wherePx = Py.

The algorithm 2 improved algorithm 1 [19] from three
aspects. First, for each nodeN∗

x in the subnet tree, it
should be made to ensure that there is no sink element
included inNx, it is guaranteed by adding step 35 to 37
after step 34. Second, to ensure that there is no equal
non-null node generated in the subnet tree, we define a
generation rule for a new node , that is the new non-
null nodeNx generated by removing a placep ∈ P ∗

x

must include places which have been dealt with during
the course of decomposition ofN∗

x , N∗

x is denoted the
father node ofNx . This generation rule is realized by
defining the place setΦ as shown in step 23 and 52. Third,
it is obvious that if removal of placep ∈ Px can lead to
the removal of all places ofNx, then removal of place

Figure 1. AS3PR net

Figure 2. A subnet tree

p ∈ Px can also lead to the removal of all places of the
subnet ofNx. Therefore, it is unnecessary to remove the
placep repeatedly for son nodes ofNx. For this purpose,
we add an additional place setΘ∗

x for each node ofN∗

x

the subnet tree to record places whose removal can lead
to the removal of all places ofN∗

x . It is shown from step
27 to 28 and step 43.

By improvement mentioned above, the number of non-
null nodes in the subnet tree is greatly reduced. The
computational efficiency of minimal siphons based on
algorithm 1 is further improved.

V. EXAMPLES

In this section, we present some examples to show the
application of algorithm 2.

Fig.1 and Fig.2 are the example system and the gener-
ated subnet tree shown in [19]. A decomposed maximal
unmarked siphon isPx = {p4, p6, p9, p12, p13, p14}. As
shown in Fig.2, all minimal siphons which are extracted
from Px are S1 = {p6, p9, p12, p13, p14} and S2 =
{p4, p6, p13, p14}, S1 is derived from the nodeN1

x and
S2 is derived fromN2

x and N4
x . Obviously,N4

x is the
redundant node which is equal toN2

x .
Fig.3 is the subnet tree generated by our method. As

shown in Fig. 3, redundant nodes are avoided efficiently.
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Figure 3. An improved subnet tree

Figure 4. An ordinary petri net

To illustrate the generality and details of algorithm 2,
another example is presented.

Fig.4 is an ordinary petri net. Based on the MIP-
based deadlock detection method [12], a maximal un-
marked siphonPx = {p3, p4, p5, p6, p8, p9, p11, p13} can
be obtained by Lindo [23], a commercial mathematical
programming software package.

According to the algorithm 2,Tx = Px
• ∪•

Px = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11}. Then,
after removal of sink transitions and places, the
subnet N0

x = {P 0
x , T

0
x , F

0
x} can be generated

by (Px, Tx), which is shown in Fig.5, where
P 0
x = {p3, p4, p5, p6, p8, p9, p11, p13} and T 0

x =
{t2, t3, t4, t5, t6, t7, t9, t10, t11}.

Now, the subnet tree is computed. LetN0
x be a new

node and the root of the tree. The removal ofp3 leads to
generate a new subnet nodeN1

x where exist a sink tran-
sition t2, after removing all sink transitions and places,
N1

x is re-presented as shown in Fig.6, and placep3 is
added to the setΦ, whereΦ = {p3}. Because no source
transition exists in Fig.6,N1

x become a new node and arc
p3 is added fromN0

x to N1
x as shown in Fig.7. However,

the removal ofp4 can lead to the removal of all places.
As a result, an arcp4 is added fromN0

x to a null node
andp4 is added to the setΦ andΘ0

x, whereΦ = {p3, p4}
andΘ0

x = {p4}.
Suppose that the same steps have been performed

repeatedly on placesp5, p6 and p8, new arcs and new
nodes are added in the tree as shown in Fig.7. As a

Figure 5. A subnetN0
x

Figure 6. A subnetN1
x

Figure 7. A generated subnet tree
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Figure 8. A subnetN∗

x

result, Φ = {p3, p4, p5, p6, p8} and Θ0
x = {p4, p5, p8}.

Now, the removal ofp9 leads to generate a new subnet
nodeN∗

x as shown in Fig.8 and no source transition
exists inN∗

x . However, places ofN∗

x do not contain all
places inΦ, according to the algorithm 2, an arcp9 is
added fromN0

x to a null node andΦ is updated by
Φ = {p3, p4, p5, p6, p8, p9}.

Suppose that all places ofN0
x have been dealt with,

then the place setΘ0
x is obtained whereΘ0

x = {p4, p5, p8}
and the place setΦ is reset to be empty. Now we remove
p4 from N1

x . BecauseN0
x is the father node ofN1

x and
p4 is contained inΘ0

x, it is unnecessary to removep4
repeatedly, in consequence an arcp4 is directly added
from N1

x to a null node as shown in Fig.7, andΦ is
updated byΦ = {p4}.

By repeating these steps, the tree can be generated as
shown in Fig.7. Because each son node ofN2

x andN3
x

is a null node, two minimal siphons can be obtained
from the maximal unmarked siphon, they areS1 =
{p3, p4, p5, p8, p9, p13} andS2 = {p4, p5, p6, p8, p11}.

VI. CONCLUSIONS

Based on the algorithm proposed by Wang et al, this
paper introduces a fast method to extract the set of all
minimal siphons from unmarked maximal siphon obtained
by the MIP-based deadlock detection method. Redundant
computation is the major drawback of algorithm 2, it will
deeply influence the computational efficiency of minimal
siphons.

The major contribution of this paper is to avoid re-
dundant computation from three aspects. Firstly, no sink
places and transitions exist in the subnet of the tree.
Secondly, no equal non-null node exists in the tree.
Thirdly, since removal of a place from one subnet node
can lead to the removal of all places in it, the same
place of its son node is unnecessary to be computed
repeatedly. The result from experiment has shown that
this method can avoid redundant computation effectively
and computational complexity of all minimal siphons is
greatly simplified.

Nevertheless, all minimal siphons are still obtained
from an unmarked maximal siphon based on MIP method.
As we all know, MIP problem is theoretically NP-hard,

and the unmarked maximal siphon obtained by the MIP-
based deadlock detection method is not necessarily the
real existing siphon with fake reachable markings. There-
fore, the future work should focus on computing all
minimal siphons directly for a given Petri net.
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