
Automated Essay Scoring Using Incremental
Latent Semantic Analysis

Mingqing Zhanga, Shudong Haoa, Yanyan Xua∗, Dengfeng Keb, Hengli Pengc
a School of Information Science and Technology, Beijing Forestry University

Email: xuyyxu@gmail.com
b Institute of Automation, Chinese Academy of Sciences

Email: dengfeng.ke@ia.ac.cn
c Institute of Educational Measurement, Beijing Language and Culture University

penghl6402@aliyun.com

Abstract— Writing has been increasingly regarded by the
testers of language tests as an important indicator to assess
the language skill of testees. As such tests become more and
more popular and the number of testees becomes larger,
it is a huge task to score so many essays by raters. So
far, many methods have been used to solve this problem
and the traditional method is Latent Semantic Analysis
(LSA). In this paper, we introduce a new incremental
method of LSA to score essays effectively when the dataset
is massive. By comparison of the traditional method and
our new incremental method, concerning the running time
and memory usage, experimental results make it obvious
that the incremental method has a huge advantage over the
traditional method. Furthermore, we use real corpora of
test essays submitted to the MHK test (Chinese Proficiency
Test for Minorities), to demonstrate that the incremental
method is not only efficient but also effective in performing
LSA. The experimental results also show that when using
incremental LSA, the scoring accuracy can reach 88.8%.

Index Terms— automated essay scoring, incremental latent
semantic analysis, singular value decomposition

I. INTRODUCTION

WRITING is an essential part of language tests,
and it is an important indicator to assess a stu-

dents’ language skill. In such tests, students are usually
required to write an essay based on a given question,
and raters score these essays according to some given
criteria. Traditionally, because the raters usually combine
their subjective judgements with these criteria, the human
scoring methods will lead to an inaccuracy of grading
[1]. At the same time, as the amount of testees increases
rapidly, human scoring is a labor-intensive task [2] [3].
Therefore, a more accurate and faster automated scoring
method has been desired for a long time.

Researchers have devoted to the automated scoring field
for twenty years. PEG [4] is the earliest system for au-
tomated scoring, in which the part of speech, the amount
and the usage of words are the primary concerns. E-rater

∗The corresponding author is Yanyan Xu.
This work was supported in part by the Beijing Higher Education

Young Elite Teacher Project, the Fundamental Research Funds for the
Central Universities (GrantNo.201322) and the National Natural Science
Foundation of China (GrantNo.61103152).

[5] is of great use for GMAT, developed by Educational
Test Service (ETS). Its features include the analysis of
the discourse structure, the syntactic structure and the vo-
cabulary usage [6]. Bayesian Essay Test Scoring System
(BETSY) [7] is based on Multivariate Bernoulli Model
and the Bernoulli Model. Intelligent Essay Assessor (IEA)
[8], which is based on LSA, compares the contents among
essays. By comparison of words presented in the dataset
and making the relations of the words clear, any essay
can be scored under the semantic space constructed by
the dataset. In addition to these systems, some other
novel methods have also been introduced, such as multi-
classifier fusion [9] and so forth.

Usually, there are three levels upon which to evaluate
an essay [10]: word (including characters in Chinese or
other Asian languages, or spelling in western languages),
sentence and paragraph. Word is the basic part and
testees are required to use correct characters, spelling and
meaningful words; sentence means students are required
to think about the confluence of sentences and inter-
sentences, and the relations between the topic and these
sentences; paragraph is a consideration about the logic
relations among paragraphs and even the whole passage.

As to the current technique on automated essay scoring,
word remains an basic and crucial part of assessing an
essay [11]. In real world, there are numerous ways to
express one thing. This character of any natural language
not only brings up the synonyms and ambiguities in
the semantics, but also the sparsity and scalability in
natural language processing, which leads to difficulties
in computation.

LSA is a technique that has been successfully applied
into a wide range of fields and industries [12] [13] [14]
[15], such as bioinformation [16] [17], web document
comprehending [18], language processing [19] [20] [21]
and signal processing [22]. It is used for comparing the
essays in a reduced dimensionality semantic space based
on the words they contain [23] [24]. Its main tasks are
to avoid the surface of the language comlexity, and to
understand the true meaning the words are expressed from
a semantic perspective. According to the words appeared
in the dataset, a weighted matrix is used to reduce the

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 429

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.2.429-436

dimensionality, and to represent the true significance of
the words.

Singular value decomposition (SVD) is the main al-
gorithm for LSA to produce low-rank approximations
[25]. By SVD, the original dictionary-based space will
be divided into three subspaces whose elements are of-
ten regarded as semantics. Obsoleting useless semantics
and multiplying the new matrices will reconstruct the
semantic-based space. This technique which shows vi-
ability theoretically, however, cannot be used effectively
even practically when faced with massive streams of data.
Earlier experiments showed that neither memory usage
nor time consuming can support such huge a dataset for
SVD.

In order to resolve the problems regarding memory
usage and time consuming, incremental SVD has been
successfully introduced by Matthew Brand [26], and has
been implemented into the fields of image processing
[27], information retrieval such as recommender systems
[28] [29] and natural language processing [23]. Automat-
ed essay scoring using incremental LSA, however, is a
new method. Although many researchers have introduced
LSA [30] [31] [32], no one has ever used incremental
LSA and incremental SVD. In this paper, we use incre-
mental SVD as a part of incremental LSA, to process
huge datasets of test essays. Experimental results show
that this incremental method is effective to reduce the
usage of memory and time consuming without lowering
the performance of automated scoring in comparison with
human scoring.

The rest of the paper is organized as follows. In section
II we introduce the basic idea of SVD and incremental
SVD. In section III we describe the proposed method
and we show our experimental results and discussion in
section IV. Finally, in section V we conclude this paper
and point out the future work.

II. PRELIMINARIES

A. Conventional batch SVD

The underlying algorithm of LSA is SVD, which can
construct a semantic space of a given dataset. Given r-
rank matrix M, upon which we apply SVD:

M = UΣV T (1)

where U and V are orthogonal matrices, and the elements
in Σ are singular values those are in descending order.

Specially, in natural language processing, maintaining
only k≪r will produce a lower dimensionality and better
approximation about the original matrix M . By removing
the (r - k) diagonal elements, (r - k) columns in U and
(r - k) rows in V and (r - k) elements in Σ where the
elements with far too small values are considered to be
noise and unnecessary, we can multiply the matrices and
get the approximation to the original matrix:

M
′

m×n = Um×kΣk×kV
T
k×n. (2)

B. Update SVD by adding columns

Suppose the matrix C, which consists of additional
columns, will be added to the original matrix M , then we
firstly apply traditional SVD on M and get the result of
formula (1). With being mathematically proved, by adding
additional C, we can get:

[MC] = [UJ]

[
Σ L
0 K

] [
V T 0
0 I

]T
(3)

where L = UTC. Let H = C − UL, then by QR
decomposition or other methods upon H , we will get

H
QR−−→ JK. The matrix in the middle

[
Σ L
0 K

]
will

be continually applied with traditional SVD. Finally, we
multiply all medium results and get the updated result:

[MC] = [UJ]U ′ · Σ′ ·
[
V T 0
0 I

]T
V ′T = U ′′ · Σ′ · V ′′T .

(4)
For a more specific proof and geometric interpretation,
please refer to [26] in detail.

III. THE PROPOSED METHOD

Traditionally, LSA can be performed through five sub-
steps and these five sub-steps are text preprocessing,
weighting, calculating SVD, correlation measurement and
correlation method [33]. However, calculating SVD be-
comes a hard even impossible task when faced with a
massive dataset. So, we use incremental LSA to resolve
the problem effectively, and its flowchart is shown in
Figure 1. At first, all the essays will be segmented into
words and constructed into the essay vectors which form
the original dataset matrix as Figure 2 shows. Next, ap-
plying incremental algorithm on that matrix will establish
a semantic space, where all the essay vectors can be re-
projected. Finally, all the essay vectors with their human
scoring results as labels will be sent into the support
vector machine for training. Thus, all the essays in the
dataset will have their own predicted automated scoring.

A. Text pre-processing

Text pre-processing is the first sub-step and it includes
two parts: segmenting and producing t-d matrix. The t-d
(term-document) matrix is based on the amount of words
(terms) appeared in the essays (documents). For example,
ai,j is the number of times of the i-th word appeared in
the j-th essay in the dataset. In this paper, we regard each
column as an essay vector which is denoted as dj , whose
feature is the number of words in the training set or that
of latent semantics.

Because the essays in the dataset are represented as
texts without space as delimiter of words, it is necessary
to segment the texts reasonably. There are many methods
that have been developed, for example, tri-gram-based
method that is used for disperse string detection [34],
using lexicon dictionary [35] method and other methods.

Due to that word segmenting is a direct factor that
influences the preciseness of t-d matrix, even further, that

430 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

producing

t-d matrix
segmentingtext pre-processing

calculating TF-IDF matrix

incremental

SVD

Support Vector Machine

weighting

incremental

LSA

scoring

performance

measurement

re-

projecting

incremental

SVD
re-

projecting

Figure 1. The flowchart of the proposed method

Figure 2. Original dataset matrix

of TF-IDF matrix, we use weighted finite-state transduc-
er(WFST), which is based on our previous research [36],
to produce reasonable segmentation.

Additionally, eliminating stopwords is a necessary step,
since they are of high frequencies without real meaning,
such as preposition, verbal auxiliaries and so forth. After
the t-d matrix of the dataset has been generated, the word
corpus will be confirmed as well. The subsequent steps,
including matrix weighting, will base on this word corpus.
Specifically, the training set and the testing set are sharing
the same word corpus confirmed by the training set.

B. Weighting

The TF-IDF matrix, where TF stands for the term
frequency and IDF for inverse document frequency, is a
common method for weighting [37]. Every element in the
m-n matrix can be weighted as

wi,j = TFi,j × IDFi,j (5)

The term frequency, TFi,j is defined as

TFi,j =
numi,j∑m

k=1 numk,j
(6)

where numi,j is the number of the i-th word appeared in
the j-th essay, and m is the number of the words in the

Algorithm 1 Incremental SVD
Input: Matrix M with n essay vectors
Output: Matrix U,Σ, V

1: n′ ← initialized value
2: add num← batch size
3: M ′ ← the first n′ essay vectors of M
4: [UΣV]← svd(M ′,0)
5: the first n′ essay vectors ← 0
6: repeat
7: Matrix C ← the first add num essay vectors ̸= 0

of M
8: current rank ← U.rank
9: [tU, tΣ, tV]← svds([M ′C], current rank)

10: Update([U,Σ, V], [tU, tΣ, tV])
11: the first add num essay vectors of M ← 0
12: until M=0

training set. As to IDF, it can be calculated as

IDFi,j = log
n

1 +DFi
(7)

where n is the size of the training set (or the amount of
essay vectors), and DFi is the number of essays which
contain the i-th word.

For generating the TF-IDF matrix of the testing set,
a special situation exists that no essay contains the i-
th word, so, in case of dividing zero, we add 1 to the
denominator.

C. Incremental LSA

Incremental LSA is composed of two parts: incremen-
tal decomposition of a dictionary-based space and re-
projection of any essay vector under the reconstructed
semantic space. The first part can be completed by incre-
mental SVD, which avoids the synonyms and ambiguities
about words and enables the essay vectors to be project-
ed onto the low-dimension semantic space. The second
part is called re-projection, and any essay vector based
on term-frequency can be represented under that space.
These components will be described below.

1) Incremental SVD: The core of LSA is performing
SVD on TF-IDF matrix for training. Algorithm 1 is our
method of incremental SVD.

We get the first M essay vectors, called initialized
value, to apply the conventional SVD, which is faster
because of the less essay vectors and hence far too
smaller matrix. Then, we obtain a mediate result of
decomposition.

The next step is to update the mediate result by adding
N columns, called batch size, from the rest part of TF-
IDF matrix. According to the mathematical derivation we
introduced previously, it is easier and faster to update the
mediate result, and it has been proved that this updating
result is approximate to the conventional SVD of the
original matrix [26]. This process of updating will repeat
until all the essay vectors in the TF-IDF has been added
to the mediate result. Finally, we can get the result of
incremental SVD.

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 431

© 2014 ACADEMY PUBLISHER

During the process, an important problem is to maintain
necessary semantics used to construct the semantic space.
As the decomposition goes, the rank of Σ will possibly
increase, and thus, the redundant semantics will be pro-
duced. Producing too much noise will not only lower the
preciseness of the semantic space, but also has impact
on computational performance, i.e, larger memory usage
for saving data and longer running time. Therefore, we
maintain k latent semantics, called threshold value, to
guarantee the effectiveness during the updating procedure
and removing useless semantics immediately.

Incremental SVD is a faster algorithm than conven-
tional method, especially for massive datasets. In fact,
as the batch size become larger, the processing time is
relatively becoming less and the usage of memory less
either. Experimental results will be given in the next
section.

2) Re-projecting: Applying formula (2), where k is the
threshold value or the number of semantics remained,
will construct a semantic space of the dataset. Any
essay vector based on term-frequency and the same word
corpus, dj , can be re-projected to the semantic space.

Suppose that U ·Σ·V T is the final result of incremental
SVD performed on TF-IDF matrix of the training set, and
dj is an essay vector based on the same word corpus. Then
by Formula (8), we will re-project dj to the semantic
space as :

d̂j = Σ−1 · UT · dj (8)

3) Scoring performance measurement: In this final
part, we use Support Vector Machine (SVM) to automat-
ically score the essays.

The incremental method is effective for processing
massive datasets, especially for automated essay scoring.
The word corpus is established on the training set, which
is used to produce t-d matrix for the testing set. Addi-
tionally, all the essay vectors in the testing set will be re-
project to the semantic space constructed by the training
set.

According to [38], the optimized solution
of SVM can be expressed as follows:

min
w,b,ξ

1
2w

Tw + C
∑l

i=1 ξi (9)

subject to yi(w
Tϕ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l,

where yi can be used as human scoring in our
experiments. The number n is the threshold value,
xi ∈ Rn is the essay vector which will be mapped
into a high-dimensional space by ϕ(xi), and C is the
regularization parameter.

K(xi, xj) = ϕ(xi)
Tϕ(xj)

= exp(−γ||xi − xj ||2), γ > 0 (10)

Essay vectors from the training set and their human
scores are used to generate support vectors, and to estab-
lish decision benchmarks. Upon those benchmarks, the
essay vectors from the testing set are classified according
to support vectors. By this kind of classification, their

class labels of essay vectors from the testing set are the
automated scores predicted by SVM.

Comparing the human scores with the predicted scores
from the testing set, we can estimate the performance of
incremental LSA used in automated essay scoring with
massive datasets.

IV. EXPERIMENTS

A. Enviroment and datasets

In text pre-processing, we use our previous study
WFST written in C++ language [36] to segment the
essays. In the incremental procedure, we use MATLAB
and C language to compute matrices. Finally, we use
LIBSVM [39] to complete automated scoring. These parts
are integrated into our automated essay scoring system
where all of them run on a Linux machine with the CPU
2.0GHz Intel Xeno E5-2620 and 96G memory. In order
to estimate the performance of incremental SVD, we use
15,776 test essays from MHK as the training set [10], and
1,000 test essays as the testing set.

When searching for the optimum batch size, we de-
compose the matrices firstly with the batch size from 1
to 10 at intervals of 1, and then from 100 to 1000 at
intervals of 25. After the least time usage is confirmed, we
refine the range to find out the optimum batch size more
precisely. For the training set, the corresponding human
scores (from 0 to 6 at intervals of 0.5) will be added to the
essay vectors in order to train the support vector machine
model. In our experiments, the tool we use for training
is LIBSVM [39], and we use automatic training tools to
find out the best parameters C and , which are 2048.0
and 0.0078125 respectively. Using the SVM model, we
classify the testing set.

Note that the process of computing is unstable which
leads to the fluctuation of the results, so in our experi-
ments, we run each round for 10 times and use the average
values.

B. Computing time

According to the training set, the TF-IDF is a 12,975-
15,776 matrix, where the size of the word corpus con-
firmed by the training set is 12,975, and contains 15,776
essays. As previously stated, it is an impossible task for
conventional SVD as the dataset is too big. In contrast,
incremental method is far less time consuming. The
computing results of incremental SVD are shown in Table
I and Figure 3. In these experiments, we set the initial
batch size from 10 to 1,000, at intervals of 10 and 100, and
the initialized value and threshold value are both 100. As
we know, when the batch size is 0, there is no difference
between conventional and incremental SVD. But as the
batch size increases, the running time of incremental
SVD decreases sharply at first, and continues increasing
gradually.

When we concentrate on the results where the curve
shows the optimum batch size, from 200 to 400, as are
shown in Table II and Figure 4, we can get our optimum

432 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

TABLE I.
THE RUNNING TIME OF INCREMENTAL SVD

Batch size Time (s)
10 463.7294
20 255.4206
30 180.6784
40 148.7053
50 124.1791
60 108.4457
70 103.2142
80 92.754
90 86.0899
100 82.7572
200 69.81877
300 66.0840
400 68.7404
500 69.9703
600 79.8691
700 87.6521
800 94.3936
1000 105.9955

0

100

200

300

400

500

0 100 200 300 400 500 600 700 800 900 1000

C
o

m
p

u
ti

n
g

ti

m
e

 (
s

)

Batch size

Figure 3. The running time of incremental SVD

batch size is about 320. Therefore, in the subsequent
experiments the batch size is set to 320.

We compare conventional SVD with incremental SVD
in Table III and Figure 5. In our experiments we increase
the size of the training set, from 31,552 to 157,760,
and it shows that when the size grows larger and larger,
incremental SVD is far more efficient than conventional
SVD. When the size grows to 110,432, the running time
of conventional SVD is more than two hours, as is shown
in Table III and Figure 5, so it is obvious that incremental
SVD performs much better.

40

45

50

55

60

65

70

75

200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400

C
o

m
p

u
ti

n
g

 t
im

e
 (

s)

Batch size

Different batch values Polynominal !itting

Figure 4. Optimum batch size

TABLE II.
OPTIMUM BATCH SIZE

Batch size Time (s)
200 69.81877
210 68.83114
220 68.25197
230 68.29288
240 67.64322
250 67.90268
260 68.84589
270 68.03251
280 65.89831
290 66.77077
300 66.08409
310 65.95101
320 65.23065
330 66.52441
340 66.03742
350 66.58706
360 66.34916
370 67.18953
380 67.26448
390 68.7329
400 68.7404

TABLE III.
COMPARISON OF CONVENTIONAL SVD AND INCREMENTAL SVD

Size of the training set
Time (s)

incremental conventional
31552 141.661 1111.324
47328 231.759 1692.691
63104 339.327 2617.137
78880 460.742 3858.184
94656 592.244 5466.019
110432 680.372 7929.217
126208 824.693 N\A
141984 978.254 N\A
157760 1145.381 N\A

0

1500

3000

4500

6000

7500

9000

31552 47328 63104 78880 94656 110432 126208 141984 157760

C
o

m
p

u
ti

n
g

 t
im

e
 (

s)

Size of the training set

Conventional Incremental

Figure 5. Comparison of conventional SVD and incremental SVD

TABLE IV.
OPTIMUM BATCH SIZES FOR DIFFERENT SIZES OF DATASETS

Size 10000 20000 30000 40000
Optimum batch size 296 308 320 348

Size 50000 60000 70000 80000
Optimum batch size 360 432 476 490

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 433

© 2014 ACADEMY PUBLISHER

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

10 20 30 40 50 60 70 80

R
e

la
ti

v
e

 u
p

d
a

te
 t

im
e

s

Essay vectors (thousand)

Figure 6. Relative update times

C. Relative update times

According to the size of the training set, the op-
timum batch size varies, and hence the update times.
The advantage of incremental SVD, however, is obvious
when facing large datasets. To make it clear, a series
of experiments have been conducted, and the results are
shown in Table IV.

In these experiments, we increase N from 10,000 to
80,000 at intervals of 10,000 with n′ = 100. Fixing
N and n′, by performing various batch sizes on the
decomposition and observing the least time consuming,
we choose the optimum batch sizes according to different
sizes of datasets in Table IV.

From Table IV, we can see that as the size of the dataset
grows, the optimum batch size grows as well. For showing
that the performance of the incremental method does not
become worse, we compute relative update times.

The relative update times is used to observe the per-
formance of the incremental method based on the size of
the dataset and the optimum batch size:

relative update times =
(N − n′)

optimum batch size
× base

N
(11)

where N is the amount of essay vectors (the size of the
original dataset matrix), and n′ is the initialized value.
The base means the size of the dataset as the unit. For
example, in our experiment, the base is 10,000 since N
starts growing at that number. In Formula (11), the first
part of the multiplication is to calculate the update times,
and the second part finishes the unification. The relative
update times reflects the calculating ability of incremental
SVD facing different sizes of datasets.

Figure 6 shows the experimental results about relative
update times. From Figure 6, we can see that as N
grows, relative update times declines, which means that
the incremental method will perform better and more
efficiently when the dataset grows larger.

D. Memory usage

In addition to computing time, economic memory usage
is an another huge advantage of incremental SVD. Figure
7 shows the comparison of these two methods in memory
usage as the size of the training set grows.

From Figure 7, we can see that the maximum memory
usage of incremental method is only 492M and incre-
mental method performs relatively stably. In contrast,

400

15400

30400

45400

60400

75400

90400

10000 20000 30000 40000 50000 60000 70000 80000

M
e

m
o

ry
 u

sa
g

e
 (

M
B

)

Size of the training set

Conventional Incremental

Figure 7. Comparison of conventional and incremental SVD in memory
usage

TABLE V.
SCORING ACCURACY OF CONVENTIONAL AND INCREMENTAL SVD

Incremental Conventional
Size of testing set 1000 1000
Tolerable scorings 888 888

Intolerable scorings 112 112
Scoring accuracy 88.8 % 88.8%

conventional method uses much more memory and in-
creases distinctly. In practical application, language tests
usually produce a massive dataset, so, even given huge
memory, the decomposition task of conventional SVD
seems impossible, but it is viable for incremental SVD
to perform it.

E. Scoring performance

From the results above, it is obvious that incremental
SVD is of huge advantages both in running time and
memory usage. When it is used in LSA, what is important
is that it will not reduce the scoring accuracy, which is
calculated as follows:

scoring accuracy =

∑n
i=1 t(hsi, psi)

n
(12)

where n is the size of the testing set, and hsi and psi
are the human scoring and the automated scoring of the
i-th essay respectively. The function t(hsi, psi) is binary
which can be defined as:

t(hs, ps) =

{
1 |hs− ps| ≤ 1

0 otherwise
(13)

It is tolerable when the difference between human
and automated scoring is less than 1. Table V shows a
comparison of incremental and conventional methods in
scoring accuracy and it verifies that incremental SVD is
as effective as conventional method, and both their values
of scoring accuracy are 88.8%, which is acceptable.

V. CONCLUSIONS AND FUTURE WORKS

Latent semantic analysis is of prevalence in the fields
of information retrieval and natural language processing.
Its primary algorithm, singular value decomposition, how-
ever, cannot deal with huge datasets. Our incremental

434 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

method has a sharp contrast with traditional method
when faced with huge datasets, using far less memory
and time consuming. Experimental results also show that
this method can be effectively used in automated essay
scoring.

Our future works include the incremental algorithm
and the performance of automated scoring. In order to
get the optimum batch size, we need confirm the best
threshold value and initialized value, which will influence
the performance of the incremental algorithm. Secondly, it
is quite important to improve the correlation between the
human and the predicted scoring, for a wider application
of automated essay scoring.

ACKNOWLEDGMENT

The authors are grateful to the anonymous referees for
their valuable comments and suggestions.

REFERENCES

[1] H. Peng and Y. Yu, “Research on controlling central
rating in net-based scoring of subjective test items,” China
Examinations, no. 6, pp. 3–9, 2013.

[2] A. Fazal, T. Dillon, and E. Chang, “Noise reduction in
essay datasets for automated essay grading,” in On the
Move to Meaningful Internet Systems: OTM 2011 Work-
shops. Springer, 2011, pp. 484–493.

[3] R. A. Hardy, “Examining the costs of performance assess-
ment,” Applied Measurement in Education, vol. 8, no. 2,
pp. 121–134, 1995.

[4] E. B. Page, “Computer grading of student prose, using
modern concepts and software,” The Journal of experi-
mental education, vol. 62, no. 2, pp. 127–142, 1994.

[5] J. Burstein, K. Kukich, S. Wolff, J. Lu, and M. Chodorow,
Enriching automated essay scoring using discourse mark-
ing. ERIC Clearinghouse, 2001.

[6] S. Valenti, F. Neri, and A. Cucchiarelli, “An overview of
current research on automated essay grading,” Journal of
Information Technology Education, vol. 2, pp. 319–330,
2003.

[7] L. M. Rudner and T. Liang, “Automated essay scoring us-
ing bayes’ theorem,” The Journal of Technology, Learning
and Assessment, vol. 1, no. 2, 2002.

[8] P. W. Foltz, D. Laham, and T. K. Landauer, “The intelligent
essay assessor: Applications to educational technology,”
Interactive Multimedia Electronic Journal of Computer-
Enhanced Learning, vol. 1, no. 2, 1999.

[9] B. Li and J.-M. Yao, “Automated essay scoring using
multi-classifier fusion,” in Computing and Intelligent Sys-
tems. Springer, 2011, pp. 151–157.

[10] H. Peng, “The minorities-oriented chinese level test,” Chi-
na Examinations, no. 10, pp. 57–59, 2005.

[11] D. Ke, X. Peng, Z. Zhao, Z. Chen, and J. Wang, “Word-
level-based automated chinese essay scoring method,” in
Proceedings of National Conference on Man-Machine
Speech Communication, Xi’an China, 2011, pp. 57–59.

[12] Y. Tonta and H. R. Darvish, “Diffusion of latent semantic
analysis as a research tool: A social network analysis
approach,” Journal of Informetrics, vol. 4, no. 2, pp. 166–
174, 2010.

[13] J. McInerney, A. Rogers, and N. R. Jennings, “Improving
location prediction services for new users with probabilis-
tic latent semantic analysis,” in Proceedings of the 2012
ACM Conference on Ubiquitous Computing. ACM, 2012,
pp. 906–910.

[14] W. Wang and B. Yu, “Text categorization based on com-
bination of modified back propagation neural network and
latent semantic analysis,” Neural Computing and Applica-
tions, vol. 18, no. 8, pp. 875–881, 2009.

[15] Y. Jin, Y. Gao, Y. Shi, L. Shang, R. Wang, and Y. Yang,
“P2lsa and p2lsa+: Two paralleled probabilistic latent
semantic analysis algorithms based on the mapreduce
model,” in Intelligent Data Engineering and Automated
Learning-IDEAL 2011. Springer, 2011, pp. 385–393.

[16] S. Ismail, R. M. Othman, and S. Kasim, “Pairwise protein
substring alignment with latent semantic analysis and sup-
port vector machines to detect remote protein homology,”
in Ubiquitous Computing and Multimedia Applications.
Springer, 2011, pp. 526–546.

[17] L. Lin, B. Liu, X. Wang, X. Wang, and B. Tang, “Protein
remote homology detection and fold recognition based
on features extracted from frequency profiles,” Journal of
Computers, vol. 6, no. 2, pp. 321–328, 2011.

[18] S. Zhong, M. Shang, and Z. Deng, “A design of the
inverted index based on web document comprehending,”
Journal of Computers, vol. 6, no. 4, pp. 664–670, 2011.

[19] L. Wang and Y. Wan, “Sentiment classification of docu-
ments based on latent semantic analysis,” in Advanced Re-
search on Computer Education, Simulation and Modeling.
Springer, 2011, pp. 356–361.

[20] C. Liu, Y. Wang, F. Zheng, and D. Liu, “Using lsa and text
segmentation to improve automatic chinese dialogue text
summarization,” Journal of Zhejiang University Science A,
vol. 8, no. 1, pp. 79–87, 2007.

[21] J. Yeh, H. Ke, and W. Yang, “Chinese text summarization
using a trainable summarizer and latent semantic analysis,”
in Proceedings of the 5th international conference on Asian
digital libraries (ICADL’02). Springer, 2002, pp. 76–87.

[22] A. Mesaros, T. Heittola, and A. Klapuri, “Latent semantic
analysis in sound event detection,” in 19th European Signal
Processing Conference, 2011, pp. 1307–1311.

[23] G. Gorrell, “Generalized hebbian algorithm for incre-
mental singular value decomposition in natural language
processing.” in Proceedings of the 11th Conference of the
European Chapter of the Association for Computational
Linguistics (EACL-06), 2006, pp. 97–104.

[24] A. Atreya and C. Elkan, “Latent semantic indexing (lsi)
fails for trec collections,” ACM SIGKDD Explorations
Newsletter, vol. 12, no. 2, pp. 5–10, 2011.

[25] Y. Li, “On incremental and robust subspace learning,”
Pattern recognition, vol. 37, no. 7, pp. 1509–1518, 2004.

[26] M. Brand, “Incremental singular value decomposition of
uncertain data with missing values,” in Computer Vision
ECCV 2002. Springer, 2002, pp. 707–720.

[27] T. J. Chin, K. Schindler, and D. Suter, “Incremental
kernel svd for face recognition with image sets,” in 7th
International Conference on Automatic Face and Gesture
Recognition. FGR. IEEE, 2006, pp. 461–466.

[28] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Incre-
mental singular value decomposition algorithms for highly
scalable recommender systems,” in 5th International Con-
ference on Computer and Information Science, 2002, pp.
27–28.

[29] M. Brand, “Fast online svd revisions for lightweight rec-
ommender systems,” in SIAM International Conference on
Data Mining, 2003, pp. 37–46.

[30] Y. Cao and C. Yang, “Automated chinese essay scoring
with latent semantic analysis,” Examinations Research,
vol. 3, no. 1, pp. 63–71, 2007.

[31] Y. Li, “Automated essay scoring for testing chinese as
a second language,” Ph.D. dissertation, Beijing Language
and Culture University, 2006.

[32] M. M. Islam and A. Hoque, “Automated essay scoring
using generalized latent semantic analysis,” Journal of
Computers, vol. 7, no. 3, pp. 616–626, 2012.

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 435

© 2014 ACADEMY PUBLISHER

[33] F. Wild, C. Stahl, G. Stermsek, and G. Neumann, “Param-
eters driving effectiveness of automated essay scoring with
lsa,” in 9th Internaional Computer-Assisted Assessment
Conference, 2005, pp. 485–494.

[34] C. Chang, “A pilot study on automatic chinese spelling
error correction,” Communication of COLIPS, vol. 4, no. 2,
pp. 143–149, 1994.

[35] J. Ma, Y. Zhang, T. Liu, and S. Li, “Detecting chinese
text errors based on trigram and dependency parsing,”
Journal of The China Society For Scientific and Technical
Information, vol. 6, p. 014, 2004.

[36] S. Hao, Z. Gao, M. Zhang, Y. Xu, H. Peng, K. Su,
and D. Ke, “Automated error detection and correction of
chinese characters in written essays based on weighted
finite-state transducer,” in 12th International Conference
on Document Analysis and Recognition (ICDAR). IEEE,
2013, pp. 763–767.

[37] M. Sahami and T. D. Heilman, “A web-based kernel func-
tion for measuring the similarity of short text snippets,” in
Proceedings of the 15th international conference on World
Wide Web. ACM, 2006, pp. 377–386.

[38] X. Peng and Y. Wang, “Cch-based geometric algorithms
for svm and applications,” Applied Mathematics and Me-
chanics, vol. 30, no. 1, pp. 89–100, 2009.

[39] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for
support vector machines,” ACM Transactions on Intelli-
gent Systems and Technology, vol. 2, no. 3, pp. 27:1–
27:27, 2011, software available at http://www.csie.ntu.edu.
tw/∼cjlin/libsvm.

Mingqing Zhang was born in Shandong, China. He studied in
Beijing Forestry University since 2011.

He joined Institute of Artificial Intelligence in Beijing
Forestry University in 2012 as a research assistant. His publi-
cations include: “Automated Error Detection and Correction of
Chinese Characters in Written Essays Based on Weighted Finite-
State Transducer”, International Conference on Document Anal-
ysis and Recognition, ICDAR2013. His major research interests
include “Automated Essay Scoring” and “Speech Recognition”.

Shudong Hao was born in Beijing, China. He studied in Beijing
Forestry University since 2011.

He joined Institute of Artificial Intelligence in Beijing
Forestry University in 2012 as a research assistant. His pub-
lications include: “Automated Error Detection and Correction
of Chinese Characters in Written Essays Based on Weighted
Finite-State Transducer”, International Conference on Document
Analysis and Recognition, ICDAR2013. His major research
interests include “Machine Learning” and “Natural Language
Processing”.

Yanyan Xu was born in China in 1981. She obtained the
bachelor degree with the major field computer science and
technology and the master degree with the major field computer
software and theory from Sun Yetsen University in Guangzhou
in 2003 and 2005 respectively, and then she majored in computer
software and theory and obtained the PhD from Institute of
Software, Chinese Academy of Science in 2009 in Beijing.

She joined Beijing Forestry University in 2009 as a lecturer
and promoted as an associate professor in 2013. She has
published over 10 peer-refereed papers in quality journals and
conferences. Her publications include: “Solving Difficult SAT
Problems by Using OBDDs and Greedy Clique Decomposi-
tion”, International Frontiers of Algorithms Workshop, Springer,
FAW2012; “CacBDD: A BDD Package with Dynamic Cache
Management”, the 25th International Conference on Computer
Aided Verification, CAV2013; and “Automated Error Detection

and Correction of Chinese Characters in Written Essays Based
on Weighted Finite-State Transducer”, ICDAR2013, and so on.
Her research interests include “Formal methods”, “Artificial
Intelligence” and “Algorithm Design and Analysis”.

Prof. Xu has been the director of Institute of Artificial Intel-
ligence in Beijing Forestry University since 2012 and currently
she is supervising 6 students. She got the academic professional
excellence award from Beijing Forestry University in 2012.

Dengfeng Ke was born in GuangDong, China in 1980. He
obtained the bachelor degree with the major field computer sci-
ence and technology and the master degree with the major field
computer software and theory from Sun Yetsen University in
Guangzhou in 2003 and 2005 respectively, and then he majored
in pattern recognition and intelligence system and obtained the
PhD from Institute of Automation, Chinese Academy of Science
in 2009 in Beijing.

He joined Institute of Automation, Chinese Academiy of
Science in 2009 as a research assistant and promoted as an
associate professor in 2013. He has published over 20 peer-
refereed papers in quality journals and conferences. His publi-
cations include: “Automated Chinese essay scoring using vector
space models”, IUCS 2010; “Automated essay scoring based
on finite state transducer: towards ASR transcription of oral
English speech”, ACL2012; and “Automated Error Detection
and Correction of Chinese Characters in Written Essays Based
on Weighted Finite-State Transducer”, ICDAR2013, and so on.
His research interests include “Speech Recognition”, “Artificial
Intelligence” and “Algorithm Design and Analysis”.

Prof. Ke has been invited to worked in Institute of Digital
Media in Singapore since 2013.

Hengli Peng was born in China in 1964. He obtained his bach-
elor degree with the major field in Philosophy from Shandong
University in Jinan in 1987, and the master degree in Chinese
Philology from Beijing Language and Culture University in
2003.

He has worked in Beijing Language and Culture University
since 1987,and has engaged on the development and man-
agement of Chinese Proficiency Test (HSK) for several years.
Now he is an associate professor and the director of Institute
of Educational Measurement in Beijing Language and Culture
University (BLCU-IEM). He is also the Project Leader of the
Chinese Proficiency Test for Minorities (MHK) Program. His
publications include The Second Series of Collected Works for
Test Research (Beijing, China: Economic Science Press, 2004),
Suggested Improvements for AAT Based on Statistic Analy-
sis (In The Sixth Collected Works for Test Research, 2011),
Research on Controlling Central Rating in Net-based Scoring
of Subjective Test Items (Beijing, China: China Examinations,
2013) and so on. His current research interest covers computer-
automated scoring of subjective items, detection of test cheating
and error controlling for the scoring of subjective items.

Prof. Peng has taken part in several tests development,
including Chinese Proficiency Test (HSK), Chinese Proficiency
Test for Minorities (MHK), Test for Certifying the Ability to
Teach Chinese as a Foreign Language (MJK), Chinese Character
Proficiency Test (HZC), Mongol Proficiency Test, and Uighur
language Proficiency Test, for the past several years.

436 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

