
DYBS: A Lightweight Dynamic Slicing
Framework for Diagnosing Attacks on x86

Binary Programs
Erzhou Zhu, Feng Liu, Xianyong Fang, Xuejun Li*

Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education & School of Computer
Science and Technology, Anhui University, Hefei, China
Email: {ezzhu, fengliu, fangxianyong, xjli}@ahu.edu.cn

Yindong Yang, Alei Liang
Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

Email: {yasaka, aleiliang}@sjtu.edu.cn

Abstract—Nowadays, applications are usually large-scale,
this making tasks of comprehending and debugging
software rather complicated. As a dynamic reduction
technique for simplifying programs, dynamic program
slicing is an effective and important approach for locating
and diagnosing software attacks. However, most of the
existing dynamic slicing tools perform slicing at the source
code level, but the source code of most software is hard to
acquire in practice. In order to cope with this issue, a novel
lightweight dynamic slicing framework---DYBS, is proposed
for diagnosing attacks on x86 binary programs. During the
execution, DYBS first gathers the runtime profile
information of the target program. Once the attack is
encountered and set as the slicing criterion, the normal
execution terminates, and a backward program slicing is
started to locate the vulnerabilities. Furthermore, a
Function Call Filtration optimization mechanism is
proposed to improve the performance of the framework. It
is proved in the experiments that DYBS can diagnose
software attacks with much lower overhead than many
other similar analyzing systems.

Index Terms—Dynamic Program Slicing, Dynamic Binary
Analysis, Attack Diagnosis, Software Security

I. INTRODUCTION

Nowadays, computers are affecting people more and
more deeply in their work and daily life. With the
increasing popularity of the Internet, the increasing
number of available vulnerable software, and the
elevating sophistication of the malicious code itself,
malware, a collection term for malicious software which
enters system without authorization of user of the system,
is a big threat to today’s computing world [1-3].
Malicious users are able to gain access to confidential
information inside the target platform, even take control
of it by taking advantage of the designing flaws [4].

Take notorious buffer overflow as an instance, as
shown in Fig.1, attackers can exploit this software
vulnerability by manipulating the software input, and
cause overwrite in the stack to take control of the

execution stream of the program [5]. For clarity, the
situation is described with C code while our framework is
implemented to handle binaries. The code in the example
gets data from input, and loads it into the buffer. The
input contains a flag to indicate its characteristics. The
program handles inputs with invalid data, ANSI format
and UNICODE format differently. As Fig.1 presents,
invalid and ANSI format data are taken good care of, but
the procedure for dealing with UNICODE contains a
design flaw which may cause buffer overflow.

However, modern applications are usually large-scale,
which makes understanding software and diagnosing
attacks rather complicated. Therefore, when attacks occur
in large-scale software, method of locating and
diagnosing them at low cost is an interesting research
direction. Program slicing, a program reduction technique
that simplifies programs by removing parts labeled non-
relevant with respect to a slicing criterion, is gaining
more and more attention in computer societies [6][7]. It is
a promising technique for providing automatic support
for various important software engineering activities,
including software maintenance, software measurement,

buffer[MAXLINELEN];
InputList *il;
//code to handle input.
if (il->flag == FLAG_INVALID)

Input_invalid_procedure(il);
else if(il->flag == FLAG_UNICODE)

Input_unicode_procedure(buffer, il);
else if(il->flag == FLAG_ANSI)

Input_ansi_procedure(buffer, il);
else

...
void Input_unicode_procedure(buffer, il)

{
...

sprintf(buffer, "%s", il->usr_str); //buffer overflow

...
}

Figure 1. A typical form of software vulnerability.

* Corresponding Author

560 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.3.560-568

program comprehension, and program optimization. It is
also been proved to be an effective approach to enhance
security and diagnose attacks in software, and there are
many applications have been proposed in this field, such
as preserving data confidentiality for a target program [8],
locating bugs in parallel programs [9], identifying attacks
and bugs dynamically [10].

Generally, there are two approaches to implement this
technique, static program slicing and dynamic program
slicing. As the traditional form, static program slicing [6]
relies purely on the information which is available at
compile time. It is useful in providing a view of the
overall behavior of a program without focusing on any
particular execution. The technique has low overhead
with respect to the utilization of system resources. Static
slicing also helps in comprehending the overall
dependencies of the selected slicing criterion. However,
static slicing has the limitation of imprecision when it
handles the dynamic structures (pointers, aliases and
conditional statements) of the target program. Meanwhile,
since static slices are computed for all possible
executions rather than a specific execution, the generated
slices are large.

Dynamic program slicing [11] is a technique that does
the program slicing in the actual process of running the
target program. By using dynamic program slicing, users
can extract the instructions and basic blocks (sequences
of instructions ending with a single control transfer
instruction) with respect to slicing criterion during the
execution of the target program. The extracted
instructions and basic blocks will constitute a subset of
the total code. Compared with the static method, the
dynamic approach has at least two advantages. Firstly,
dynamic program slicing is more precise than its static
counterpart since it takes the runtime information into
consideration. Secondly, since dynamic slicing only
focuses on a particular execution of the target program,
the size of the slicing result is sharply decreased.
However, the construction of a dynamic program slice is
expensive since it requires tracing of the program’s
execution [12]. In order to cope with this issue, much
research [13][14] on dynamic program slicing is
concerned with improving the algorithms for slicing both
in terms of reducing the size of the slices and improving
the time efficiency.

Actually, most of the current dynamic slicing methods
perform dynamic program slicing at the source code level.
However the source code of many programs is not easy to
acquire; this makes the task of dynamic slicing rather
complicated or even impractical. DYBS, a new
lightweight dynamic binary program slicing framework,
is proposed in this paper to locate and diagnose attacks on
x86 binary programs. DYBS first gathers the profile
information during the execution of the target program.
However, once the attack is encountered and set as the
slicing criterion, the normal execution terminates and a
backward program slicing is employed to locate the
vulnerabilities of the target program. DYBS is built with
the help of DynamoRIO [15], a code manipulating system
to monitor the target binary program dynamically.

Furthermore, a Function Call Filtration optimizing
mechanism is proposed to improve the performance of
the framework. In summary, this paper makes the
following contributions: (1) proposes a novel dynamic
binary program slicing framework---DYBS. It combines
dynamic program slicing with binary analysis, and
performs dynamic slicing analysis directly on the binary
executables of target programs; this greatly expands the
scope of the dynamic program slicing technology. (2)
Applies this technique to diagnose vulnerabilities in and
attacks on the software, and demonstrates the feasibility
of this idea in experiments. (3) Organizes the slicing
results by function CG (Call Graph) and CFG (Control
Flow Graph) to make them more concise for the users. (4)
Designs a Function Call Filtration optimization approach
in the proposed framework to simplify the slicing process
and further improve the performance.

The remainder of the paper is organized as follows: In
SectionⅡ, an overview of the framework is presented. In
Section Ⅲ, DYBS is described and its implementation
discussed. Section Ⅳ provides an experimental evaluation
of the proposed framework. In Section Ⅴ , the related
work is introduced. Finally, section Ⅵ briefly concludes
this paper and outlines some future work.

II. FRAMEWORK OVERVIEW

As Fig.2 shows, the dynamic binary program slicing
framework that we implemented, DYBS, contains the
following main components: Dynamic Binary Code
Execution Monitor, Basic Block Recognizer, Function
Recognizer and Filter, Dynamic Slicing Engine, CFG
(Control Flow Graph) Builder, CG (Call Graph) Builder,
and Structural Slicing Result Constructor.

The proposed DYBS is built on the DynamoRIO
platform, a runtime code manipulation system that
supports code transformation and instrumentation on any
part of a target program. DynamoRIO is the IA-32
version of Dynamo [31], and it is implemented for both
IA-32 Windows and Linux operating systems. The goals
of DynamoRIO are to run large desktop applications and
to observe or potentially manipulate every single
application prior to its execution. It takes basic blocks as
the basic execution unit, copies these blocks into a code
cache, and executes them natively. DynamoRIO capable
of intercepting a variety of system calls, which greatly
facilitates the tasks of attack diagnosis in DYBS.

Binary Program

Dynamic Binary Code Execution Monitor
(DynamoRIO)

Function Recognizer
& Filter

Basic Block
Recognizer

Function
Library

CFG Builder

CG Builder CG

CFGs Structured
Slicing Result

Set

Dynamic Slicing
Engine

Output Structured Slicing
Result Constructor

DYBS

Figure 2. The overall framework of DYBS.

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 561

© 2014 ACADEMY PUBLISHER

The workflow of the entire DYBS system can be
described as follows: (1) the Dynamic Binary Code
Execution Monitor first inserts the user-defined analysis
code into the target program with the help of
DynamoRIO. Then DYBS switches back to continue the
execution of the instrumented target program, and
meanwhile gets the profile information of this execution.
(2) According to the definition of basic blocks, the Basic
Block Recognizer merges the current instructions into a
single basic block, and delivers it to the following
components of DYBS. (3) The Function Recognizer deals
with every function call during the execution of the target
program. It combines basic blocks that belong to the
same function. (4) During the execution of the target
program, if a fatal error is encountered, the current
execution terminates and an error is reported to the
system. At this time, a backward slicing algorithm is
started with respect to the slicing criterion (memory crash
point address). (5) The Function Filter is used to optimize
the performance of DYBS. It compares the current
function with the functions that are contained in the user
defined Function Library. If the current function already
existed in the library, this function can be directly
skipped in the process of code analysis; otherwise, it
should be further analyzed by DYBS. (6) The Dynamic
Slicing Engine executes the dynamic program slicing
algorithm on the basic block set of the current function. It
slices out the ones that are related to the slicing criterion.
In the Slicing Engine, the CFG Builder analyzes the basic
blocks in every function, organizes the basic block
sequence and constructs the CFG of this function. (7) The
CG Builder imitates the stack operations like an operation
system to manage the call relationships of the function
and utilizes the profile information to generate the CG of
the whole program. (8) Once the CG of the whole
program and the CFG of each function are available, the
Structural Slicing Result Constructor is capable of
organize the slicing results concisely.

III. IMPLEMENTATION

This section presents the key techniques for the
implementation of DYBS, which includes dynamic
binary program slicing, inter-procedure analyzing and
real-time data processing, slicing result structuring, and
system optimizing.

A. Dynamic Binary Program Slice
Generally, program slicing can be divided into two

categories: forward program slicing and backward
program slicing. The dynamic binary program slicing in
DYBS refers to the technique that analyzes and extracts
instructions that affect or are affected by the slicing
criterion. As mentioned previously, the primary goal of
DYBS is to dynamically locate and diagnose software
vulnerabilities when the attacks take place. This means it
has to set the attack point, i.e. the memory address of the
crash point, as the slicing criterion. Then it uses the
backward program slicing technique to slice out basic
blocks that affect this slicing criterion during the
execution of the target program. Actually, the set of

extracted basic blocks is a subset of the whole original
program, and it is indeed executable. It is worth
mentioning that DYBS is also capable of using forward
program slicing. In the rest of this paper, we mainly
discuss the backward program slicing mechanism of
DYBS.

In DYBS, the backward slicing algorithm it employs is
called the Worklist Algorithm. As described in Fig.3,
there are two inputs to the algorithm, the basic block set
of the target program (W), and the memory address
where the attack takes place (n). The output of the
algorithm is a set of sliced basic blocks (S). In the
algorithm, V is the intermediate instruction set to
accommodate the slicing criteria in each iteration step, i
and j are the loop iteration variables, vi is an arbitrary
instruction of a basic block in V, and wj is an arbitrary
instruction in W.

The core idea of the Worklist Algorithm is this: for an
arbitrary instruction vi in the slicing source set V, the
algorithm judges whether each instruction wj (in W)
before vi affects vi (i.e. the source operand of vi is the
destination operand of wj). If it does, wj will be added to
the sets V and S. Each time the judgment of vi finished, vi
will be removed from the slicing source set V. The
algorithm repeats the above steps and continuously
updates the slicing source set V and slicing result set S,
until the slicing source set V is empty.

At the end of the execution of the backward Worklist
Algorithm, the set S is the result that is composed of the
extracted basic blocks. By this algorithm, users just need
to analyze the sliced result rather than the whole program.
This greatly narrows the scope of code analysis, and can
improve the efficiency of locating and diagnosing attacks.

B. Inter-procedural Analysis
During the process of dynamic program slicing, DYBS

will automatically construct the CFGs and CG of the
target program. With the two data structures, the

Input
W: basic block set of the target program;
n: memory address of the crash point.

Output
S: set of the sliced basic blocks

1. set V = Φ; // V stores the slicing criterions in each iteration step
set S = Φ; //S stores basic blocks that selected during the slicing

process
2. i, j ∈N; // i, j are the loop iterative variables

vi is an arbitrary instruction of a basic block in V;
wj is an arbitrary instruction of a basic block in W;

3. V←In; //n is the slicing start point
 //In is the instruction set corresponding to the memory address n
4. while (V ≠ Φ) do
5. for (an arbitrary intermediate instruction vi in V) do

 for (j = i → 0) do // backward slicing
 if vi’s source operand is the destination operand of wj
 then V ← wj;
 S ← wj;

 endif
 endfor
 delete vi from V;

endfor
endwhile

return S;

Worklist Algorithm (Backward)

Figure 3. Worklist backward program slicing algorithm.

562 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

scenarios of function calls, stack operation and basic
block executing sequence can be imitated. DYBS collects
the function call relationships and stores them in a tree
where the callers are regarded as parent nodes and the
callees as children nodes. With the call graph, users can
acquire the function call hierarchy of the target program,
and it is very convenient for them to locate the
vulnerabilities. A CFG describes the basic block
execution sequence of a single function. From the CFG,
users can obtain the basic block dependencies of a
function. Meanwhile, the CFG properly ensures the
correctness of a slicing algorithm when it executes on a
program.

In DYBS, a data structure (called a Bitmap) is
employed to record the slicing states of all basic blocks.
For an arbitrary bit in the Bitmap, a 1 indicates that the
basic block is included in the slicing result set, and 0 that
is not. This method is efficient and requires less storage
space. With the help of stack operation information from
CG and CFGs, DYBS is capable of breaking through the
function field limitation and perform the inter-procedural
analysis easily.

C. Real-time Data Proces
Since DYBS performs its analysis during the running

of the target program, it can acquire a lot of runtime
information, such as the actual values of pointer variables
and the values of array indices. So, it is more precise and
effective than static program slicing. Since all variables
are assigned a specific value during the runtime, DYBS
can deal with pointer variables easily. Actually, a pointer
variable is just a variable that stores the addresses of data
or instructions, so, it can be treated as a common variable
during the dynamic binary analysis.

The loop structure is another tough problem for static
binary analyzers, since they cannot statically discover
how many iterations of a loop will take place, and this
problem becomes worse when they encounter endless
loops. To address the problem, many static solutions set
an upper limit N for the maximum iteration number of a
loop, so a loop will automatically terminate when the
number of iterations is greater than N. For a dynamic
analyzer, the objects analyzed are the real executing basic
blocks, and the number of iterations for a loop depends
on the specific execution of the target program. So, the
number of iterations in DYBS is a specific value, and we
do not need any special treatment for loop structures.

D. Slicing Results Organization
As mentioned previously, the CFG describes the

execution order of basic blocks of a single function, and
the CG describes the function calling hierarchy of the
whole target program. The two data structures can clearly
display the slicing results. However, since the slicing
algorithm that is implemented in DYBS is a kind of
dynamic inter-procedural analysis, the analyzed basic
blocks are not from a single function, but from different
functions on the execution path (that is, the extracted
basic blocks are the dynamic executed blocks from the
same execution path).

For the purpose of reducing the workload of
diagnosing attacks, DYBS takes the execution path as the
main line to organize the slicing results. As an example,
Fig.4 shows part of the result of inter-procedural dynamic
program slicing for a matrix multiplication target
program. The oval nodes represent basic blocks, and each
block is identified by the address of its first instruction.
The red line in the figure shows the execution sequence.

F. System Optimization
Like many other dynamic analyzing systems, DYBS

also has tremendous overhead during its execution. This
section provides a Function Call Filtration mechanism to
optimize the proposed framework. The Function Call
Filtration mechanism first inspects the slicing
propagation behaviors of certain parts of the target
program, and determines whether these parts will affect
the slicing criterion or not. If it is known in advance that
some parts will not affect the slicing criterion and they
are stored in the library, then, the slicing process can skip
them to avoid processing them in the target program.

A) API Checking
In most cases, systems have to use a large percentage

of their resources (space and time) to process API
functions. However, the features of most APIs in the
system library can be determined, and it is not necessary
to analyze them in every instance. So, the API inspecting
is a key part of this optimization mechanism.

Actually, according to a common observation, a large
part of the binary code in software is directly loaded from
the system library, such as kernel32.dll, USER32.dll and
ntdll.dll. The behaviors of these modules are predictable
and it is not necessary to check every instruction in them.
The Function Call Filtration mechanism tries to check the
propagation behaviors of these API functions and then
skip them in the analyzing process. In the first place, it
has to examine the source code and the propagation
behaviors of these APIs and store them in the user
defined Function Library.

Table 1 shows the sample of propagation behaviors of
some APIs. In the table, column RetValNum and
ParaNum represent the number of return values and the

Figure 4. The CFG generated by inter-procedural slicing analysis.

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 563

© 2014 ACADEMY PUBLISHER

number of p
represents th
formally re
destination>,
each API fun
destination w
operand of t
destination o
destination.
parameter wi
means param

B) Function
After the

summarized,
decision of th
(1) If the c

slicing
affected
slicing
algorith
of funct

(2) If a fun
the slic
then th
paramet
result se

(3) If a func
the affe
in the sl

With these
free from ins

This secti
efficiency o
performance
analyzing to

G

R
U

CONFIGURA
Hardwa

C
R

HD

parameters of
he length of
epresented a
, shows the s
nction. The a

will affect the
the instructio
operand of t
For exampl

ill be affected
meter 2 will aff

Call Filtratin
e propagatio
, some princ
he Function F
code of a fu
features, i.e.

d by the cod
result set doe

hm is performe
tion should be
nction perform
cing propagati
he slicing p
ters should b
et.
ction can prop

ected destinati
licing results.
e principles, i
strumenting an

IV. EXPERIM

ion describes
of DYBS.

among DY
ools. Two exa

THE RE

FunctionName
GetModuleHandle

SetLastError
LstrlenW

CloseHandle
RemoveDirectoryW
UnmapViewOfFil

CreateFileW
LoadStringW

CharUpper
--initterm
wcsncpy

T
ATION DETAILS OF
are/Software
CPU
RAM

D Disk

OS

f each API fu
f the return v
as <slicing
slicing propag
angle bracket
e slicing sour
on of the slic
the instructio
le, <1, ret>

d by the return
ffect parameter

ng
on behaviors
ciples are us

Filter:
unction does n

it does not
e of other fu
es not change
ed on this fun
e skipped.
ms some opera
ion features

propagation f
be removed

pagate the slic
ion data shoul

irrelevant AP
nd analyzing.

MENTAL RESU

s experiments
Two comp

YBS, Native,
amine effecti

ELATED INFORMA

ModuleN
eA Kernel3

Kernel3
Kernel3
Kernel3

W Kernel3
le Kernel3

Kernel3
User32
User32

MSVCR
MSVCR

TABLE 2.
F THE EXPERIMEN

Con
Intel C

DDR
Seag

(250G
Wind

unction. RetVa
value. Slicing

source, sl
gation feature
means the sl

rce, i.e. the so
cing source is
on of the sl
 means the

n value, and <
r 1.

s of APIs
sed to guide

not propagate
affect and is

unctions, then
e after the sl

nction. So this

ations to elim
of its parame
features of t

from the sl

cing features,
ld be incorpo

I functions ca

ULTS

s to evaluate
pare the ov

and other a
veness of DY

TION OF A PART O

Name RetV
2.dll
2.dll
2.dll
2.dll
2.dll
2.dll
2.dll

2.dll
2.dll
RT.dll
RT.dll

NTAL ENVIRONME
nfigurations
Core2 (3.0GHz)
R2-667 (2GB)

gate SATA
GB 5400RPM)
dowsXP SP3

alLen
gPro,
licing
es of
licing
ource
s the
licing
e 1st
1, 2>

are
e the

e the
s not
n the
licing
 kind

minate
eters,
these
licing

 then
orated

an be

e the
verall
attack
YBS.

Fina
the a
the
expe

A. E
T

benc
DYB
ratio
ones

S
exec
of
unde
DYB
optim
on
Filtr
Nati
and
they
optim
Nati
Filtr
syste
aver
exec

F
betw
attac
Dyta

TABLE 1.
OF THE USER-DEF

ValNum R
1
0
1
1
1
1
1
1
1
1
1

ENT

0

1

2
3

4

5

6

ally, we use s
accuracy and

hardware a
erimental envi

Efficiency Eva
The two exp
chmarks (on W
BS. Fig.5 sho
o of execution
s, as described

 Efficiency

ince DYBS
cution time sh
the tested b
erlying Dyn
BS_No_Opt a
mizations. Th
the complete

ration optimi
ive performan
DYBS_No_Op

y require than
mized version
ive program.
ration optimiz
em, the time
rage time ov
cution.
ig.6 shows

ween DYBS
ck diagnosing
an [28], Pano

FINED FUNCTION

RetValLen
32
0
32
32
32
32
32
32
32
32
32

D

Figure 5. t

several widely
practicality of
and software
ironment.

aluation
eriments use
Windows) to

ows the norm
n time of DY
d in equation (

Nativ
DYBS(orDYBS

=

was construc
hown as Nativ
benchmarks
amoRIO pla

are the time
he results show
e DYBS sys
zation. Resu

nce treated as
pt show how
Native. From
n of DYBS ne

However,
zation mechan
e cost is redu
verhead is on

the average
and other po
g tools: Tain
orama [29]. C

(BEHAVIORS) LIB

ParaNum
1
1
1
1
1
1
7
4
1
2
2

ynamoRIO DY

he slicing efficien

y used applic
f DYBS. Tab

re configurat

ed the SPEC
evaluate the

malized execut
YBS to the tim
(1)) of DYBS

ve
t)S_No_Op

cted on Dyn
ve in the figu
running dire

atform. The
on DYBS

wn for DYBS
stem, with F
ults are norm

1, so the resu
much more e

m Fig.5, we see
needs 3.15x th

when the F
anism is intro
uced remarka
nly 1.41x th

e overhead
opularly used
ntCheck [24]
Compared to

BRARY

SlicingPro
<1,ret>

<1,null>
<1,ret>

<1,null>
<1,null>
<1,null>
<1,ret>

<1,ret>,<1,2>,<
<1,ret>
<1,ret>

<2,1>,<2,ret>

DYBS_No_Opt

ncy evaluation of

cations to test
le 2 describes
tion of the

C CINT2006
efficiency of

tion time (the
me of Native
.

 (1)

amoRIO, the
ure is the time
ectly on the

results for
without any

S are the time
Function Call
malized, with
ults for DYBS
xecution time

e that the non-
he time of the
Function Call
oduced to the
ably, and the

hat of Native

comparisons
d binary-level
, LIFT [26],
tools such as

1,3>

>

DYBS

f DYBS.

t
s
e

6
f
e
e

e
e
e
r
y
e
l
h
S
e
-
e
l
e
e
e

s
l
,
s

564 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

Panorama (slowed down the target programs by 20x on
average), Dytan (50x), LIFT (3.6x) and TaintCheck (20x),
DYBS inflicted much lower runtime overhead (1.41x).
DYBS achieved this better performance mainly because
of the slicing algorithm, the Function Call Filtration
optimizing mechanism, and the efficiency of the
underlying DynamoRIO system.

B. Effectiveness Evaluation
This subsection presents two experiments, function

analysis and inter-procedural analysis, to evaluate the
effectiveness of DYBS. The tested applications that been
selected in these experiments were all widely used in both
personal computers and Internet.

A) Inner-procedural Dynamic Binary Slicing

As described in Table 3, the target functions were both
mature and small applications. Ping is a computer
network administration utility used to test the reachability
of a host on an Internet Protocal (IP) network and to
measure the round-trip time for a message sent from the
originating host to a destination computer. Netstat
(network statistics) is a command-line tool that used to
display network connections (both incoming and
outgoing), routing tables, and a number of network
interface statistics. It is useful for finding problems and
determining the amount of traffics in the network. The
Tracert command is used to trace the route of a network
packet and to determine the number of hops required for
the packet to get to its destination. Comp is a simple
command that compares two groups of files to find

information that does not match. Findstr is a command
used in MS-DOS to find a specific string of a plain text.

In the experiment, the entry address of each tested
function is set as the slicing criterion, and DYBS is
employed to get the interesting parts of the tested target
programs. In Table 3, the column AppNa represents the
name of the target function, FEAdd is the entry address of
the corresponding target program, NOIns represents the
number of instructions in the target program, FSliCri the
forward slicing criterion, FSINum the number of sliced
instructions with forward slicing, FSliRate the forward
slicing rate, BSliCri the backward slicing criterion,
BSINum the number of sliced instructions with backward
slicing, and BSliRate the backward slicing rate. From
Table 3, we can see that the number of the sliced
instructions of the tested programs was much less than in
the original programs with either forward or backward
slicing. In the table, the results of the slicing rate were
derived from equation (2):

100%×

Number nsinsturctio programTarget
number nsinsturctio Sliced

Rate Slicing = (2)

B) Inter-procedural Dynamic Binary Analysis

This experiment is carried out to verify the
effectiveness of DYBS across all functions of the target
program. The tested programs in the experiment are all
commonly used in computers. Notepad is a simple text
editor in Windows, Calc is a calculator in Windows,
Matrix is a program for calculating matrix multiplication,
and gzip is an application for compressing and
uncompressing files. In the experiment, the input of each
program is set as the slicing criterion. Table 4 displays
the results. The column APPNa has the name of the target
application, OriCallNun the number of calls in the
original target program, SliedCallNum the number of
function calls in the slicing result, FunSliedRate the
function slicing rate, OriBBNum the number of basic
blocks in the target program, SliedBBNun the number of
basic blocks in the slicing result, and BBSliedRate the
basic block slicing rate. The results for FunSliedRate and
BBSliedRate are derived from equations (3) and (4)
respectively:

20

50

3.6

20

1.41

0 10 20 30 40 50 60

Panorama

Dytan

LIFT

TaintCheck

DYBS

Sysetm Overhead

Figure 6. System overhead comparison between DYBS and other attack
diagnosis tools.

TABLE 4.
THE INTER-PROCEDURAL DYNAMIC BINARY SLING RESULTS OF DYBS

AppNa OriCallNun SliedCallNum FunSliedRate OriBBNum SliedBBNun BBSliedRate
Notepad 59 15 25.4% 1790 175 9.7%

Calc 95 9 9.5% 1581 192 12.1%
gzip 457 13 2.8% 388 43 11.1%

Matirx 169 1 0.6% 109 69 63.3%

TABLE 3.
THE SLICING RESULTS OF A SINGLE FUNCTION

AppNa FEAdd NOIns FSliCri FSINum FSliRate BSliCri BSINum BSliRate
ping 0x1002b22 108 ebp 52 48% ebp 61 56%

netstat 0x1004fe0 21 eax 12 57% eax 2 10%
tracert 0x1001591 184 esp 84 46% esp 108 59%
comp 0x1002ee7 52 esp 23 44% esp 21 40%
findstr 0x1002ca7 51 esp 14 27% esp 18 35%

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 565

© 2014 ACADEMY PUBLISHER

100%×
programTarget in callsfunction ofNumber

callsfunction sliced ofNumber
teFunSliedRa = (3)

 100%×
program target in the blocks basic ofNumber

blocks basic sliced ofNumber eBBSliedRat =

(4)

From table 4, we see that the number of function calls
and basic blocks are sharply decreased in the slicing
results.

C. Accuracy and Practicality Evaluation
In this experiment, four popularly used applications are

selected to test the accuracy and practicality of the
framework. The experiment tries to use DYBS to
discover vulnerabilities regardless they are the known
attacks or potential vulnerabilities. Table 5 provides the
analyzed results by running hangul HWP (a word
processing software for Korean), JustSystems Ichitaro (a
word processing software for Japanese), IrfanView (a free
graphic viewer for Windows), and Foxit Reader (a widely
used document processor for Chinese) on DYBS.

In Table 5, the column Attacks contains the number of
attacks that incorporated in the tested target programs.
Actually, all attacks in the tested target programs are
defined by the CVE (Common Vulnerabilities &
Exposures) vulnerabilities library. The Attack Source
describes the attack source for the corresponding target
program. The Discovered Attacks describes the number
of attacks of the target programs that discovered by
DYBS. From the data that shown in the table, we see that
all the predefined (by CVE library) attacks are discovered
by DYBS, so the recognition ratio is 100%.

In the experiment, forward program slicing is used to
find the potential vulnerabilities of the tested target
programs. During this process, the inputs of each
program are set as the slicing criterion. So, if there are
functions (e.g. strcpy()) that might cause buffer overflow,
DYBS would give an alert for a potential vulnerability. In
Table 5, the column Potential Vulnerabilities gives the
number of potential vulnerabilities that are discovered by
DYBS.

Since the CVE library does not contain the
vulnerability information for the hangul HWP target
program, and we cannot define the vulnerabilities
ourselves, the corresponding columns of the hangul HWP
target program are set null.

V. RELATED WORK

Since it is an effective approach, much research
focuses on employing program slicing technology to
detect vulnerabilities and improve the security of

software. PSE [16] is a static program slicing technique
for diagnosing program failures. It is precise because of
its consideration of error conditions. It is similar to Das’s
earlier work, ESP [17], a symbolic dataflow analysis
engine. Using program slicing, Monate [8] introduces an
automatic source-to-source method to preserve the
confidentiality of the target program.

As well as the static program slicing technique, many
researches are focusing on its dynamic counterpart. Pan
[18] presents a family of heuristics for fault localization
using dynamic slicing. Kamkar et al. [19] present a
generalized version of an algorithmic debugger, a method
of semi-automatic bug localization. By using dynamic
program slicing, they can compute which parts of the
target program are relevant for the research. Based on the
barrier slicing, Cellato [20] proposes a solution to identify
the parts of the client code that have to be moved to the
server to protect unsafe variables. He also investigates the
trade-off between security loss and performance overhead
of his method [21]. In the process of dynamic slice
computation, different types of information are computed
and then discarded after the computation of dynamic
slicing. Korel et al. [22] first exploit the features of these
kinds of information (e.g. executable dynamic slices,
partial dynamic slicing, influencing variables, and
contributing nodes), then incorporate them into their
dynamic slicing tool to improve the process of program
debugging. Similar to Korel’s work, Tibro [23] also
introduces a forward computation method for relevant
slices; it requires less space. By integrating the potential
of a delta debugging algorithm with forward and
backward dynamic slicing, Neelam [10] narrows down
the scope of the search for the faulty code.

Researches on static and dynamic program slicing
mentioned above are all based on the availability of
source code of the target programs. However, the source
code of many programs is not easy to obtain in practice,
which makes this type of slicing computation impossible.

There are also many dynamic binary taint analysis
tools which, likes DYBS, work with object code.
TaintCheck [24] is a runtime taint analysis approach; that
automatically detects most types of attacks on binary-
level applications. TaintCheck uses the heavy weight
binary instrumentation framework Valgrind [25], so its
overhead is high. LIFT [26] is a software-only
information flow tracking system that uses StarDBT [27]
for detecting software attacks on x86 binary applications.
During the execution of the target program, LIFT first
dynamically instruments the binary code and tracks its
information flow, then, if unsafe data is detected, it

TABLE 5.
ATTACKS DIAGNOSING AND POTENTIAL VULNERABILITIES DISCOVERING IN DYBS

Target Program Attacks Discovered
Attacks

Potential
Vulnerabilities Attack source

hangul HWP / / 3 /

JustSystems Ichitaro 3 3 1 CVE-2010-3915,CVE-2010-3916

Irfan View 4.25 32 32 3 CVE-2010-1509

Foxit Reader 3.0 build 1120 22 22 17 CVE-2009-0836,CVE-2009-0837

566 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

switches the program control flow to process it.
Furthermore, LIFT is a system that emphasizes efficiency,
and employs three binary optimization methods, Fast
Path (FP), Merged Check (MC) and Fast Switch (FS), to
optimize its performance. Dytan [28] is also a dynamic
taint analyzing system for x86 binaries. Dytan is designed
to be general and flexible, so it allows for implementing
different kinds of techniques based on dynamic taint
analysis with little effort. However, its general and
flexible features seriously degrade the performance of the
system. Panorama [29] is a hardware-assisted flow
tracking system that is implemented on QEMU [30] for
detecting and analyzing malicious software on
commodity desktops.

DYBS is also a dynamic binary taint analysis
framework implemented using a dynamic instrumentation
system; however, the way of achieving the taint analysis
goal of DYBS is different from the frameworks
mentioned above. In DYBS, the dynamic program slicing
mechanism is employed to analyze the target programs.
For the same reason, the performance of DYBS is much
better than the other systems (as described in Fig.6).

VI. CONCLUSIONS AND FUTURE WORK

DYBS is a dynamic binary program slicing framework,
and it is designed to diagnose attacks in binary-level
target programs. During the execution, DYBS first
gathers the profile information by deploying the
analyzing instructions in the target program. However,
once an attack is encountered, normal execution
terminates, and backward program slicing is employed to
slice the target program. Using the attack point as the
slicing criterion, DYBS slices out basic blocks related to
the slicing criterion and organizes them into an
executable subset. DYBS constructs a CFG to organize
basic blocks in each function, and builds a CG for the
whole target program to implement inter-procedural
program slicing. Based on the organized and structured
slicing results, users can locate and diagnose attacks
easily. Furthermore, the Function Call Filtration
optimization mechanism is proposed to optimize the
process of dynamic slicing. Results of the experiments on
SEPC CINT2006 benchmarks and several popularly used
applications show that DYBS is efficient, accurate, and
practical.

The results to data have been promising and research is
continuing on extending and improving the framework.
The extensions and improvements include: (1) contriving
better optimizing methods to improve the efficiency of
the framework; (2) strengthening the ability to analyze
large-scale target programs to improve the accuracy of
the framework; (3) expanding the usage scope to improve
the practicability of the framework.

ACKNOWLEDGMENT

This work was supported by the academic and
technical leader recruiting foundation of Anhui
University, the National Natural Science Foundation of
China (Grant No. 61300169, 61003131), the National

High Technology Research and Development Program
(863 Program) of China (Grant No. 2012AA010905), the
National Basic Research Program (973 Program) of
China (Grant No. 2012CB723401).

REFERENCES

[1] Wen Jiang, Xin Fan, Dejie Duanmu, Yong Deng. A New
Security Risk Assessment Method of Website Based on
Generalized Fuzzy Numbers. Journal of Computers, 8(1),
136-145, Jan 2013.

[2] Weihui Dai, Qi Zhu, Chunshi Wang, Yujiao Zeng. Risk
Management Model of Information Security in IC
Manufacturing Industry. Journal of Computers, 7(2), 317-
324, Feb 2012.

[3] Xiu-qing YU.Internal P-set and Security Transmission-
identification of Information. Journal of Computers, 6(10),
2249-2254, Oct 2011.

[4] Chris McNab.Network Security Assessment: Know Your
Network (2nd Edition).O'Reilly Media, 2007.

[5] Ruoyu Zhang, Shiqiu Huang, Zhengwei Qi, Haibin Guan.
Combining Static and Dynamic Analysis to Discover
Software Vulnerabilities. In: Proceedings of the 2011 Fifth
International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing (IMIS '11),
June 2011, pp.175-181.

[6] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu,
Lin Chen. A brief survey of program slicing. ACM
SIGSOFT Software Engineering Notes 30(2) (2005) 1-36.

[7] N.Sasirekha, A.Edwin Robert, Dr.M.Hemalatha. Program
slicing techniques and its applications. International
Journal of Software Engineering & Applications 2(3)
(2011) 50-64.

[8] Benjamin Monate, Julien Signoles. Slicing for Security of
Code. In: Proceedings of the 1st international conference
on Trusted Computing and Trust in Information
Technologies: Trusted Computing - Challenges and
Applications (Trust '08), March 2008, pp.133-142.

[9] Dasarath Weeratunge, Xiangyu Zhang, Suresh
Jagannathan. Analyzing multicore dumps to facilitate
concurrency bug reproduction. In: Proceedings of
Fifteenth International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS '10), March 2010, pp.155-166.

[10] Neelam Gupta, Haifeng He, Xiangyu Zhang, Rajiv
Gupta.Locating faulty code using failure-inducing chops.
In: Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering (ASE '05),
November 2005, pp.263-272.

[11] Dave Binkley, Sebastian Danicic, Tibor Gyimóthy, Mark
Harman, Ákos Kiss, Bogdan Korel. Theoretical
foundations of dynamic program slicing. Theoretical
Computer Science 360(1) (2006) 23-41.

[12] Rajiv Gupta, Mary Lou Soffa , John Howard. Hybrid
slicing: integrating dynamic information with static
analysis. ACM Transactions on Software Engineering and
Methodology 6(4) (1997) 370-397.

[13] Xiangyu Zhang, Rajiv Gupta, Youtao Zhang. Cost and
Precision Tradeoffs of Dynamic Data Slicing Algorithms.
ACM Transactions on Programming Languages and
Systems 27(4) (2005) 631-661.

[14] Xiangyu Zhang, Rajiv Gupta. Cost effective dynamic
program slicing. In: Proceedings of the ACM SIGPLAN
2004 conference on Programming language design and
implementation (PLDI '04), June 2004, pp.94-106.

[15] Derek Bruening, Qin Zhao, Saman Amarasinghe.
Transparent Dynamic Instrumentation. In: Proceeding of

JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014 567

© 2014 ACADEMY PUBLISHER

Eighth Annual International Conference on Virtual
Execution Environments (VEE '12), March 2012, pp.133-
144.

[16] Roman Manevich, Manu Sridharan, Stephen Adams,
Manuvir Das, Zhe Yang. PSE: explaining program failures
via postmortem static analysis. In: Proceedings of the 12th
ACM SIGSOFT twelfth international symposium on
Foundations of software engineering (SIGSOFT '04),
October 2004, pp.63-72.

[17] Manuvir Das, Sorin Lerner, Mark Seigle. ESP: path-
sensitive program verification in polynomial time. In:
Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementation (PLDI
'02), June 2002, pp.57-68.

[18] Hsin Pan, Eugene H. Spafford. Heuristics for Automatic
Localization of Software Faults. Technical Report, SERC-
TR-116-P, Purdue University, 1992.

[19] Mariam Kamkar, Nahid Shahmehri, Peter Fritzson. Bug
Localization by Algorithmic Debugging and Program
Slicing. In: Proceedings of the 2nd International
Workshop on Programming Language Implementation
and Logic Programming (PLILP '90), August 1990, pp.60-
74.

[20] Mariano Ceccato, Mila Dalla Preda, Jasvir Nagra,
Christian Collberg, Paolo Tonella. Barrier Slicing for
Remote Software Trusting. In: Proceedings of the Seventh
IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM '07), September 2007,
pp.27-36.

[21] Mariano Ceccato, Mila Dalla Preda, Jasvir Nagra,
Christian Collberg. Trading-off Security and Performance
in Barrier Slicing for Remote Software Entrusting.
Automated Software Engineering 16(2) (2009) 235-261.

[22] Bogdan Korel, Jurgen Rilling. Application of Dynamic
Slicing in Program Debugging. In: Proceedings of the 3rd
International Workshop on Automated Debugging
(AADEBUG '97), 1997, pp.59-74.

[23] Tibor Gyimóthy, Árpád Beszédes, Istán Forgács. An
Efficient Relevant Slicing Method for Debugging. In:
Proceedings of the 7th European software engineering
conference held jointly with the 7th ACM SIGSOFT
international symposium on Foundations of software
engineering (ESEC/FSE-7), September 1999, pp.303-321.

[24] James Newsome, Dawn Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. In: Proceedings of 2005
Network and Distributed System Security Symposium
(NDSS '05), 2005.

[25] Nicholas Nethercote, Julian Seward. Valgrind: a
framework for heavyweight dynamic binary
instrumentation. In: Proceedings of the 2007 ACM
SIGPLAN conference on Programming language design
and implementation (PLDI '07), June 2007, pp.89-100.

[26] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim,
Yuanyuan Zhou, Youfeng Wu. Lift: A lowoverhead
practical information flow tracking system for detecting
security attacks. In: Proceedings of the 39th Annual
IEEE/ACM International Symposium on
Microarchitecture (MICRO '06), 2006, pp.135-148.

[27] Cheng Wang, Shiliang Hu, Ho-seop Kim, Sreekumar R.
Nair, Mauricio Breternitz Jr., Zhiwei Ying, Youfeng
Wu.StarDBT: An Efficient Multi-platform Dynamic
Binary Translation System. Lecture Notes in Computer
Science 2007(4697) (2007) 4-15.

[28] James Clause, Wanchun Li, and Alessandro Orso. Dytan:
a generic dynamic taint analysis framework. In:

Proceedings of the 2007 international symposium on
Software testing and analysis (ISSTA '07), July 2007,
pp.196-206.

[29] Heng Yin, Dawn Song, Manuel Egele, Christopher
Kruegel, Engin Kirda. Panorama: capturing system-wide
information flow for malware detection and analysis. In:
Proceedings of the 14th ACM Conference on Computer
and Communications Security (CCS '07), October 2007,
pp.116-127.

[30] Daniel Bartholomew. QEMU: a multihost, multitarget
emulator. Linux Journal 2006(145) (2006) 41-46.

[31] Vasanth Bala, Evelyn Duesterwald, Sanjeev Banerjia.
Dynamo: A Transparent Dynamic Optimization System.
In: Proceedings of the ACM SIGPLAN 2000 conference
on Programming language design and implementation
(PLDI '00), June 2000, pp.1-12.

Erzhou Zhu is currently a lecturer with the Faculty of
Computer Science, Anhui University (Hefei, China). He
received his Ph.D. degree in computer science from Shanghai
Jiao Tong University (Shanghai, China), in 2012. His current
research interests include, but are not limited to, program
analysis, computer architecture, compiling technology,
virtualization and cloud computing.

Feng Liu is currently a professor with the Faculty of Computer
Science, Anhui University (Hefei, China). He received his Ph.D.
degree in computer science from University of Science and
Technology of China (Hefei, China) in 2003. His current
research interests include computer architecture, parallel
computing, and cloud computing.

Xianyong Fang received Ph. D. degree from Zhejiang
University in 2005. He worked as a Postdoc in LIMSI-CNRS
from 2007 to 2008. He is a professor of Anhui University and a
committee member of the Intelligence CAD and Digital Art
Committee of Chinese Association for Artificial Intelligence.
His research interests focus on image/ video processing related
graphics and vision topics.

Xuejun Li is an assistant professor in the School of Computer
Science and Technology at the Anhui University (Hefei, China).
He received his Ph.D. degree from Anhui University in 2005.
His research interests are program analysis and embedded
systems.

Yindong Yang received the Ph.D. degreeat Department of
Computer Science and Engineering (2012), Shanghai Jiao Tong
University, Shanghai, China. His main research interests are in
virtual machines, computer architecture, and compiling.

Alei Liang is an assistant professor in the School of Software at
the Shanghai Jiao Tong University (SJTU). He received his
Ph.D. in Computer Science and Engineering from Shanghai Jiao
Tong University in 2005. His research interests are distributed
computing, virtualized security, model checking, and program
analysis and embedded systems.

568 JOURNAL OF SOFTWARE, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER

