

Abstract— To support automated reasoning of the policies
for the cooperation between Goal and Process and achieve
the on-demand modifications of operational process in some
degree, based on our previous work, an approach for
transforming the informal descriptions of SWRL into the
built-in elements of protégé4.1 is proposed, and the
optimization as well as the validation of the policies are also
indicated in this paper. The concept of the built-in elements
in protégé4.1 is specified in this paper to indicate the
mapping relationships from the informal descriptions of
SWRL to the built-in elements of protégé4.1. According to
the mapping relationship, the transformation approach is
concluded and illustrated with a simple case. Then the
policies for the cooperation between Goal and Process which
is in the informal descriptions of SWRL are firstly optimized
and then transformed into corresponding built-in elements
of protégé4.1 through the approach. In this paper, effective
reasoning support is provided for the dynamic evolution of
Process model and the construction of on-demand service
knowledge base.

Index Term —SWRL; protégé4.1; transformation;
optimization; on-demand service; knowledge base

I. INTRODUCTION
The current requirement engineering [1] stays in the

Goal-oriented computing paradigm [2]. Since the
end-user’s requirement for the software is diverse and in
dynamic changes, studying the policies of the cooperation
between Goal and Process [3] as well as their
transformation and automated reasoning courses should
be done immediately to assist the dynamic changes of
Process and support the on-demand services of software.

Based on the international standard ISO/IEC 19763-8

This work was supported by National Science & Technology Pillar
Program of China (No.2012BAH07B01); the Natural Science
Foundation of China (No.61174177); National Technology R&D
Program (No.2013AA10230207); and Fundamental Research Funds for
the Central Universities (No.201121102020004).

Corresponding author: Zhao Li, Email: zhaolicst@163.com

MFI Role and Goal registration (Meta-model Framework
for Interoperability – Part 8: Meta-model for Role and
Goal registration) which is presided over and formulated
by us, we illustrate: (1) Goal model; (2) Process model;
and (3) the relationships between Goal model and Process
model; as well as (4) the theoretical background of
Ontology, Web Ontology Language (OWL), protégé4.1,
Description Logics (DL) reasoner, and Semantic Web
Rule Language (SWRL).

Goal is an abstract metaclass that represents the
business intent of a user or an organization, a goal consists
of three parts: a verb, a noun and a prefix or a suffix. The
verb indicates the Operation, the noun indicates the Object
dealt with by the operation, and the prefix or the suffix
indicates how (Manner) the operation affects the object. A
goal is a high-level statement when first proposed, and it
needs to be decomposed to get a concrete and operational
description. Decomposition is the process that
decomposing the high-level goal into many sub-goals. The
Decomposition primarily describes the relationship
between upper goal and lower goal, and it consists of And
relationship and Or relationship. And relationship
indicates that once the upper goal is selected, all of the
lower goals must be selected; Or relationship indicates that
once the upper goal is selected, at least one goal from the
lower goals set must be selected. At the same time, some
Constraint relationships may exist between different goals.
Constraint relationship consists of Depend relationship,
Exclude relationship, Equal relationship and Contribute
relationship. Depend relationship indicates that the
achievement of a goal depends on the achievement of
another goal; Exclude relationship indicates that it is
impossible to achieve the two goals simultaneously; Equal
relationship indicates that the two goals are the same in the
semantics; Contribute relationship indicates that the
achievement of a goal can contribute or hinder the
achievement of another goal [3].

Role is a meta-class that represents abstract
characterizations of organizational behaviors and

Using SWRL and Protégé 4.1 to Optimize and
Reason with Policies of the Cooperation between

Goal and Process

Zhao Li, Shouzhi Xu
College of Computer and Information Technology, China Three Gorges University, Yichang, China

Email: zhaolicst@163.com, xsz@ctgu.edu.cn

Yi Zhao, Peng Liang, Keqing He
State Key Lab of Software Engineering, Wuhan University, Wuhan, China
Email: ivwepriu@sina.com, pliangeng@gmail.com, hekeqing@whu.edu.cn

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 409

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.2.409-416

responsibilities within specified organizational context.
Role can be played by different Actors, and Organization
is aggregated of Roles. An Actor is an intentional entity
that can be either a human actor or a software agent. In an
organizational context, Role_Goal is the goal that a role is
in charge of. An Actor also has the personal preference, so
the personal preference is modeled as Personal_Goal.
Role_Goal_Model is a meta-class that describes the basic
information of a role and goal model.
Role_Goal_Modelling_Language is a metaclass that
describes the Role_Goal_Model [3]. Fig. 1 shows the
classes and the relationships between them in Goal model,
also describes the structure of Goal model.

Fig. 1. Goal model [3]

Process_Model is a metaclass that represents the

structured activities or tasks of a process, that is to say, a
process model could be used to describe the
decomposition of a process by specifying the related
Process_Elements, which consist of Processes and the
Dependencies between them.
Process_Modeling_Language is used to specify the
special modeling language used by process model. Event
represents the occurrence or the state at a particular point
in time. Event can trigger process before the execution of
process or be produced by process after the execution of
process. Resource indicates the asset which is used,
created or consumed during the execution of process.
Dependency represents the control constraints between
different processes in the process model, it consists of
Split_Dependency, Join_Dependency,
Sequence_Dependency and Loop_Dependency.
Split_Dependency indicates that once the precedence
process is completed, one or more following processes
would execute in parallel, and Split_Dependency has
split_dependency_type attribute which could have the
values: “AND”, “OR” and “XOR”; Join_Dependency
indicates that once all of the processes in the given set is
completed, a following process would start, and
Join_Dependency also has join_dependency_type
attribute which could have the values: “AND”, “OR” and
“XOR”; Sequence_Dependency represents that the
processes execute in order; Loop_Dependency means that
once the loop condition is satisfied, some processes would
execute circularly [3]. Fig. 2 shows the classes and the
relationships between them in Process model, also

describes the structure of Process model.

Process

anotation[0..*]:Ontology_Atom
ic_Construct

Event

Resource

Service

PreCondition

PostCondition

Role

Goal

0..* 0..*

0..* 0..*

0..* 0..*

0..* 0..*

0..* 0..*

0..* 0..*

0..* 0..*

0..* 0..*

0..* 0..*

0..* 0..*

Process_Model

Process_Element

Dependency

Loop_Dependency
loop_dependency_type[1..1]:String
loop_condition[1..1]:String

Split_Dependency

Join_Dependency

Sequence_Dependency

Process_Modelling_Language0..* 0..*

1..1

1..1

1..1

1..1

preceding_element

following_element

following_element

proceding_element

entry_point

following_element

preceding_element

1..1

0..1

0..1

0..*

1..1

describing_model

described_process

successor
0..*

0..*

0..*

precedent

jump_point

successor
0..*

0..*
precedent

successor
0..*

0..*
precedent

0..*

precedent
0..*

0..*
proceding_process

0..*

Join_Dependency_Option0..*
preceding_option

Split_Dependency_Option0..*
following_option

0..*

1..*

containing_model

contained_process_element

trigger triggered_process

produced_event producer

consumed_resource consumer

created_resource

used_resource user

creator

realized_service realising_process

constraint constrainted_process

constraint constrainted_process

involved_role involving_process

achieved_goal achieving_process

0..*following_option

0..*proceding_option

split_dependency_type[1..1]:String
isSynchronous[0..1]:Boolean

join_dependency_type[1..1]:String
is_synchronous[0..1]:Boolean

guard_condition[0..1]:String

guard_condition[0..1]:String

describing_languageexpressed_model

anotation[0..*]:Ontology_Atomic
_Construct

Metaclasses from MFI Role and
Goal registration, MFI Service

registration

NOTE Metaclasses whose names are italicized are abstract metaclasses

following_process

successor

anotation[0..*]:Ontology_Atomic_Construct

anotation[0..*]:Ontology_Atomic
_Construct

Fig. 2. Process model [3]

The corresponding relationships between Goal model

and Process model also exist. A Role can undertake a
Role_Goal; an Actor can play a Role, also prefers a
Personal_Goal; Role is refined to Process_Role, and
Service_Role; Process can involve Process_Role, and also
achieve Role_Goal. Fig. 3 illustrates the relationships
between Goal model and Process Model.

Fig. 3. The relationships between Goal model and Process Model [4]

Ontology provides the formal representation for

different kinds of knowledge [5] [6]. An ontology
language can be leveraged to achieve the construction and
formalization of a knowledge framework or a specific
ontology. The Web Ontology Language (OWL) [7],
endorsed by the W3C, is one of the most recent
developments in standard ontology languages. We use
protégé4.1 [8], a free, open-source ontology editor and
knowledge base [9] construction tool, to build the policies
of cooperation between the Goal and Process, as well as
the corresponding knowledge framework (consists of five
built-in elements: Classes Tab, Object Properties Tab,
Data Properties Tab, Individuals Tab, Rules Tab). As one
of the most important features of OWL knowledge
framework, it can be executed by a DL reasoner. A DL
reasoner could provide classification, consistency

410 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

checking, and policies validation for the corresponding
knowledge framework. In our work, we use the reasoner
Pellet [10] integrated into protégé4.1 to execute the related
inferences.

SWRL is a proposal for Semantic Web rules-language
[11] [12], combining the OWL DL (OWL-Description
Logics) [13] and the OWL Lite with the Unary/Binary
Datalog RuleML sublanguages of the Rule Markup
Language. The proposal extends the set of OWL axioms to
include Horn-like rules. It thus enables Horn-like rules to
be combined with OWL knowledge base. SWRL, which is
based on OWL, allows users to write rules to reason about
OWL individuals and to infer new knowledge about those
individuals [14]. SWRL rules can also use arithmetic
operators and can compute the desired behavior based on
the context of the individual, which could depend on a
dynamic environment with multiple components [15].
Such as OWL and SWRL rules can be leveraged to
dynamically reason with the notifications based on the
distance between the car and the cross-road, that with the
current speed, whether the car could pass the cross-road in
time and thus then the corresponding notification
individual could be produced [16]. However, as just a kind
of logical language, SWRL still has many shortcomings.
Such that the plug-in of SWRL can be integrated only in
protégé3.4.* [17] or the earlier versions but other ontology
building tools, so the portability of SWRL is poor; the
plug-in for editing corresponding SWRL rules must be
leveraged in conjunction with Jess engine, which greatly
limits the use of SWRL; and the general ontology building
tools have no abilities to derive corresponding intuitive
visual graphics through SWRL, which causes that the
users can’t effectively distinguish the influence to the
existed ontology brought by SWRL rules. To address
these challenges, protégé4.1 proposes an integration of the
earlier versions, which harmonizes with the semantics of
SWRL and other related languages; and then provides a
strong enough reasoning engine Pellet as a plug-in to
support the executions and verifications of SWRL rules;
thus further absorbs a visualization plug-in OntoGraf to
match the semantics of SWRL in order to derive dynamic
intuitive graphics for users. Meanwhile, due to that SWRL
extended the OWL model-theoretic semantics and
provided a formal meaning for OWL ontology including
rules described in the informal descriptions of SWRL, so
the policies described by SWRL and the approach for
transforming the informal descriptions of SWRL to the
built-in elements of protégé4.1 [18] would greatly support
the dynamic evolution of the process model [19] and the
visualization of the ontology modification.

The informal descriptions of SWRL are a kind of
human readable descriptions and primarily adopt
human-readable syntax. They are used to describe the
rules related to the OWL-ontology in applications and
support the editing as well as the reasoning through Jess
engine in protégé3.4.*. The informal descriptions of
SWRL consist of classname(?x1),
propertyname(?x1, ?x2), datapropertyname(?x1, value)
and rules written in SWRL. Each of the first three is a

single atom, and the last one, which is decomposed into
two parts: antecedent and consequent, is a composition of
atoms. The classname(?x1) is responsible for declaring the
class which the individual x1 belongs to, the
propertyname(?x1, ?x2) is responsible for specifying the
relationships between two individuals or classes, and the
datapropertyname(?x1, value) is responsible for assigning
the specific data value to the individual x1 [11]. The
readable rule written in SWRL is illustrated in Formula (1).

 antecedent consequent

atom1 ^ atom2 ^ atom3 ^ … → atomN ^ atomN+1 … (1)

Formula (1) presents that once atom1, atom2, and

atom3 are concurrently true, we can infer that atomN,
atomN+1 et al. are true.

Formula (2) is an example for illustrating the rule
written in SWRL:

Person(?Tom) ^ hasSibling(?Tom, ?Jerry) ^ Woman(?Jerry)

→ hasSister(?Tom, ?Jerry) (2)

Formula (2) describes that once Tom belongs to Person,

Tom has a Sibling named Jerry, and Jerry belongs to
Woman, so we can infer that Tom has a Sister named
Jerry.

At present, protégé launches a new version protégé4.1,
which greatly improves the old version 3.4.* and discards
its some major plug-ins, for example, the SWRL Tab, and
replaces the Jess engine which is used to reasoning with
more effective engine Pellet [20]. The significant changes
of protégé4.1 directly result that the routine users can’t
effectively use the SWRL Tab to edit the rules required.
While constructing the ontology, the users have to take
precise analysis and complicated operations to implicitly
express the semantics of policies written in SWRL by the
classes, individuals, properties and their hierarchical
structure. During the study, we propose the concept of
protégé4.1 built-in elements to highlight the semantics of
policies written in SWRL and improve the implementation
of the policies, thus further provide reasoning support for
the dynamic evolution of process model.

Being consistent with the OWL syntax, the built-in
elements of protégé4.1 are the main components for the
construction of ontology, including Classes Tab, Object
Properties Tab, Data Properties Tab, Individuals Tab and
Rules Tab [21]. In order to accurately represent the
informal descriptions of SWRL in the form of the built-in
elements of protégé4.1, thus further provide support for
the automated reasoning of policies, based on the specific
form of the atom and the composition of atoms which are
included in the informal descriptions of SWRL, we
determine which built-in element of protégé4.1 (Classes
Tab, Object Properties Tab, Data Properties Tab,
Individuals Tab or Rules Tab) these atoms are equivalent
to and reasonably map each of these atoms to the
corresponding built-in element of protégé4.1. TABLE I
shows the mapping from the informal descriptions of

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 411

© 2014 ACADEMY PUBLISHER

SWRL to the built-in elements of protégé4.1.

TABLE I
THE MAPPING FROM THE INFORMAL DESCRIPTIONS OF SWRL TO THE

BUILT-IN ELEMENTS OF PROTÉGÉ4.1

Form
Informal

Descriptions of
SWRL

Built-in Elements of
Protégé4.1

a single atom

classname(?x1) Classes Tab

a single atom

propertyname
(?x1, ?x2)

Object Properties Tab

a single atom

datapropertyname
(?x1, value)

Data Properties Tab

 x1, x2 Individuals Tab

a composition
of atoms

rules written in
SWRL

Rules Tab

The rest of this paper is organized as follows. In section

II, an approach for transforming the informal descriptions
of SWRL to the built-in elements of protégé4.1 is
proposed and illustrated by a simple case. In section III,
the transformation approach is applied to transform the
policies for the cooperation between Goal and Process to
the corresponding built-in elements of protégé4.1 and the
correctness of the transformation is validated. Conclusion
of this paper is given in section IV.

II. AN APPROACH FOR TRANSFORMING THE INFORMAL
DESCRIPTIONS OF SWRL TO THE BUILT-IN ELEMENTS OF

PROTÉGÉ4.1
According to the mapping relationship (TABLE I) in

section I, we propose an approach [21] which could enable
the seamless transformation from the informal
descriptions of SWRL to the built-in elements of
protégé4.1, and thus it could provide automated reasoning
support for the evolution policies of process model. Based
on protégé4.1 (the tool for constructing ontology), we
illustrate the transformation approach through the simple
case (Formula (2)) in section I. The rule case is
decomposed into many atoms and a composition of atoms
according to the informal descriptions of SWRL, thus the
mapping between the atoms obtained and the built-in
elements of protégé4.1 is shown in TABLE II [21].

TABLE II

THE MAPPING BETWEEN THE ATOMS OF THE RULE CASE AND THE
BUILT-IN ELEMENTS OF PROTÉGÉ4.1 [21]

Atom of The Rule Case
Informa

l Descriptions
of SWRL

Built-in Elements of
Protégé4.1

Person(?Tom)
Woman(?Jerry)

classname
(?x1)

Classes Tab

hasSibling(?Tom, ?Jerry)
hasSister(?Tom, ?Jerry)

propertyname
(?x1, ?x2)

Object Properties Tab

 datapropertyn
ame
(?x1, value)

Data Properties Tab

Tom, Jerry x1, x2 Individuals Tab

Person(?Tom) ^
hasSibling(?Tom, ?Jerry)
^ Woman(?Jerry) →
hasSister(?Tom, ?Jerry)

rules written
in SWRL

Rules Tab

The atoms of rule case are transformed into the built-in

elements of protégé4.1 based on the tool protégé4.1. Fig. 4
[21] illustrates the transformation.

Person, Woman

has
Siblin

g, h
as

Sist
er

Tom, J
err

y

St
ep

 2

St
ep

 4

Classes

Obje
ct

Pro
pe

rti
esData

Properties

Indivi
duals

Fig. 4. The transformation from the atoms of rule case to the built-in

elements of protégé4.1

The transformation approach [21] from informal

descriptions of SWRL to built-in elements of protégé4.1
consists of five steps:

Step.1 The class (atom) is built in the Classes of
protégé4.1. So the classes Person and Woman are built in
the built-in element Classes Tab of protégé4.1.

Step.2 The association (atom) between two individuals
or two classes is declared in the Object Properties of
protégé4.1 if it exists. Because the rule case includes two
associations between the individuals: hasSibling and
hasSister, the two associations are declared in the built-in
element Object Properties Tab of protégé4.1.

Step.3 The association (atom) between individual and
data value of attribute is declared in the Data Properties of
protégé4.1 if it exists. The rule case doesn’t include this
kind of association, so there is no need to declare it.

Step.4 The corresponding individual is built in the
Individuals of protégé4.1 for each class built in Step.1, and
the association between two individuals or between an
individual and a data value of attribute is also assigned to
them in the Individuals of protégé4.1 if exists. The rule
case includes two individuals: Tom and Jerry as well as
one association between them: hasSibling, so the two
individuals are built and the association between them is
assigned in the built-in element Individuals Tab of
protégé4.1.

Step.5 The rule written in SWRL is rewritten in the
Rules Tab of protégé4.1. So the rule case is rewritten in the
built-in element Rules Tab of protégé4.1 in the form of
Formula (3).

Person(?Tom), hasSibling(?Tom, ?Jerry), Woman(?Jerry) ->

hasSister(?Tom, ?Jerry) (3)
After the execution of above five steps in this approach,

we transform the informal descriptions of SWRL to the
built-in elements of protégé4.1 and enable the seamless
embedding from the semantics of SWRL informal

412 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

descriptions to the built-in elements of protégé4.1, which
will provide automated reasoning support for the dynamic
evolution policies of process model and prepare for the
visualization of ontology modification. To validate the
correctness of the policies, we leverage the reasoning
engine Pellet in protégé4.1 to execute the policies and
validate the transformation, then get the correct result that
the individual Tom associates with the individual Jerry
through the association hasSister after reasoning. Fig. 5
shows the different states of the individual before and after
reasoning.

Fig. 5. The states of the individual Tom before and after reasoning

III. CASE STUDY
In this section, we take the policies of the cooperation

between Goal and Process [3] in RGPS requirements
framework [4] as a case to demonstrate the feasibility of
our proposed transformation approach. It is known that the
end-user’s requirement for the software is diverse and in
dynamic changes, so studying these cooperation policies
could enable the on-demand modification of Process and
provide reasoning support for the dynamic evolution of
Process model in RGPS requirements framework. To
effectively carry out the study about the on-demand
dynamic evolution of RGPS requirements framework, we
have customized the policies of the cooperation between
Goal and Process and formalized them in SWRL in our
previous work [3].

The policies almost cover all of the common scenarios
of goal modifications. However, they are not meticulous
enough to accurately represent the specific cooperation
between Goal and Process in application. Therefore, we
optimize the policies specified in our previous work [3]
according to the details of Goal model, Process model, as
well as the relationships between them, and then also
formalized these policies in SWRL.

Through the transformation approach, we transform the
new policies of the cooperation between Goal and Process
which described by the informal descriptions of SWRL
into the built-in elements of protégé4.1 and get the
corresponding Rules Tab in protégé4.1. TABLE III
indicates the policies optimized in protégé4.1.

TABLE III
THE OPTIMIZED POLICIES OF THE COOPERATION BETWEEN GOAL AND

PROCESS IN PROTÉGÉ4.1

ID Policies of The Cooperation between Goal and Process in
Rules Tab

01

Process(?p), Process_Role(?pr), Role(?r), Role_Goal(?rg),
achieve(?p, ?rg), involve(?p, ?pr), plays(?r, ?pr),
takes_charge_of(?r, ?rg) -> correspondWith(?rg, ?p)

02

Depend(?d1), existent_Sequence_Dependency(?sd),
precedes(?sd, ?p), nonexistent_Sequence_Dependency(?sd1),
addAssociatedGoal(?rg, ?rg1), addDepend(?rg, ?d1),
correspondWith(?rg, ?p), correspondWith(?rg1, ?p1),
depend(?rg, ?rg1) -> addAssociatedProcess(?p, ?p1),
addSequence_Dependency(?p, ?sd1), precedes(?p1, ?sd1),
precedes(?sd1, ?p), precedes(?sd, ?p1)

03

Role_Goal(?rg), Role_Goal(?rg1), isSubGoalOf(?rg1, ?rg),
contribute(?rg1, ?rg), mustBeSelectedToAchieve(?rg1, ?rg) ->
hasAndDecompositionWith(?rg1, ?rg)

04 Role_Goal(?rg), Role_Goal(?rg1), isSubGoalOf(?rg1, ?rg),
contribute(?rg1, ?rg), probablyBeSelectedToAchieve(?rg1, ?rg)
-> hasOrDecompositionWith(?rg1, ?rg)

05

06

07

08

09

And(?a1), nonexistent_Join_Dependency:AND(?jda1),
nonexistent_Split_Dependency:AND(?sda1), addAnd(?rg, ?a1),
addSubGoal(?rg, ?rg1), correspondWith(?rg, ?p),
correspondWith(?rg1, ?p1),
hasAndDecompositionWith(?rg1, ?rg) ->
addJoin_Dependency:AND(?p, ?jda1),
addSplit_Dependency:AND(?p, ?sda1), addSubProcess(?p, ?p1),
precedes(?p1, ?jda1), precedes(?sda1, ?p1)

nonexistent_Join_Dependency:OR(?jdo1), Or(?o1),
nonexistent_Split_Dependency:OR(?sdo1), addOr(?rg, ?o1),
addSubGoal(?rg, ?rg1), correspondWith(?rg, ?p),
correspondWith(?rg1, ?p1), hasOrDecompositionWith(?rg1, ?rg)
-> addJoin_Dependency:OR(?p, ?jdo1),
addSplit_Dependency:OR(?p, ?sdo1), addSubProcess(?p, ?p1),
precedes(?p1, ?jdo1), precedes(?sdo1, ?p1)

Depend(?d), GoalsSet(?G), ProcessesSet(?P),
existent_Sequence_Dependency(?sd),
existent_Sequence_Dependency(?sd1), contains(?G, ?d),
contains(?G, ?rg), contains(?G, ?rg1), contains(?P, ?p),
contains(?P, ?p1), contains(?P, ?sd), contains(?P, ?sd1),
correspondWith(?rg, ?p), correspondWith(?rg1, ?p1),
deleteGoal(?G, ?rg), deleteDepend(?G, ?d),
deleteAssociatedGoal(?G, ?rg1), depend(?rg, ?rg1),
precedes(?p, ?sd), precedes(?p1, ?sd1), precedes(?sd1, ?p) ->
deleteProcess(?P, ?p), deleteAssociatedProcess(?P, ?p1),
deleteSequence_Dependency(?P, ?sd),
deleteSequence_Dependency(?P, ?sd1)

And(?a1), GoalsSet(?G),
existent_Join_Dependency:AND(?jda1), ProcessesSet(?P),
existent_Split_Dependency:AND(?sda1), contains(?G, ?a1),
contains(?G, ?rg), contains(?G, ?rg1), contains(?P, ?jda1),
contains(?P, ?p), contains(?P, ?p1), contains(?P, ?sda1),
correspondWith(?rg, ?p), correspondWith(?rg1, ?p1),
deleteSubGoal(?G, ?rg1), deleteAnd(?G, ?a1),
hasAndDecompositionWith(?rg1, ?rg), precedes(?p1, ?jda1),
precedes(?sda1, ?p1) ->
deleteJoin_Dependency:AND(?P, ?jda1),
deleteSubProcess(?P, ?p1),
deleteSplit_Dependency:AND(?P, ?sda1)

GoalsSet(?G), existent_Join_Dependency:OR(?jdo1), Or(?o1),
ProcessesSet(?P), existent_Split_Dependency:OR(?sdo1),
contains(?G, ?o1), contains(?G, ?rg), contains(?G, ?rg1),
contains(?P, ?jdo1), contains(?P, ?p), contains(?P, ?p1),
contains(?P, ?sdo1), correspondWith(?rg, ?p),

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 413

© 2014 ACADEMY PUBLISHER

10

11

12

13

correspondWith(?rg1, ?p1), deleteSubGoal(?G, ?rg1),
deleteOr(?G, ?o1), hasOrDecompositionWith(?rg1, ?rg),
precedes(?p1, ?jdo1), precedes(?sdo1, ?p1) ->
deleteJoin_Dependency:OR(?P, ?jdo1),
deleteSubProcess(?P, ?p1),
deleteSplit_Dependency:OR(?P, ?sdo1)

Depend(?d), existent_Join_Dependency:AND(?jda2),
nonexistent_Sequence_Dependency(?sd),
existent_Split_Dependency:AND(?sda1), addDepend(?rg1, ?d),
addDependTo(?rg1, ?rg2), correspondWith(?rg, ?p),
correspondWith(?rg1, ?p1), correspondWith(?rg2, ?p2),
hasAndDecompositionWith(?rg1, ?rg),
hasAndDecompositionWith(?rg2, ?rg), precedes(?sda1, ?p1),
precedes(?p2, ?jda2) -> addSequence_Dependency(?p1, ?sd),
deleteJoin_Dependency:AND(?p2, ?jda2),
deleteSplit_Dependency:AND(?p1, ?sda1), precedes(?p2, ?sd),
precedes(?sd, ?p1)

Depend(?d), Process(?p3),
nonexistent_Sequence_Dependency(?sd),
existent_Split_Dependency:OR(?sdo1), addDepend(?rg1, ?d),
addDependTo(?rg1, ?rg2), correspondWith(?rg, ?p),
correspondWith(?rg1, ?p1), correspondWith(?rg2, ?p2),
equal(?p3, ?p2), hasOrDecompositionWith(?rg1, ?rg),
hasOrDecompositionWith(?rg2, ?rg), precedes(?sdo1, ?p1) ->
addAssociatedProcess(?p1, ?p3),
addSequence_Dependency(?p1, ?sd), precedes(?p3, ?sd),
precedes(?sd, ?p1), precedes(?sdo1, ?p3)

Depend(?d), GoalsSet(?G),
nonexistent_Join_Dependency:AND(?jda2), ProcessesSet(?P),
existent_Sequence_Dependency(?sd1),
nonexistent_Split_Dependency:AND(?sda1), contains(?G, ?d),
contains(?G, ?rg), contains(?G, ?rg1), contains(?G, ?rg2),
contains(?P, ?p1), contains(?P, ?p2), contains(?P, ?sd1),
correspondWith(?rg1, ?p1), correspondWith(?rg2, ?p2),
deleteDepend(?G, ?d), depend(?rg1, ?rg2),
hasAndDecompositionWith(?rg1, ?rg),
hasAndDecompositionWith(?rg2, ?rg), precedes(?p2, ?sd1),
precedes(?sd1, ?p1) -> deleteSequence_Dependency(?P, ?sd1),
precedes(?p2, ?jda2), precedes(?sda1, ?p1),
addJoin_Dependency:AND(?P, ?jda2),
addSplit_Dependency:AND(?P, ?sda1)

Depend(?d), GoalsSet(?G), Process(?p3), ProcessesSet(?P),
existent_Sequence_Dependency(?sd1),
existent_Split_Dependency:OR(?sdo1), contains(?G, ?d),
contains(?G, ?rg), contains(?G, ?rg1), contains(?G, ?rg2),
contains(?P, ?p1), contains(?P, ?p2), contains(?P, ?p3),
contains(?P, ?sd1), contains(?P, ?sdo1),
correspondWith(?rg1, ?p1), correspondWith(?rg2, ?p2),
deleteDepend(?G, ?d), depend(?rg1, ?rg2), equal(?p3, ?p2),
hasOrDecompositionWith(?rg1, ?rg),
hasOrDecompositionWith(?rg2, ?rg), precedes(?p3, ?sd1),
precedes(?sd1, ?p1), precedes(?sdo1, ?p3) ->
deleteAssociatedProcess(?P, ?p3),
deleteSequence_Dependency(?P, ?sd1), precedes(?sdo1, ?p1)

Through the optimization, the new policies can some

extent to meet these specific scenarios of goal
modifications, and also indicate the ways that the
processes will change to dynamically suit the changing
requirements of users. To accurately choose the
corresponding policies, thus then directly respond the
changes of requirements in applications, the triggered
atoms (the blackbody in TABLE III) of requirements
modifications are extracted from the policies, and the
atoms for accurately distinguishing different policies are
classified into two choosing levels (Choosing Level One,

the blackbody in TABLE III; Choosing Level Two, the
blackbody and italic in TABLE III). TABLE IV illustrates
how to choose the corresponding single policy and mixed
policies according to the direct changes of user’s
requirements and the two choosing levels.

TABLE IV

THE TRIGGERED ATOMS, TWO CHOOSING LEVELS, AND THE CHOOSING
COURSES OF THE POLICIES

Choosing Level
One/The Triggered

Atoms of
Requirements
Modifications

Choosing
Level Two

The corresponding
policies

addAssociatedGoal

addDepend 01, 02

addSubGoal

addAnd

addOr

01, 03, 05

01, 04, 06

deleteGoal

deleteSubGoal

addDepend

deleteDepend

deleteDepend,
deleteAssociate
dGoal

deleteAnd

deleteOr

hasAndDecomp
ositionWith

hasOrDecompo
sitionWith

hasAndDecomp
ositionWith

hasOrDecompo
sitionWith

01, 07

01, 03, 08

01, 04, 09

01, 03, 10

01, 04, 11

01, 03, 12

01, 04, 13

When user’s requirements change, the corresponding

triggered atom of requirement modification is chosen
according to Choosing Level One. Thus then we continue
to choose the atom in Choosing Level Two to distinguish
and find the specific mixed policies. According to the
corresponding mixed policies and the situation, we should
supplement and improve the antecedent of the policies in
the built-in elements of protégé4.1 to perfectly match the
instance of requirement modification to the semantic of
the chosen policies. Finally, the reasoning engine Pellet is
leveraged to execute the policies and obtain the results of
processes modifications. If we’d like to add a sub-goal to
the super-goal, there as well as exists the “And”
decomposition relationship between them, so we should
choose the atom “addSubGoal” in Choosing Level One,
and then choose the atom “addAnd” in Choosing Level
Two, thus further to find the mixed policies “01, 03, 05”.
At last, we refer to the chosen policies to supplement the
semantics information of the instance in the built-in
elements of protégé4.1.

After the optimization, we succeed in seamlessly
transforming the semantics of the policies for the
cooperation between Goal and Process into the built-in
elements of protégé4.1 according to the transformation

414 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

approach. In order to validate the correctness of these
policies, the reasoning engine Pellet is used to execute
these policies and validate the corresponding
transformations in this case. At last, we can get the
executed results. We pick up the requirement modification
“addSubGoal-addAnd” as an example to validate the
policy. Fig. 6 illustrates the result of the requirement
modification “addSubGoal-addAnd”. This result shows
the distinct states of corresponding individuals before and
after inference.

IV. RELATED WORK
With the in-depth development of IT technology in the

area of healthcare, some key techniques in knowledge
engineering have played an increasingly important role,
especially the OWL, DL (Description Logics) reasoning,
and a SWRL (Semantic Web Rule Language) engine et al.
To adopt these techniques to effectively help the health
organizations specify the corresponding management
regulations of patients’ data according to the specific
context of a request, Beimel, and Peleg [15] propose a
knowledge framework named Situation-Based Access
Control (SitBAC). The SitBAC framework uses OWL to
formulate the scenarios of data-access, and derives the
corresponding OWL-based Situation classes and
data-access rule classes. Thus then the related health
organizations can use these rule classes as their
data-access management policy. Not only that, this
framework models an incoming data-access request as an
single individual of an OWL-based Situation class, and
leverages DL reasoner Pellet and SWRL edit tab to reason
against the data-access rule to produce the corresponding
“approved/denied” response. Overall, it is a knowledge
model for efficiently modeling, formulating, reasoning,
and realizing the complex and confidential data-access
management policies of the health organizations, which is
similar with the schema of this paper.

V. CONCLUSION
This paper proposes the transformation approach from

the informal descriptions of SWRL to the built-in elements
of protégé4.1, and the approach is successfully applied to
transform the policies of the cooperation between Goal
and Process into corresponding built-in elements of
protégé4.1. The main contributions of the paper are as
follows. Firstly, we specify the concept: the built-in
elements of protégé4.1 and the mapping from the informal
descriptions of SWRL to it. Secondly, the approach for
transforming the informal descriptions of SWRL into the
built-in elements of protégé4.1 is concluded according to
the mapping. Thirdly, the policies specified in our
previous work [3] are optimized according to the details of
Goal model, Process model, as well as the relationships
between them, thus then also formalized in SWRL. Finally,
the optimized policies are transformed into corresponding
built-in elements of protégé4.1 and the reasoning engine
Pellet is used to execute the policies and validate the
transformation. The work of this paper is the second step
for the construction of on-demand service knowledge base,

which could provide effective reasoning support for the
construction of on-demand service knowledge framework
based on ontology.

Our future work will focus on the evolution and
supplement of on-demand service knowledge framework
based on OWL DL; the constructions of specific business
knowledge bases; and the applications on the
interoperability evaluation among models.

Before Inference After Inference

Fig. 6. The states of corresponding individuals before and after reasoning

ACKNOWLEDGMENT
This work was supported by National Science &

Technology Pillar Program of China (2012BAH07B01);

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 415

© 2014 ACADEMY PUBLISHER

the Natural Science Foundation of China (61174177);
National Technology R&D Program (2013AA10230207);
and Fundamental Research Funds for the Central
Universities (201121102020004).

REFERENCES
[1] M. W. Alford, “A requirements engineering methodology

for real-time process requirements,” IEEE Trans. Software
Engineering, vol. 3, pp. 60–69, January 1977.

[2] A. V. Lamsweerde, “Goal-oriented requirements
engineering: a guided tour,” in Conf. Rec. 2001 IEEE Int.
Conf. Requirements Engineering, pp. 249–263.

[3] Z. Li, Z. Li, and H. T. Li et al, “Formalization of rules for
the cooperation between Goal and Process,” Journal of
Donghua University. J., vol. 29, pp. 32–36, February 2012.

[4] J. Wang, “Research on Requirements Meta-modeling
Framework and Key Techniques of Networked Software,”
Ph.D. dissertation, Dept. Computer School., WuHan Univ.,
Wuhan, MS, 2008.

[5] Y. J. Song, R. Chen, and Y. Q. Liu, “A Non-Standard
Approach for the OWL Ontologies Checking and
Reasoning,” Journal of Computers, vol. 7, pp. 2454–2461,
October 2012.

[6] Y. Ma, J. Liu, and Z. T. Yu, “Concept Name Similarity
Calculation Based on WordNet and Ontology,” Journal of
Software, vol. 8, pp. 746–753, March 2013.

[7] B. Hu, Z. X. Wang, and Q. C. Dong, “A Novel
Context-aware Modeling and Reasoning Method based on
OWL,” Journal of Computers, vol. 8, pp. 943–950, April
2013.

[8] N. Noy, and D. McGuinness. (2001). Ontology
Development 101: A Guide to Creating Your First Ontology,
Stanford Knowledge Systems Laboratory Technical Report
No.: KSL-01-05 [Online]. Available:
http://www.ksl.stanford.edu/people/dlm/papers/ontology-tu
torial-noy-mcguinness-abstract.html

[9] J. Yang, Y. L. Wang, “A New Framework based on
Cognitive Psychology for Knowledge Discovery,” Journal
of Software, vol. 8, pp. 47–54, January 2013.

[10] E. Sirin, and B. Parsia, “Pellet: an OWL DL reasoner”, Proc
Intl Workshop on Description Logics (DL2004), pp.212-214,
2004.

[11] Wikipedia. (2005, April 11). Semantic Web Rule Language
[Online]. Available:
http://en.wikipedia.org/wiki/Semantic_Web_Rule_Language

[12] J. F. Chen, Y. H. Wang, and J. C. Liao et al, “Content
Adaptation For Context-Aware Service,” Journal of
Software, vol. 7, pp. 176–185, January 2012.

[13] T. T. Zou, S. Lv, and L. Liu, “Rough Description Logic
Programs,” Journal of Computers, vol. 7, pp. 2719–2725,
November 2012.

[14] L. Horrocks, F. Peter, and H. Boley et al. (2004, May 21).
SWRL: A Semantic Web Rule Language Combining OWL
and RuleML [Online]. Available:
http://www.w3.org/Submission/SWRL/

[15] D. Beimel, and M. Peleg, “Using OWL and SWRL to
represent and reason with situation-based access control
policies”, Data & Knowledge Engineering, vol.70,
pp.596-615, 2011.

[16] C. H. Liu, K. L. Chang, and J. J. Y. Chen et al,
“Ontology-based context representation and reasoning using
OWL and SWRL,” in 8th Annual Communication Networks
and Services Research Conference, IEEE Computer Society,
Washington, DC, pp. 215–220, 2010.

[17] Protégé wiki. (2005, February 4). Protégé 3 User
Documentation (3.4.7 ed.) [Online]. Available:
http://protegewiki.stanford.edu/wiki/Protege3UserDocs

[18] H. Matthew. (2011, March 24). A Practical Guide To
Building OWL Ontologies Using Protégé 4 and CO-ODE
Tools (1.3 ed.) [Online]. Available: http://www.co-ode.org

[19] KQ. He, J. Wang, and P. Liang, “Semantic interoperability
aggregation in service requirements refinement,” Journal of
computer science and technology. J., vol.25, pp. 1103–1117,
June. 2010.

[20] Protégé wiki. (2011, August 22). Reasoner-Pellet (2.3.0 ed.)
[Online]. Available:
http://protegewiki.stanford.edu/wiki/Pr4_UG_rp_Reas_Pell
et

[21] Z. Li, Z. Li, and X. Guo et al, “A Transformation Approach
from Informal Descriptions of SWRL to Built-in Elements
of Protégé4.1,” in 4th International Conference on
Modelling, Identification and Control, IEEE Computer
Society, Washington, DC, pp. 322–327, 2012.

Zhao Li received his B.S. degree in computer science and
technology from Huazhong University of Science and
Technology in 2008, M.S. degree in software engineering from
Wuhan University in 2010, and Ph.D. degree in software
engineering from the State Key Lab of Software Engineering
(SKLSE) at Wuhan University in 2013. He is a Lecturer in
College of Computer and Information Technology at China
Three Gorges University. His research interests include software
architecture, software modeling, software interoperability, and
IOT engineering. He is a member of CCF.

416 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

