

A Framework for iOS Application Development

Youcong Ni
 State Key Lab of Software Engineering, Wuhan University, Wuhan, China

Faculty of Software Fujian Normal University, Fujian, China
Email: youcongni@foxmail.com

Bei Chen
 Faculty of Software Fujian Normal University, Fujian, China

Email: cbfjnu@gmail.com

Peng Ye
College of Mathematics and Computer, Wuhan Textile University, Hubei, China

Email: whuyp@126.com

Chunyan Wang
Faculty of Software Fujian Normal University, Fujian, China

Email: wcychunyanwcy@gmail.com

Abstract—In order to improve efficiency and quality of
mobile application development on the iOS platform, this
paper proposes a framework named AF4iOS, which is
designed based on class libraries and existing software
frameworks on iOS platform. The AF4iOS framework is
divided into three independent layers: user interface (UI)
layer, domain layer and resource layer. The AF4iOS
framework encompasses a variety of components, which
encapsulate the usage, and accessing of various resources,
such as UI, data, web service and communication. These
extensible and reusable components can accelerate the
progress of development and enhance the quality of product.
Finally, the availability and effectiveness of the AF4iOS
framework is demonstrated through a case study.

Index Terms—Application Framework, iOS Application
Development

I. INTRODUCTION

At the 2011 World Wide Developer’s Conference,
Steve Jobs announced that Apple had sold over 200
million iOS devices, with over 225 million registered
customers. These customers have downloaded over 14
billion apps so far, resulting in over $2.5 billion paid to
iOS developers over the last three years [1]. In 2013,
there are 7.1 billion people in the world and number of
mobile subscriptions is almost 6.8 million [2]. At present,
the number of iOS apps in the Apple’s App Store has
already been more than 700,000 and is still growing. In
such competitive environment, iOS apps should be
quickly developed and deployed in order to obtain and
maintain competitive advantage. Meanwhile, these apps
must meet the increasingly strict quality requirements of
App Store. As a result, iOS apps must be developed
efficiently and keep high quality.

Software framework plays important role in improving
efficiency and quality of apps development [3]. Many

frameworks or middlewares [4, 5] for specific mobile
computation domains has been proposed. Based on class
libraries of iOS, there are a few of open source software
frameworks [6], which encapsulate the usage and
accessing of specific resources in order to ease the iOS
apps development difficulty level. For example,
MagicalRecord framework can provide capability to
simply access database resource through encapsulating
CoreData [7] class library. Web resources can be
conveniently accessed by means of AFNetworking
framework worked on CFNetwork [8] class library.
However, how to integrate existing software frameworks
to form unified iOS apps development framework have
not been well solved.

Aim at this problem, the framework, named AF4iOS,
is proposed in this paper. The AF4iOS framework,
designed on the basis of iOS class libraries [9] and
related open source software frameworks [10], is divided
into three independent layers: user interface (UI) layer,
domain layer and resource layer. In the AF4iOS
framework, a variety of components that encapsulate the
usage and accessing of various resources [11], such as UI,
data, web service, and communication are encompassed.
And these extensible and reusable components can
accelerate the progress of development and enhance the
quality of product [12].

The remainder of this paper is organized as follows. In
the next section, the AF4iOS framework is illustrated in
detail; Section 3 demonstrates applicability of AF4iOS
through a case study; Finally, Section 4 concludes the
paper and future works.

II. AF4IOS FRAMEWORK

The AF4iOS framework, shown in Fig. 1, is split into
three layers by the layered architecture pattern [13]: user
interface (UI) layer, domain layer and resource layer. UI

398 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.2.398-403

layer is used to implement the GUI and provide the
capability of interaction between users and iOS apps.
Business logics and business entities are encapsulated by
domain layer that provide UI layer with the interfaces of
business functions. Resource layer encapsulates the usage
and access of various resources including data, web
service and communication, providing the operation
interfaces of resources to domain layer. The functions of
iOS apps can implemented by means of interaction and
cooperation among the three layers. AF4iOS will be
illustrated in detail as follows.

A. Resource Layer
As shown in Fig. 2, Resource layer includes data

component, web service component and communication
component that encapsulate the access and use of data,
web services and communication resources, respectively.
These components provide a few of operation functions
for corresponding resources.

DBData and FileData in the data component can
operate database and files respectively. And SoapWS
and RestWS can access soap and restful style web
service resources in the web service component
separately. In communication component, BLE can
provide the capability of operating Bluetooth low energy
(BLE) while SMS can be used to send and receive the
short messages. Due to the limitation of paper length, one
type of resource operation is demonstrated in data
component, web service component and communication
component.

 DBData Component
As shown in Fig. 3, DBData component provides two

kinds of operations by DBDataContext class. One is
called CRUD operations including create, read, update,
and delete objects. And other is transaction operations
such as begin, rollback and commit transaction.
DBDataContext class implements responsibilities on the
support of its attribute managedObjectContext, which
can be obtained by invoking getManagedObjectContext
method in DataHelper class. The method
getManagedObjectContext can complete three tasks: 1)
create the instance of NSPersistentStoreCoordinator
based on the position of database file;2) create the
instance of NSManagedObjectModel in terms of
managed object model file;3) create the instance of
NSManagedObjectContext and associate this instance
with the instances created in task 1) and 2).

 SoapWS Component
SoapWSContext class and SoapWSDelegate delegate

in SoapWS component can provide a universal method
to asynchronously request web service and process its
response, as shown in Fig. 4. The specified operation of a
web service can be called by designating the name of the
web service, operation and arguments in callSoapWS
method of SoapWSContext class. And different callback
method in SoapWSDelegate delegate will be activated.
When the web service successfully executed,
handlerResult method will be called, otherwise
handlerFault method will be called.

Figure 1. Overview of AF4iOS framework

Figure 2. Resource layer in AF4iOS framework

Figure 3. DBData component

To fulfill its responsibilities, callSoapWS method

needs the supports of SudzCService component,
SoapWSHelper class and the web service mapping file.
SudzCService component can be
automatically generated after SudzC tool receives
and processes the WSDL file. SudzCService implements
marshalling and unmarshalling soap packages.
Meanwhile, SudzCService can apply Http protocol to
invoke a web service in aid of CF-
Network class library of iOS platform. Client can
address the web service by the local service class in
SudzCService. The web service mapping file
defines assoc-iations between the name of a
web service and the name of local service class.
SoapWSHelper class can find the local service class by
matching in the web service mapping file according to
the inputted the name of web service. Furthermore it

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 399

© 2014 ACADEMY PUBLISHER

creates instance of local service class by reflection
mechanism [14] and return this instance to
SoapWSContext. Finally SoapWSContext
process response on the support of the instance sent by
SoapWSHelper.

 BLE Component
As shown in Fig. 5, BLEContext class, which supplies
the functions of access BLE peripheral data by calling its
readValue and writeValue method need three UUID
(Universally Unique Identifier) parameters
of peripheral, service and characteristic. Specifically, the
following steps describe process of reading BLE
peripheral data in readValue method.

1) Call scanForPeripherals method of CBCentral-
Manager and retrieve the list of peripherals named
prelist;

Figure 4. SoapWS component

2) Find the peripheral of designated UUID, named

perph, in prelist. If perph is not found, handler-
PeripheralNotFound method in BLEContextDelegate
will be activated and the readValue method will quit;

3) Call the connectPeripheral method of CBCentral-
Manager to try to connect with the perph. If the attempt
ends in failure, handlerConnectFail method will be
activated and then the readValue method will quit;

4) Invoke discoverServices method of perph and
retrieve the list of services named sevclist;

5) Find the service of designated UUID, named sevc,
in sevclist. If sevc is not found,
handlerServiceNotFound method in
BLEContextDelegate will be activated and the
readValue method will quit;

6) Invoke discoverCharacteristics method of perph
and retrieve the list of characteristic named chrtlist;

7) Find the characteristic of designated UUID, named
chrt, in chtlist. If chrt is not found, handler-
CharactNotFound method in BLEContextDelegate
will be activated and the readValue method will quit;

8) Reading data from chrt by calling readValue-
ForCharacteristic method of perph. And then handler-
ReadResult method in BLEContextDelegate will be
activated.

It is a similar process for writeValue method in
BLEContext.

B. Domain Layer
In domain layer, as shown in Fig. 6, BusinessService

and BusinessEntity component are contained. The
former encapsulates business logics and provides
business services on the basis of data, web service and
communication foundational services. And the latter
represents business entities and their relationships.

There are mainly three kinds of foundational services
by defined DataService, WSService and CommService
component, respectively. The DataService component
includes DBDataService and FileDataServcie class.
DBDataService class encompasses dbDataContext
static attribute whose type is DBDataContext class from
DBData Component in resource layer, and
sharedInstance static method. By calling
sharedInstance, any business service class, which needs
to access SQLite database, can obtain the single instance
of DBDataContext based on singleton pattern.
WSService and CommService component are built on
the basis of WebService and Communication in
resource layer, respectively. And their definition are
similar to DBDataService.

Figure 5. BLE component

In addition, by means of CoreData tool, entity classes

and their relationships in BusinessEntity component can
be defined in managed object model file. Furthermore,
corresponding tables and their association can be
generated automatically in the database.

C. UI Layer
As shown in Fig. 7, UI Layer adopts MVC patterns

[15], and provides abstract view controller and view
model: ViewController and ViewModel.

ViewModel class encapsulates the model data for
rendering the UI. There are verifyModel and
fireModelChanged method in it. The verifyModel
method is abstract method for finding errors in
ViewModel and storing error attributes, corresponding
error messages defined in ErrorInfo class to error list.
When ViewModel is changed, the fireModelChanged

400 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

Figure. 6. Domain layer in AF4iOS framework

Figure 7. UI layer in AF4iOS framework

method can be called. The execution process of
fireModelchanged method follows the steps: 1) check
for errors in the ViewModel by calling verifyModel
method; 2) If any error is found, modelInError method
in the ViewModelDelegate will be invoke, otherwise
modelChanged method in the ViewModelDelegate will
be called.

ViewController inherits the UIViewController of UI
Kit class library on iOS platform and the initModel and
updateView method are provided. The initModel is
abstract method whose responsibility is to obtain
business entities by invoking the business service
encapsulated in domain layer, and transform these
entities into data of ViewModel. The updateView
method can used to render view on the basis of data in
ViewModel. The two methods of initModel and
updateView are called in turn by the viewDidLoad
method of ViewController. Meanwhile, the
ViewController implements modelChanged and
modelInError method in ViewModelDelegate delegate.
The modelChanged will call the updateView to bring
view into correspondence with ViewModel. And the
modelInError method shows error message dialog.

III. CASE STUDY

A iOS mobile application, called iStep, is developed
based on the AF4iOS framework. Three core functions
including data display, data sharing and data
synchronization in iStep are taken as case study to show
the validity of AF4iOS. A simple description for these
functions is as follows:
 1)The user can look up her/his sport data in a certain
day such as steps, distance, calorie and percentage of
goal by using the data display function;
 2)The data sharing function can used to
upload the sport data in selected date to social network.
 3)The data on peripheral pedometer can synchronize
with iStep based on BLE communication by means of the
data synchronization function.

The UI of three functions is shown in Fig. 8. Sport
data of the last day and the next day can show through
clicking “left” and “right” button. The “share” and
“sync” button are used to perform the data sharing and
data synchronization, respectively.

For implementing above mentioned three functions,
the design at the component level is given based on the
AF4iOS framework. Specifically, the design of
components in UI layer and domain layer are presented
as follows.

A. Design Components in Domain Layer
In domain layer, business entities and business service

relevant to the three functions in the case need to be
defined. As shown in Fig. 9, the User, StepData,
SportPlan three classes and their association are
designed to represent business entities and their
relationships.

Meanwhile, the four methods of getStepData,
getSportPlan, shareStepData and synchroStepData are
used to define business logics. They are encapsulated in
the StepDataService class to describe business service.

The StepDataService needs to access resources of
database, web service and BLE in order to perform
corresponding business functions of retrieving, sharing
and synchronizing sport data. To simplify design,
StepDataService can reuse DBDataService, SoapWS-
Service and BLESerivice foundation classes that are
predefined in domain layer of AF4iOS.

B. Design components in UI Layer
For this case, the two classes of DisplayViewModel

and DisplayViewController in UI Layer are designed
by reusing the ViewModel and ViewController class of
AF4iOS. As shown in Fig. 10, the DisplayViewModel
inherits ViewModel and defines the attributes such as
date, step, distance, calorie and percentage for rendering
view in Fig. 8. The verifyModel is an overloading
method which can check correctness of value of these
attributes. The DisplayViewController implements two
abstract methods of initModel and updateView derived
from ViewController. The initModel calls getStepData
and getSportPlan method in StepDataService to
retrieve StepData and SportPlan entity, respectively.

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 401

© 2014 ACADEMY PUBLISHER

These entities are used to set attributes of
DisplayViewModel. The updateView method renders
view by using data in DisplayViewModel.

In addition, the four methods of shareButtonClick,
syncButtonClick, leftArrowButtonClick and
rightArrowButtonClick can deal with corresponding
events arising from UI. The shareButtonClick and
syncButtonClick call shareStepData and
SyncStepData method in StepDataService to perform
corresponding business tasks. The executing process of
leftArrowButtonClick includes two steps. The first step,
similar to initModel, is to update DisplayViewModel by
the last day.

Figure 8. UI of core functions in iStep

Figure 9. Domain design in case study

The second step is to call fireModelChanged method
to update view. Due to similarity between
leftArrowButtonClick and rightButtonClick, the latter
is omitted in this paper.

Figure 10. UI design in case study

IV. CONCLUSION

A mobile application development framework AF4iOS
is presented in this paper. Following the features of
layered model, AF4iOS is split into three layers of UI
layer, domain layer and resource layer which respectively
handle view rendering, business logic and resource
access. Furthermore, a variety of classes, which
encapsulate different foundational functions, are defined
based on class libraries and existing software frameworks
on iOS platform in each layer of AF4iOS. These
predefined classes will be reused to design user-defined
classes according to requirement of application. As a
result, AF4iOS is extensible and reusable framework that
can help developer to speed up the development of the
application and promote the quality of product. Finally, a
case study of mobile application named iStep show the
validity of the proposed framework.

In the future, based on AF4iOS framework we will
define the iOS apps design steps that is seamlessly
integrated with the agile processes so as to form a kind of
agile iOS apps design method.

ACKNOWLEDGMENT

This work is supported by National Natural Science
Foundation of China under Grant (No. 61305079), the
open fund of State Key Laboratory of Software
Engineering(No.SKLSE2012-09-28), the Natural Science
Foundation of Fujian Province of China under
Grant(No.2012J01250), the project of preeminent youth
fund of Fujian province(No.JA12471) , the project of
Fujian education department(No.JA12077,
No.JA12080),outstanding young teacher training fund of
Fujian Normal University (No.fjsdjk2012083), Science
and Technology Program Key Project of Fujian Province
of China (No.2011H6006), Science Research
Foundation of Hubei Provincial Department of Education
under Grant(No.B20111607).

REFERENCES

[1] https://developer.apple.com/videos/wwdc/2011/
[2] Chien-Chang Chen, Chih-Chien Wang, “Internet as

Indispensable Everywhere: The Introduction to the
Advances in Internet Technologies and Applications
Special Issue,” Journal of Computers, vol.8, no.7,
pp.1633-1634, 2013.

[3] Pengshou Xie, Zhiyuan Rui, “Study on the Integration
Framework and Reliable Information Transmission of
Manufacturing Integrated Services Platform,” Journal of
Computers, vol. 8, no. 1, pp.146-154, 2013.

[4] Weidong Zhao, Haifeng Wu, Weihui Dai,et al, “Multi-agent
Middleware for the Integration of Mobile Supply Chain,”
Journal of Computers, vol. 6, no. 7, pp.1469-1476, 2011.

[5] Taylor, Richard N, Nenad Medvidovic, and Eric M.
Dashofy, Software architecture: foundations, theory, and
practice. Wiley Publishing, 2009.

[6] Uppenkamp, Daniel A, Todd V. Rovito, and Kevin L.
Priddy, “Open-source-based architecture for layered
sensing applications,” SPIE Defense, Security, and Sensing,
International Society for Optics and Photonics, pp.1-7,2010.

402 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

[7] Privat, Michael, and Robert Warner, Pro Core Data for IOS:
Data Access and Persistence Engine for IPhone, IPad, and
IPod Touch. Apress, 2011.

[8] Cox, Jack, Nathan Jones, and John Szumski, Professional
IOS Network Programming: Connecting the Enterprise to
the IPhone and IPad. Wrox, 2012.

[9] Mark, David, Jeff LaMarche, and Jack Nutting, Beginning
iPhone 4 development: Exploring the iOS SDK. Apress,
2011.

[10] Choi, YoungJin, Young-Gon Lee, and JongHei Ra, “A
Case of Standard Develop Framework Based on Open-
Source Software in Korea Public Sector,” Computer
Applications for Graphics, Grid Computing, and Industrial
Environment. Springer Berlin Heidelberg, pp. 210-214,
2012.

[11] Kwak, Dong-Heon, and K. Ramamurthy, “IOS Resources,
Electronic Cooperation and Performance: A Conceptual
Model,” System Sciences (HICSS), 2011 44th Hawaii
International Conference on, IEEE, pp. 1-10,2011.

[12] Unhelkar, Bhuvan, and San Murugesan， “The enterprise
mobile applications development framework,” IT
professional, vol. 12, no. 3 , pp.33-39, 2010.

[13] Harrison, Neil,and Paris Avgeriou, “Pattern-based archite-
cture reviews, Software,” IEEE ,vol.28,no.6 ,pp. 66-
71,2011.

[14] Puder, Arno, and Spoorthi D’Silva, “Mapping Objective-C
API to Java,” Mobile Computing, Applications, and
Services, Springer Berlin Heidelberg, pp.21-43, 2013.

[15] Vlissides, John, et al, “Design patterns: Elements of reus-
able object-oriented software,” Reading: Addison-
Wesley 49 ,1995.

Youcong Ni is a Ph.D. and lecturer in Faculty of Software
Fujian Normal University, Fujian, China. His current research
interest includes software architecture, mobile cloud computing
and search-based software design.

Bei Chen is a master student in Faculty of Software Fujian
Normal University, Fujian, China. His current research interest
includes software architecture and mobile cloud computing.
Peng Ye is a Ph.D. and lecturer in College of Mathematics and
Computer, Wuhan Textile University, Hubei, China. His current
research interest includes software architecture, mobile cloud
computing and ontology-based software design.

Chunyan Wang is a master student in Faculty of Software
Fujian Normal University, Fujian, China. Her current research
interest includes software architecture and search-based
software design.

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 403

© 2014 ACADEMY PUBLISHER

