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Abstract—Nowadays, applications are usually large-scale, 
this making tasks of comprehending and debugging 
software rather complicated. As a dynamic reduction 
technique for simplifying programs, dynamic program 
slicing is an effective and important approach for locating 
and diagnosing software attacks. However, most of the 
existing dynamic slicing tools perform slicing at the source 
code level, but the source code of most software is hard to 
acquire in practice. In order to cope with this issue, a novel 
lightweight dynamic slicing framework---DYBS, is proposed 
for diagnosing attacks on x86 binary programs. During the 
execution, DYBS first gathers the runtime profile 
information of the target program. Once the attack is 
encountered and set as the slicing criterion, the normal 
execution terminates, and a backward program slicing is 
started to locate the vulnerabilities. Furthermore, a 
Function Call Filtration optimization mechanism is 
proposed to improve the performance of the framework. It 
is proved in the experiments that DYBS can diagnose 
software attacks with much lower overhead than many 
other similar analyzing systems.  
 
Index Terms—Dynamic Program Slicing, Dynamic Binary 
Analysis, Attack Diagnosis, Software Security 
 

I. INTRODUCTION 

Nowadays, computers are affecting people more and 
more deeply in their work and daily life. With the 
increasing popularity of the Internet, the increasing 
number of available vulnerable software, and the 
elevating sophistication of the malicious code itself, 
malware, a collection term for malicious software which 
enters system without authorization of user of the system, 
is a big threat to today’s computing world [1-3]. 
Malicious users are able to gain access to confidential 
information inside the target platform, even take control 
of it by taking advantage of the designing flaws [4]. 

Take notorious buffer overflow as an instance, as 
shown in Fig.1, attackers can exploit this software 
vulnerability by manipulating the software input, and 
cause overwrite in the stack to take control of the 

execution stream of the program [5]. For clarity, the 
situation is described with C code while our framework is 
implemented to handle binaries. The code in the example 
gets data from input, and loads it into the buffer. The 
input contains a flag to indicate its characteristics. The 
program handles inputs with invalid data, ANSI format 
and UNICODE format differently. As Fig.1 presents, 
invalid and ANSI format data are taken good care of, but 
the procedure for dealing with UNICODE contains a 
design flaw which may cause buffer overflow. 

However, modern applications are usually large-scale, 
which makes understanding software and diagnosing 
attacks rather complicated. Therefore, when attacks occur 
in large-scale software, method of locating and 
diagnosing them at low cost is an interesting research 
direction. Program slicing, a program reduction technique 
that simplifies programs by removing parts labeled non-
relevant with respect to a slicing criterion, is gaining 
more and more attention in computer societies [6][7]. It is 
a promising technique for providing automatic support 
for various important software engineering activities, 
including software maintenance, software measurement, 

buffer[MAXLINELEN]; 
InputList *il; 
//code to handle input. 
if (il->flag == FLAG_INVALID) 

Input_invalid_procedure(il); 
else if(il->flag == FLAG_UNICODE) 

Input_unicode_procedure(buffer, il); 
else if(il->flag == FLAG_ANSI) 

Input_ansi_procedure(buffer, il); 
else 

... 
void Input_unicode_procedure(buffer, il) 

{ 
... 

sprintf(buffer, "%s", il->usr_str); //buffer overflow

... 
} 

Figure 1. A typical form of software vulnerability. 
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program comprehension, and program optimization. It is 
also been proved to be an effective approach to enhance 
security and diagnose attacks in software, and there are 
many applications have been proposed in this field, such 
as preserving data confidentiality for a target program [8], 
locating bugs in parallel programs [9], identifying attacks 
and bugs dynamically [10]. 

Generally, there are two approaches to implement this 
technique, static program slicing and dynamic program 
slicing. As the traditional form, static program slicing [6] 
relies purely on the information which is available at 
compile time. It is useful in providing a view of the 
overall behavior of a program without focusing on any 
particular execution. The technique has low overhead 
with respect to the utilization of system resources. Static 
slicing also helps in comprehending the overall 
dependencies of the selected slicing criterion. However, 
static slicing has the limitation of imprecision when it 
handles the dynamic structures (pointers, aliases and 
conditional statements) of the target program. Meanwhile, 
since static slices are computed for all possible 
executions rather than a specific execution, the generated 
slices are large. 

Dynamic program slicing [11] is a technique that does 
the program slicing in the actual process of running the 
target program. By using dynamic program slicing, users 
can extract the instructions and basic blocks (sequences 
of instructions ending with a single control transfer 
instruction) with respect to slicing criterion during the 
execution of the target program. The extracted 
instructions and basic blocks will constitute a subset of 
the total code. Compared with the static method, the 
dynamic approach has at least two advantages. Firstly, 
dynamic program slicing is more precise than its static 
counterpart since it takes the runtime information into 
consideration. Secondly, since dynamic slicing only 
focuses on a particular execution of the target program, 
the size of the slicing result is sharply decreased. 
However, the construction of a dynamic program slice is 
expensive since it requires tracing of the program’s 
execution [12]. In order to cope with this issue, much 
research [13][14] on dynamic program slicing is 
concerned with improving the algorithms for slicing both 
in terms of reducing the size of the slices and improving 
the time efficiency. 

Actually, most of the current dynamic slicing methods 
perform dynamic program slicing at the source code level. 
However the source code of many programs is not easy to 
acquire; this makes the task of dynamic slicing rather 
complicated or even impractical. DYBS, a new 
lightweight dynamic binary program slicing framework, 
is proposed in this paper to locate and diagnose attacks on 
x86 binary programs. DYBS first gathers the profile 
information during the execution of the target program. 
However, once the attack is encountered and set as the 
slicing criterion, the normal execution terminates and a 
backward program slicing is employed to locate the 
vulnerabilities of the target program. DYBS is built with 
the help of DynamoRIO [15], a code manipulating system 
to monitor the target binary program dynamically. 

Furthermore, a Function Call Filtration optimizing 
mechanism is proposed to improve the performance of 
the framework. In summary, this paper makes the 
following contributions: (1) proposes a novel dynamic 
binary program slicing framework---DYBS. It combines 
dynamic program slicing with binary analysis, and 
performs dynamic slicing analysis directly on the binary 
executables of target programs; this greatly expands the 
scope of the dynamic program slicing technology. (2) 
Applies this technique to diagnose vulnerabilities in and 
attacks on the software, and demonstrates the feasibility 
of this idea in experiments. (3) Organizes the slicing 
results by function CG (Call Graph) and CFG (Control 
Flow Graph) to make them more concise for the users. (4) 
Designs a Function Call Filtration optimization approach 
in the proposed framework to simplify the slicing process 
and further improve the performance. 

The remainder of the paper is organized as follows: In 
SectionⅡ, an overview of the framework is presented. In 
Section Ⅲ, DYBS is described and its implementation 
discussed. Section Ⅳ provides an experimental evaluation 
of the proposed framework. In Section Ⅴ , the related 
work is introduced. Finally, section Ⅵ briefly concludes 
this paper and outlines some future work. 

II. FRAMEWORK OVERVIEW 

As Fig.2 shows, the dynamic binary program slicing 
framework that we implemented, DYBS, contains the 
following main components: Dynamic Binary Code 
Execution Monitor, Basic Block Recognizer, Function 
Recognizer and Filter, Dynamic Slicing Engine, CFG 
(Control Flow Graph) Builder, CG (Call Graph) Builder, 
and Structural Slicing Result Constructor.  

The proposed DYBS is built on the DynamoRIO 
platform, a runtime code manipulation system that 
supports code transformation and instrumentation on any 
part of a target program. DynamoRIO is the IA-32 
version of Dynamo [31], and it is implemented for both 
IA-32 Windows and Linux operating systems. The goals 
of DynamoRIO are to run large desktop applications and 
to observe or potentially manipulate every single 
application prior to its execution. It takes basic blocks as 
the basic execution unit, copies these blocks into a code 
cache, and executes them natively. DynamoRIO capable 
of intercepting a variety of system calls, which greatly 
facilitates the tasks of attack diagnosis in DYBS.  

Binary Program 

Dynamic Binary Code Execution Monitor 
(DynamoRIO) 

Function Recognizer
& Filter

Basic Block 
Recognizer 

Function
Library

CFG Builder

CG Builder CG 

CFGs Structured 
Slicing Result 

Set 

Dynamic Slicing 
Engine 

Output Structured Slicing 
Result Constructor 

DYBS 

Figure 2. The overall framework of DYBS. 
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The workflow of the entire DYBS system can be 
described as follows: (1) the Dynamic Binary Code 
Execution Monitor first inserts the user-defined analysis 
code into the target program with the help of 
DynamoRIO. Then DYBS switches back to continue the 
execution of the instrumented target program, and 
meanwhile gets the profile information of this execution. 
(2) According to the definition of basic blocks, the Basic 
Block Recognizer merges the current instructions into a 
single basic block, and delivers it to the following 
components of DYBS. (3) The Function Recognizer deals 
with every function call during the execution of the target 
program. It combines basic blocks that belong to the 
same function. (4) During the execution of the target 
program, if a fatal error is encountered, the current 
execution terminates and an error is reported to the 
system. At this time, a backward slicing algorithm is 
started with respect to the slicing criterion (memory crash 
point address). (5) The Function Filter is used to optimize 
the performance of DYBS. It compares the current 
function with the functions that are contained in the user 
defined Function Library. If the current function already 
existed in the library, this function can be directly 
skipped in the process of code analysis; otherwise, it 
should be further analyzed by DYBS. (6) The Dynamic 
Slicing Engine executes the dynamic program slicing 
algorithm on the basic block set of the current function. It 
slices out the ones that are related to the slicing criterion. 
In the Slicing Engine, the CFG Builder analyzes the basic 
blocks in every function, organizes the basic block 
sequence and constructs the CFG of this function. (7) The 
CG Builder imitates the stack operations like an operation 
system to manage the call relationships of the function 
and utilizes the profile information to generate the CG of 
the whole program. (8) Once the CG of the whole 
program and the CFG of each function are available, the 
Structural Slicing Result Constructor is capable of 
organize the slicing results concisely. 

III. IMPLEMENTATION 

This section presents the key techniques for the 
implementation of DYBS, which includes dynamic 
binary program slicing, inter-procedure analyzing and 
real-time data processing, slicing result structuring, and 
system optimizing. 

A.  Dynamic Binary Program Slice 
Generally, program slicing can be divided into two 

categories: forward program slicing and backward 
program slicing. The dynamic binary program slicing in 
DYBS refers to the technique that analyzes and extracts 
instructions that affect or are affected by the slicing 
criterion. As mentioned previously, the primary goal of 
DYBS is to dynamically locate and diagnose software 
vulnerabilities when the attacks take place. This means it 
has to set the attack point, i.e. the memory address of the 
crash point, as the slicing criterion. Then it uses the 
backward program slicing technique to slice out basic 
blocks that affect this slicing criterion during the 
execution of the target program. Actually, the set of 

extracted basic blocks is a subset of the whole original 
program, and it is indeed executable. It is worth 
mentioning that DYBS is also capable of using forward 
program slicing. In the rest of this paper, we mainly 
discuss the backward program slicing mechanism of 
DYBS. 

In DYBS, the backward slicing algorithm it employs is 
called the Worklist Algorithm. As described in Fig.3, 
there are two inputs to the algorithm, the basic block set 
of the target program (W), and the memory address 
where the attack takes place (n). The output of the 
algorithm is a set of sliced basic blocks (S). In the 
algorithm, V is the intermediate instruction set to 
accommodate the slicing criteria in each iteration step, i 
and j are the loop iteration variables, vi is an arbitrary 
instruction of a basic block in V, and wj is an arbitrary 
instruction in W.  

The core idea of the Worklist Algorithm is this: for an 
arbitrary instruction vi in the slicing source set V, the 
algorithm judges whether each instruction wj (in W) 
before vi affects vi (i.e. the source operand of vi is the 
destination operand of wj). If it does, wj will be added to 
the sets V and S. Each time the judgment of vi finished, vi 
will be removed from the slicing source set V. The 
algorithm repeats the above steps and continuously 
updates the slicing source set V and slicing result set S, 
until the slicing source set V is empty. 

At the end of the execution of the backward Worklist 
Algorithm, the set S is the result that is composed of the 
extracted basic blocks. By this algorithm, users just need 
to analyze the sliced result rather than the whole program. 
This greatly narrows the scope of code analysis, and can 
improve the efficiency of locating and diagnosing attacks. 

B.  Inter-procedural Analysis 
During the process of dynamic program slicing, DYBS 

will automatically construct the CFGs and CG of the 
target program. With the two data structures, the 

Input
W: basic block set of the target program; 
n: memory address of the crash point. 

Output 
S: set of the sliced basic blocks 

1.  set V = Φ;  // V stores the slicing criterions in each iteration step
set S = Φ; //S stores basic blocks that selected during the slicing

process 
2.   i, j ∈N;   // i, j are the loop iterative variables 

vi is an arbitrary instruction of a basic block in V; 
wj is an arbitrary instruction of a basic block in W; 

3.   V←In;  //n is the slicing start point 
      //In is the instruction set corresponding to the memory address n
4.   while (V ≠ Φ) do 
5.       for (an arbitrary intermediate instruction vi in V) do 

        for (j = i → 0) do  // backward slicing 
             if vi’s source operand is the destination operand of wj
                 then V ← wj; 
                         S ← wj; 

                    endif 
            endfor 
       delete vi from V; 

endfor 
endwhile 

return S; 

Worklist Algorithm (Backward) 

Figure 3. Worklist backward program slicing algorithm. 
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scenarios of function calls, stack operation and basic 
block executing sequence can be imitated. DYBS collects 
the function call relationships and stores them in a tree 
where the callers are regarded as parent nodes and the 
callees as children nodes. With the call graph, users can 
acquire the function call hierarchy of the target program, 
and it is very convenient for them to locate the 
vulnerabilities. A CFG describes the basic block 
execution sequence of a single function. From the CFG, 
users can obtain the basic block dependencies of a 
function. Meanwhile, the CFG properly ensures the 
correctness of a slicing algorithm when it executes on a 
program. 

In DYBS, a data structure (called a Bitmap) is 
employed to record the slicing states of all basic blocks. 
For an arbitrary bit in the Bitmap, a 1 indicates that the 
basic block is included in the slicing result set, and 0 that 
is not. This method is efficient and requires less storage 
space. With the help of stack operation information from 
CG and CFGs, DYBS is capable of breaking through the 
function field limitation and perform the inter-procedural 
analysis easily. 

C.  Real-time Data Proces 
Since DYBS performs its analysis during the running 

of the target program, it can acquire a lot of runtime 
information, such as the actual values of pointer variables 
and the values of array indices. So, it is more precise and 
effective than static program slicing. Since all variables 
are assigned a specific value during the runtime, DYBS 
can deal with pointer variables easily. Actually, a pointer 
variable is just a variable that stores the addresses of data 
or instructions, so, it can be treated as a common variable 
during the dynamic binary analysis. 

The loop structure is another tough problem for static 
binary analyzers, since they cannot statically discover 
how many iterations of a loop will take place, and this 
problem becomes worse when they encounter endless 
loops. To address the problem, many static solutions set 
an upper limit N for the maximum iteration number of a 
loop, so a loop will automatically terminate when the 
number of iterations is greater than N. For a dynamic 
analyzer, the objects analyzed are the real executing basic 
blocks, and the number of iterations for a loop depends 
on the specific execution of the target program. So, the 
number of iterations in DYBS is a specific value, and we 
do not need any special treatment for loop structures. 

D.  Slicing Results Organization 
As mentioned previously, the CFG describes the 

execution order of basic blocks of a single function, and 
the CG describes the function calling hierarchy of the 
whole target program. The two data structures can clearly 
display the slicing results. However, since the slicing 
algorithm that is implemented in DYBS is a kind of 
dynamic inter-procedural analysis, the analyzed basic 
blocks are not from a single function, but from different 
functions on the execution path (that is, the extracted 
basic blocks are the dynamic executed blocks from the 
same execution path). 

For the purpose of reducing the workload of 
diagnosing attacks, DYBS takes the execution path as the 
main line to organize the slicing results. As an example, 
Fig.4 shows part of the result of inter-procedural dynamic 
program slicing for a matrix multiplication target 
program. The oval nodes represent basic blocks, and each 
block is identified by the address of its first instruction. 
The red line in the figure shows the execution sequence. 

F.  System Optimization 
Like many other dynamic analyzing systems, DYBS 

also has tremendous overhead during its execution. This 
section provides a Function Call Filtration mechanism to 
optimize the proposed framework. The Function Call 
Filtration mechanism first inspects the slicing 
propagation behaviors of certain parts of the target 
program, and determines whether these parts will affect 
the slicing criterion or not. If it is known in advance that 
some parts will not affect the slicing criterion and they 
are stored in the library, then, the slicing process can skip 
them to avoid processing them in the target program. 

A)  API Checking 
In most cases, systems have to use a large percentage 

of their resources (space and time) to process API 
functions. However, the features of most APIs in the 
system library can be determined, and it is not necessary 
to analyze them in every instance. So, the API inspecting 
is a key part of this optimization mechanism.  

Actually, according to a common observation, a large 
part of the binary code in software is directly loaded from 
the system library, such as kernel32.dll, USER32.dll and 
ntdll.dll. The behaviors of these modules are predictable 
and it is not necessary to check every instruction in them. 
The Function Call Filtration mechanism tries to check the 
propagation behaviors of these API functions and then 
skip them in the analyzing process. In the first place, it 
has to examine the source code and the propagation 
behaviors of these APIs and store them in the user 
defined Function Library. 

Table 1 shows the sample of propagation behaviors of 
some APIs. In the table, column RetValNum and 
ParaNum represent the number of return values and the 

Figure 4. The CFG generated by inter-procedural slicing analysis. 
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Panorama (slowed down the target programs by 20x on 
average), Dytan (50x), LIFT (3.6x) and TaintCheck (20x), 
DYBS inflicted much lower runtime overhead (1.41x). 
DYBS achieved this better performance mainly because 
of the slicing algorithm, the Function Call Filtration 
optimizing mechanism, and the efficiency of the 
underlying DynamoRIO system. 

B.  Effectiveness Evaluation 
This subsection presents two experiments, function 

analysis and inter-procedural analysis, to evaluate the 
effectiveness of DYBS. The tested applications that been 
selected in these experiments were all widely used in both 
personal computers and Internet. 

A) Inner-procedural Dynamic Binary Slicing 

As described in Table 3, the target functions were both 
mature and small applications. Ping is a computer 
network administration utility used to test the reachability 
of a host on an Internet Protocal (IP) network and to 
measure the round-trip time for a message sent from the 
originating host to a destination computer. Netstat 
(network statistics) is a command-line tool that used to 
display network connections (both incoming and 
outgoing), routing tables, and a number of network 
interface statistics. It is useful for finding problems and 
determining the amount of traffics in the network. The 
Tracert command is used to trace the route of a network 
packet and to determine the number of hops required for 
the packet to get to its destination. Comp is a simple 
command that compares two groups of files to find 

information that does not match. Findstr is a command 
used in MS-DOS to find a specific string of a plain text. 

In the experiment, the entry address of each tested 
function is set as the slicing criterion, and DYBS is 
employed to get the interesting parts of the tested target 
programs. In Table 3, the column AppNa represents the 
name of the target function, FEAdd is the entry address of 
the corresponding target program, NOIns represents the 
number of instructions in the target program, FSliCri the 
forward slicing criterion, FSINum the number of sliced 
instructions with forward slicing, FSliRate the forward 
slicing rate, BSliCri the backward slicing criterion, 
BSINum the number of sliced instructions with backward 
slicing, and BSliRate the backward slicing rate. From 
Table 3, we can see that the number of the sliced 
instructions of the tested programs was much less than in 
the original programs with either forward or backward 
slicing. In the table, the results of the slicing rate were 
derived from equation (2): 

      
100%×

Number nsinsturctio programTarget 
number nsinsturctio Sliced

Rate Slicing =         (2) 

B) Inter-procedural Dynamic Binary Analysis 

This experiment is carried out to verify the 
effectiveness of DYBS across all functions of the target 
program. The tested programs in the experiment are all 
commonly used in computers. Notepad is a simple text 
editor in Windows, Calc is a calculator in Windows, 
Matrix is a program for calculating matrix multiplication, 
and gzip is an application for compressing and 
uncompressing files. In the experiment, the input of each 
program is set as the slicing criterion. Table 4 displays 
the results. The column APPNa has the name of the target 
application, OriCallNun the number of calls in the 
original target program, SliedCallNum the number of 
function calls in the slicing result, FunSliedRate the 
function slicing rate, OriBBNum the number of basic 
blocks in the target program, SliedBBNun the number of 
basic blocks in the slicing result, and BBSliedRate the 
basic block slicing rate. The results for FunSliedRate and 
BBSliedRate are derived from equations (3) and (4) 
respectively: 
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Figure 6. System overhead comparison between DYBS and other attack 
diagnosis tools.

TABLE 4.
THE INTER-PROCEDURAL DYNAMIC BINARY SLING RESULTS OF DYBS 

AppNa OriCallNun SliedCallNum FunSliedRate OriBBNum SliedBBNun BBSliedRate 
Notepad 59 15 25.4% 1790 175 9.7% 

Calc 95 9 9.5% 1581 192 12.1% 
gzip 457 13 2.8% 388 43 11.1% 

Matirx 169 1 0.6% 109 69 63.3% 
 

TABLE 3.
THE SLICING RESULTS OF A SINGLE FUNCTION 

AppNa FEAdd NOIns FSliCri FSINum FSliRate BSliCri BSINum BSliRate
ping 0x1002b22 108 ebp 52 48% ebp 61 56% 

netstat 0x1004fe0 21 eax 12 57% eax 2 10% 
tracert 0x1001591 184 esp 84 46% esp 108 59% 
comp 0x1002ee7 52 esp 23 44% esp 21 40% 
findstr 0x1002ca7 51 esp 14 27% esp 18 35% 
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100%×
programTarget in  callsfunction  ofNumber 

callsfunction  sliced ofNumber 
teFunSliedRa =     (3) 

      100%×
program target in the blocks basic ofNumber 

blocks basic sliced ofNumber eBBSliedRat =

   
(4) 

From table 4, we see that the number of function calls 
and basic blocks are sharply decreased in the slicing 
results. 

C.  Accuracy and Practicality Evaluation 
In this experiment, four popularly used applications are 

selected to test the accuracy and practicality of the 
framework. The experiment tries to use DYBS to 
discover vulnerabilities regardless they are the known 
attacks or potential vulnerabilities. Table 5 provides the 
analyzed results by running hangul HWP (a word 
processing software for Korean), JustSystems Ichitaro (a 
word processing software for Japanese), IrfanView (a free 
graphic viewer for Windows), and Foxit Reader (a widely 
used document processor for Chinese) on DYBS. 

In Table 5, the column Attacks contains the number of 
attacks that incorporated in the tested target programs. 
Actually, all attacks in the tested target programs are 
defined by the CVE (Common Vulnerabilities & 
Exposures) vulnerabilities library. The Attack Source 
describes the attack source for the corresponding target 
program. The Discovered Attacks describes the number 
of attacks of the target programs that discovered by 
DYBS. From the data that shown in the table, we see that 
all the predefined (by CVE library) attacks are discovered 
by DYBS, so the recognition ratio is 100%. 

In the experiment, forward program slicing is used to 
find the potential vulnerabilities of the tested target 
programs. During this process, the inputs of each 
program are set as the slicing criterion. So, if there are 
functions (e.g. strcpy()) that might cause buffer overflow, 
DYBS would give an alert for a potential vulnerability. In 
Table 5, the column Potential Vulnerabilities gives the 
number of potential vulnerabilities that are discovered by 
DYBS. 

Since the CVE library does not contain the 
vulnerability information for the hangul HWP target 
program, and we cannot define the vulnerabilities 
ourselves, the corresponding columns of the hangul HWP 
target program are set null. 

V. RELATED WORK 

Since it is an effective approach, much research 
focuses on employing program slicing technology to 
detect vulnerabilities and improve the security of 

software. PSE [16] is a static program slicing technique 
for diagnosing program failures. It is precise because of 
its consideration of error conditions. It is similar to Das’s 
earlier work, ESP [17], a symbolic dataflow analysis 
engine. Using program slicing, Monate [8] introduces an 
automatic source-to-source method to preserve the 
confidentiality of the target program. 

As well as the static program slicing technique, many 
researches are focusing on its dynamic counterpart. Pan 
[18] presents a family of heuristics for fault localization 
using dynamic slicing. Kamkar et al. [19] present a 
generalized version of an algorithmic debugger, a method 
of semi-automatic bug localization. By using dynamic 
program slicing, they can compute which parts of the 
target program are relevant for the research. Based on the 
barrier slicing, Cellato [20] proposes a solution to identify 
the parts of the client code that have to be moved to the 
server to protect unsafe variables. He also investigates the 
trade-off between security loss and performance overhead 
of his method [21]. In the process of dynamic slice 
computation, different types of information are computed 
and then discarded after the computation of dynamic 
slicing. Korel et al. [22] first exploit the features of these 
kinds of information (e.g. executable dynamic slices, 
partial dynamic slicing, influencing variables, and 
contributing nodes), then incorporate them into their 
dynamic slicing tool to improve the process of program 
debugging. Similar to Korel’s work, Tibro [23] also 
introduces a forward computation method for relevant 
slices; it requires less space. By integrating the potential 
of a delta debugging algorithm with forward and 
backward dynamic slicing, Neelam [10] narrows down 
the scope of the search for the faulty code. 

Researches on static and dynamic program slicing 
mentioned above are all based on the availability of 
source code of the target programs. However, the source 
code of many programs is not easy to obtain in practice, 
which makes this type of slicing computation impossible.  

There are also many dynamic binary taint analysis 
tools which, likes DYBS, work with object code. 
TaintCheck [24] is a runtime taint analysis approach; that 
automatically detects most types of attacks on binary-
level applications. TaintCheck uses the heavy weight 
binary instrumentation framework Valgrind [25], so its 
overhead is high. LIFT [26] is a software-only 
information flow tracking system that uses StarDBT [27] 
for detecting software attacks on x86 binary applications. 
During the execution of the target program, LIFT first 
dynamically instruments the binary code and tracks its 
information flow, then, if unsafe data is detected, it 

TABLE 5.
ATTACKS DIAGNOSING AND POTENTIAL VULNERABILITIES DISCOVERING IN DYBS 

Target Program Attacks Discovered 
Attacks 

Potential 
Vulnerabilities Attack source 

hangul HWP / / 3 / 

JustSystems Ichitaro 3 3 1 CVE-2010-3915,CVE-2010-3916 

Irfan View 4.25 32 32 3 CVE-2010-1509 

Foxit Reader 3.0 build 1120 22 22 17 CVE-2009-0836,CVE-2009-0837 

566 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER



switches the program control flow to process it. 
Furthermore, LIFT is a system that emphasizes efficiency, 
and employs three binary optimization methods, Fast 
Path (FP), Merged Check (MC) and Fast Switch (FS), to 
optimize its performance. Dytan [28] is also a dynamic 
taint analyzing system for x86 binaries. Dytan is designed 
to be general and flexible, so it allows for implementing 
different kinds of techniques based on dynamic taint 
analysis with little effort. However, its general and 
flexible features seriously degrade the performance of the 
system. Panorama [29] is a hardware-assisted flow 
tracking system that is implemented on QEMU [30] for 
detecting and analyzing malicious software on 
commodity desktops. 

DYBS is also a dynamic binary taint analysis 
framework implemented using a dynamic instrumentation 
system; however, the way of achieving the taint analysis 
goal of DYBS is different from the frameworks 
mentioned above. In DYBS, the dynamic program slicing 
mechanism is employed to analyze the target programs. 
For the same reason, the performance of DYBS is much 
better than the other systems (as described in Fig.6). 

VI. CONCLUSIONS AND FUTURE WORK 

DYBS is a dynamic binary program slicing framework, 
and it is designed to diagnose attacks in binary-level 
target programs. During the execution, DYBS first 
gathers the profile information by deploying the 
analyzing instructions in the target program. However, 
once an attack is encountered, normal execution 
terminates, and backward program slicing is employed to 
slice the target program. Using the attack point as the 
slicing criterion, DYBS slices out basic blocks related to 
the slicing criterion and organizes them into an 
executable subset. DYBS constructs a CFG to organize 
basic blocks in each function, and builds a CG for the 
whole target program to implement inter-procedural 
program slicing. Based on the organized and structured 
slicing results, users can locate and diagnose attacks 
easily. Furthermore, the Function Call Filtration 
optimization mechanism is proposed to optimize the 
process of dynamic slicing. Results of the experiments on 
SEPC CINT2006 benchmarks and several popularly used 
applications show that DYBS is efficient, accurate, and 
practical.  

The results to data have been promising and research is 
continuing on extending and improving the framework. 
The extensions and improvements include: (1) contriving 
better optimizing methods to improve the efficiency of 
the framework; (2) strengthening the ability to analyze 
large-scale target programs to improve the accuracy of 
the framework; (3) expanding the usage scope to improve 
the practicability of the framework. 
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