
An Intelligent Method Based on State Space
Search for Automatic Test Case Generation

Ying Xing

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications,
Beijing, China

School of Electronic and Information Engineering, Liaoning Technical University, Huludao, China
Email: faith.yingxing@gmail.com

Junfei Huang, Yunzhan Gong, Yawen Wang and Xuzhou Zhang

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications,
Beijing, China

Email: { huangjunfei, gongyz, wangyawen }@bupt.edu.cn, laomao22311@126.com

Abstract—Search-Based Software Testing reformulates
testing as search problems so that test case generation can
be automated by some chosen search algorithms. This paper
reformulates path-oriented test case generation as a state
space search problem and proposes an intelligent method
Best-First-Search Branch & Bound to solve it, utilizing the
algorithms of Branch & Bound and Backtrack to search the
space of potential test cases and adopting bisection to lower
the bounds of the search space. We also propose an
optimization method by removing irrelevant variables.
Experiments show that the proposed search method
generates test cases with promising performance and
outperforms some MetaHeuristic Search algorithms.

Index Terms—Search-Based Software Testing, test case
generation, Branch & Bound, backtrack, state space search,
bisection

I. INTRODUCTION

Software is being integrated into more and more
systems, so it is becoming increasingly important to fully
test these systems. One challenge to testing software
systems is how to generate test cases systematically in an
effective fashion [1]. It is estimated that testing cost has
accounted for almost 50 percent of the entire
development cost [2], if not more. Therefore, a rational
response is to automate the testing process as much as
possible, and automatic test case generation naturally
plays a key role in this process [3]. Specifically, the
automation of path-oriented test case generation (which
belongs to the typical control flow testing including those
using statement coverage, branch coverage and MC/DC
coverage) will efficiently improve testing quality and
save the cost of software development [4].

A trend in the automation of path-oriented test case
generation is the application of MetaHeuristic Search
(MHS) algorithms [5]. The main reason is that test case
generation problems can often be reexpressed as search
problems. Some MHS algorithms that have been
employed for Search-Based Software Testing (SBST) are

genetic algorithms [6], simulated annealing [7], and ant
colony optimization [8].These algorithms all require the
actual execution of the Program Under Test (PUT) and
the results are not definite. That is, due to the adoption of
the theory of probability they are categorized as cut-and-
try methods. Usually a large amount of iterations are
made to automatically generate an input which meets the
coverage criteria, sometimes causing iteration exception.
Therefore, choosing the right algorithm for the problem is
very crucial to the search [9].

In this paper, considering the drawbacks of MHS
methods mentioned above and on the base of static
analysis [10] techniques including interval computation,
we introduce the algorithms of Branch & Bound and
Backtrack from the field of artificial intelligence to tackle
the problem of path-oriented test case generation, which
is reformulated as state space search. Bisection is used to
lower the bounds of the search space. We also make
optimization by irrelevant variable removal (IVR).We
have made experiments on C programs, and the results
show that the proposed method performs encouragingly
in test case generation and has an advantage over some
MHS methods in terms of coverage.

The rest of this paper is organized as follows: Section
II introduces some relevant concepts including Branch &
Bound, Backtrack and bisection; Section III reformulates
path-oriented test case generation as a state space search
problem; Section IV overviews how the state space is
searched dynamically; Section V describes the proposed
algorithm and its details; Section VI implements
experiments and presents analysis to the results; Section
VII concludes this paper and provides the direction of
future work.

II. RELATED WORK

Branch & Bound (BB) [11] is an efficient method for
searching the solution space of a problem. The advantage
of the BB strategy lies in alternating branching and
bounding operations on the set of active and extensive
nodes of a search tree. Branching refers to partitioning of

358 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.2.358-364

the solution space (generating the child nodes); bounding
refers to lowering bounds used to construct a proof of
feasibility without exhaustive search (evaluating the cost
of new child nodes). In BB frame, bisection [12] is often
used to help prune unneeded part of the solution space.
Bisection is also normally used in test case generation
[13].

Backtrack [14] is an optimum seeking method which
searches forward according to the selection conditions to
achieve a goal. If at a certain step of the search, it is
found that the goal turns out to be unachievable, then a
step backward is taken. The point satisfying the backtrack
condition is a backtrack point.

In classical BB search, nodes are always fully
expanded, that is, for a given leaf node, all child nodes
are immediately added to the so called open list. However,
considering that only one solution is enough for path-
oriented test case generation, Best-First-Search is our first
choice, so permutation of variables is required for
branching to prune the branches stretching out from
unneeded variables. Meanwhile because the domain of a
variable is a finite set of possible values which may be
quite large, bounding is necessary to cut the unneeded or
infeasible solutions. Hence this paper proposes a new
algorithm Best-First-Search Branch & Bound (BFS-BB)
that conducts state space search dynamically to find the
test case. We also integrate Backtrack algorithm to make
full use of the past data obtained during the search
process.

III. REFORMULATION OF THE PROBLEM

Many forms of test case generation make reference to
the control flow graph (CFG) [15] of the program in
question. A CFG for a program P is a directed graph
G=(N, E, s, e), where N is a set of nodes, E is a set of
edges, and s and e are respective unique entry and exit
nodes to the graph. Each node n∈N is a statement in the
program, with each edge e=(nr,nt)∈E representing a
transfer of control from node nr to node nt. A path p
through a CFG is a sequence p=(n1,n2,…,nq), such that for
all r, 1≤r<q, (nr,nr+1)∈E. A path is said to be feasible if
there exists a program input for which the path is
traversed, otherwise the path is said to be infeasible. The
feasibility of a path is judged by interval computation.
Interval computation analyzes and calculates the ranges
of the variables’ values in the PUT and provides precise
information for further program analysis [16]. We
enhance interval computation by adding a library of
inverse functions in case of the occurrences of library
functions in the PUT.

The path-oriented test case generation problem can be
reformulated as a search problem: X is a set of
variables{x1,x2,…,xn}, D={D1,D2,…,Dn} is the set of
domains and Di∈D(i=1,2,…,n) is a finite set of possible
values for variable xi. For each path, D is defined based
on the variables’ acceptable ranges. One solution to the
problem is a set of values for each variable inside its
domain denoted as V={V1,V2,…,Vn},Vi∈Di, to make the
path feasible. There might be one, more or no solutions.
If there is at least one solution, then the search succeeds

otherwise it fails. The solution space is represented by a
dynamically constructed tree where each node represents
a step of the search. With the aid of intelligent rules for
selecting nodes to explore and pruning those that do not
lead to a solution, the complexity of the search can be
drastically reduced as compared to that of an exhaustive
implicit enumerative search. The search process is based
on the result of interval computation and a heuristic
estimate of the remaining part.

IV. OVERVIEW OF BFS-BB

We introduce state space search [17], which is an
important issue in artificial intelligence to tackle the
search problem. In order to facilitate the implementation
of BFS-BB, we propose the following definitions.

Definition1. A state space is a quadruple(S, A, I, F),
where S is the set of states, A is the set of arcs or
connections between the states including Permutate,
Select, Reduce Domain and Backtrack that correspond to
the steps or operations of the search at different states, I is
a non-empty subset of S denoting the initial state of the
problem and F is a non-empty subset of S denoting the
final state of the problem.

Definition 2. A state is a tuple(Precursor, Variable,
Domain, Value, Type, Queue). In a certain stage of the
search process, from the perspective of current state Scur,
Precursor provides a link to the previous state;
Variable=xi∈X (i=1,2,…,n) is an input variable of PUT;
Domain=Dij ⊆ Di∈D, (i=1,2,…,n; j=1,2,…,m) in the
form of [min, max]is the current domain of Variable
which is the set of possible values that may be selected
for Variable; Value=Vij∈Dij is a value selected from
Domain; Type marks the type of Scur, which may be active,
extensive or inactive; Queue is a sequence of variables
corresponding to Scur.

Definition 3. State space search is all about finding, in
a state space (which may be extremely large), one final
state. 'Final' means that every variable has been given a
definite value successfully and the path is proved to be
feasible with all these values by interval computation. At
the start of the search Precursor is null, and when Queue
is null the search ends. The path made up of all the
extensive states makes the solution path of the search.
State space search is accomplished by BFS-BB in this
paper.

When constructing each state, Type is active.
Queue=Qipre and Variable is the head of Queue. An
interval computation is carried out to each active state to
determine the direction of the next step of search. If the
interval computation succeeds, then Type becomes
extensive, the remaining variables will be permutated to
get Queue=Qinext, Scur becomes Precursor, and the head
of Qinext will be Variable of next state. If interval
computation fails, Type remains active, according to the
information from the failed interval computation Reduce
domain is conducted with bisection, and Value is
reselected from the reduced domain, all of which mean
the search will expand to a state with a different value for
the same variable. If for the same variable all the values
within its domain are tried out or the interval computation

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 359

© 2014 ACADEMY PUBLISHER

for it has reached the time limit m(which is the branching
factor, or a threshold used to control the breadth of the
search tree ,namely, the limit on the number of times of
interval computation taken for one variable under the
same condition), then its Type becomes inactive,
indicating that the search arrives at a backtrack point and
will have to backtrack to the previous state Precursor at
the higher level of the search tree.

The process of generating a test case for path p takes
the form of state space search. We need to search the

state space to find a solution path from an initial state to a
final state. We can decide where to go by considering the
possible moves from the current state, and trying to look
ahead as far as possible.

V. DETAILS OF BFS-BB

We proceed by first giving an outline of algorithm
BFS-BB and then giving the detailed explanations to the
key parts. The outline of BFS-BB is shown in Fig.1.

Figure 1.The outline of the search algorithm

360 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

A. Irrelevant Variable Removal
As mentioned above, X={x1,x2,…,xn}is the set of input

variables for the program P. The state space should
concern every xi (i=1,2,…,n) in X. However, it is possible
that not every input variable will be responsible for
determining whether every path in P will be traversed or
not. A simple example follows with a program test1 and
its corresponding CFG shown in Fig.2 where if_out_5,
if_out_6 and exit_7 are virtual nodes. Adopting branch
coverage, there are three paths to be covered, while the
input variable x3 is only relevant to Path 2:0->1->3->4-
>5->6->7 and Path 3: 0->1->3->5->6->7, but not to
Path 1:0->1->2->6->7. The numbers along the path
denote nodes rather than edges of the CFG. Therefore,
when attempting to generate test case for Path 1, search
effort on the value of x3 is wasted since it cannot
influence the traversal of Path 1. Thus, removing
irrelevant input variables from the search space and only
concentrating on input variables relevant to the path of
interest may improve the performance of the search
process. Relevant and irrelevant variables are defined as
follows.

Definition 4. A relevant variable is an input variable
that can affect whether a particular path p will be traversed
or not. To put it more precisely, for all the input variables
{xi |xi∈X, i=1,2,…,n}, there exists a corresponding set of
values {Vi |Vi∈Di, i=1,2,…,n}, with which p is not
traversed, but when the value of a particular variable is
changed, for example, when the value of xg(Vg) is changed
into '

gV , p is traversed with the input { }'
1 2, ,..., ,...,g nV V V V , then

xg is a relevant variable to path p.
Definition 5. An irrelevant variable is an input

variable that is not capable of influencing whether a
particular path p will be traversed or not. To put it more
precisely, for all the sets {Vi |Vi∈Di, i=1,2,…,n}of the
search space of path p , with which p is not traversed,
regardless of the change in the value of a particular
variable, for example, the value of xg(Vg) is changed into

'
gV , p is still not traversed with the input { }'

1 2, ,..., ,...,g nV V V V ,
then xg is an irrelevant variable to path p.

Figure 2. Program test1 and its corresponding CFG

Generally, for a particular path, whether an input
variable is relevant or irrelevant cannot be completely
determined due to the complex structure of programs [18].
But we can make conservative estimate of irrelevancy
with static analysis techniques. Irrelevant variable
removal (IVR) can result in test case being searched out
with fewer interval computations for a particular path p
than if all variables are considered.

B. Reducing Domain
Bisection is used to reduce the domain of a variable

which has been selected a value making path p infeasible,
together with Tendency, which is a property of a variable
at a certain position (especially at branches of a CFG)
providing the direction of the next step of search.

Definition 6. Tendency map is a mapping table
<Variable, Tendency>denoting the relationship between
Variable and Tendency held by a specific branch Br along
path p. Tendency is determined by branch predicates and
expressions at the branch.

Note that there might be more than one tendency maps
in a program, for each of them is held by a single branch.
Still take test1 as an example, as mentioned above there
are three paths to be covered, which are Path 1:0->1->2-
>6->7, Path 2:0->1->3->4->5->6->7 and Path 3: 0->1-
>3->5->6->7, respectively. Accordingly we can get
tendency maps as shown in TABLE I.

Take Path 1 as an instance, if Scur =(Pre,x1,D11,V11,
active,Q1pre) and interval computation fails at branch T_1,
then we retrieve the corresponding tendency map and get
the tendency of x1 as the result which is positive.
Through the retrieval of tendency map we can propagate
the constraints made up of the branch predicates in a
more and more precise manner as presented by Fig.3.

TABLE I.
TENDENCY MAPS OF FIGURE 2.

Path Branch Tendency map
Path 1 T_1 {<x1,positive>,<x2,negative>}

Path 2 F_2 {<x1,negative>,<x2,positive>}
T_3 {<x3,positive>,<x1,negative>}

Path 3 F_2 {<x1,negative>,<x2,positive>}
F_5 {<x3,negative>,<x1,positive>}

Figure 3. The algorithm Reducing Domain

Algorithm. Reducing domain
Input Dij=[min,max]:the domain of xi
Output Dij: the reduced domain of xi
begin
1: j++;
2: Br←position of failure;
3: Tendency = get(xi);
4:// retrieve the tendency map held by Br
5: if(Tendency== positive)
6: Dij=[Vij+1,max];
7: else if(Tendency==negative)
8: Dij=[min,Vij-1];
9: return Dij;
end

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 361

© 2014 ACADEMY PUBLISHER

VI. EXPERIMENTAL RESULTS AND DISCUSSION

To observe the effectiveness of BFS-BB, we carried
out a large number of experiments in our team Code
Testing System (CTS). Within the CTS framework, the
PUT is automatically analyzed, its basic information is
abstracted to form the Abstract Syntax Tree (AST) [19],
and its CFG is generated. According to the specified
coverage criteria, the paths to be covered are generated
and provided for BFS-BB as input. After test cases have
been generated by BFS-BB, test drive is generated to
provide the environment to execute the test case. There
are some auxiliary functions in CTS, including coverage
observation, presentation of the covered code lines as
well as the execution results, and the management of test

cases for the convenience of regression testing. These
functions of CTS provide comfortable experience for
users such as the testing personnel.

The experiments were performed in the environment of
MS Windows 7 with 32-bits and run on Pentium 4 with
2.8 GHz and 2 GB memory. The algorithms were
implemented in Java and run on the platform of eclipse.
Section A presents a performance evaluation about BFS-
BB, Section B concerns whether BFS-BB outperforms
other commonly used MHS algorithms in terms of
coverage. Four programs served as our test beds
including a benchmark program used in CTS and three
others in test case generation, and the details of them are
shown in TABLE II.

TABLE II.
BENCHMARK PROGRAMS USED FOR EXPERIMENTAL ANALYSIS

Program LOC Variables Description Source
branch_bound 402 27 A benchmark used in CTS by authors

isValidDate 59 16 To check whether a date is valid or not referring to[8]
calDay 72 3 To calculate the day of the week referring to[20]

cal 53 5 To calculate the number of days between the two
given days in the same year

referring to[21]

A. Performance Evaluation
To evaluate the performance of BFS-BB in test case

generation, test cases were automatically generated to
meet three different coverage criteria: statement, branch,
and MC/DC. In this section, we utilized branch_bound.c ,
which is a relatively long program for unit testing with
402 lines and 27 input variables and complex structure
trying to include more content that might appear in real-
world PUTs. Since not all of the 27 variables are relevant
for a specific path, comparison of search time is made to
evaluate the effect of IVR.

Results of branch_bound.c using different coverage
criteria are shown in TABLE III. The numbers of paths
and average branches are different owing to different
coverage criteria taken. BFS-BB generated test cases for
all the feasible paths, trying to reach 100% coverage. IVR
had no significant influence on the coverage, but it did on
the search time. After the adoption of IVR, the search
time was reduced greatly. Our following analyses all
involve BFS-BB with IVR.

For branch_bound.c, BFS-BB was able to cover almost
every branch, and generating test cases took a few
seconds for all the feasible paths. The MC/DC coverage
[22] (which is relatively strict and subsumes statement
coverage and branch coverage) did not reach 100%,
because we set time limit for the search time for each
path as well as the threshold m mentioned above for each
variable. But we achieved tolerable coverage within
tolerable time. There exists a trade-off between efficiency
and success rate.

TABLE III.

EXPERIMENTAL RESULT USING THREE DIFFERENT COVERAGE
CRITERIA WITH BFS-BB

Adequacy
criterion Paths Average

Branches

Average
Coverage

%

Search time
reduced by

IVR%

statement 61 29 100 34

branch 119 43.33 100 37

MC/DC 125 43 94 42

B. Coverage Evaluation
This section presents results from a practical

comparison of BFS-BB with GA and SA on three
different benchmark programs using branch coverage as
the adequacy criterion, which offers a favorable trade-off
between costs and efficiency [23].The result is shown in
TABLE IV.

It can be seen that BFS-BB reached 100% branch
coverage on all three test beds which are relatively simple
programs for BFS-BB and outperformed the algorithms
in comparison.

The better performance of BFS-BB results from two
factors. One is that random testing [24] is a cheap and
easy technique that can obtain reasonable coverage,
simple yet effective in finding software fault, so for most
of the cases, BFS-BB reached a relatively high coverage
for the first round of search with a high speed. The
second is that MHS crashed on several occasions due to
the iteration exception, while the probability of aborting
is quite low for BFS-BB because it has no demand for
iteration.

362 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

TABLE IV.
COMPARISON WITH SA AND GA USING BRANCH COVERAGE

Program Paths Branches GA Average Coverage % SA Average Coverage% BFS-BB Average Coverage%

isValidDate 5 16 99.95 98.21 100
calDay 20 11 96.31 99.97 100

cal 7 18 99.02 99.27 100

VII. CONCLUSION AND FUTURE WORK

This paper presents an intelligent search algorithm for
path-oriented test case generation that utilizes the
classical search algorithms of Branch & Bound and
Backtrack. Experiments show that BFS-BB with IVR
performs well on C programs. We also conducted
empirical experiments to compare BFS-BB with some
commonly used MHS methods, which produced
encouraging results. This paper makes two major
innovative improvements.

First, path-oriented test case generation is often solved
by optimizing techniques, which may often suffer from
the problem of local minimal or the initial starting point
being too far from the solution. Our approach is flexible
because backtrack is used to change direction of the
search with efficiency. Second, bisection with tendency
maps and IVR are used to optimize BFS-BB and
accelerate the search process.

Our future research concerns not only how to generate
test cases to reach high coverage but how coverage
criteria, generation approach, and system structure jointly
influence test effectiveness. The fault-finding capability
of test cases and the effectiveness of the generation
approach will be our focus for future work.

ACKNOWLEDGMENT

We appreciate anonymous reviewers for their
supportive and constructive comments. The work
described in this paper was supported by the National
Grand Fundamental Research 863 Program of China (No.
2012AA011201), and Key Project of the National Natural
Science Foundation of China (No. 61202080).

REFERENCES

[1] Shaukat Ali, Lionel C. Briand, Hadi Hemmati, and
Rajwinder K. Panesar-Walawege, “A systematic review of
the application and empirical investigation of search-based
test case generation,” IEEE Transactions on Software
Engineering, vol. 36, no. 6, 2010, pp. 742-762.

[2] B.Beizer, “Software Testing Techniques,” Second Edition,
Van Nostrand Reinhold, New York, 1990.

[3] Chen Lina, “Automatic test cases generation for statechart
specifications from semantics to algorithm,” Journal of
Computers, vol. 6, no. 4, 2011, pp. 769-775.

[4] Shan Jinhui, Wang Ji, and Qi Zhichang, “Survey on path-
wise automatic generation of test data,” ACTA
ELECTRONICA SINICA, vol. 32, no.1, 2004, pp. 109-
113.

[5] W. Afzal, R. Torkar, and R. Feldt, “A systematic review of
search-based testing for non-functional system properties,”
Information and Software Technology, vol. 51, 2009, pp.
957-976.

[6] Sharma, Chayanika, Sangeeta Sabharwal, and Ritu Sibal,
“A survey on software testing techniques using genetic
algorithm,” International Journal of Computer Science
Issues, vol. 10, issue. 1, no. 1, 2013, pp. 381-393.

[7] Patil, Manisha, and P. J. Nikumbh, “Pair-wise testing using
simulated annealing,” Procedia Technology, vol. 4, 2012,
pp. 778-782.

[8] Mao Chengying, Yu Xinxin, and Chen Jifu, “Generating
test data for structural testing based on ant colony
optimization,” Proc. the 12th International Conference on
Quality Software (QSIC 12), IEEE Computer Society,
2012, pp. 98-101.

[9] Mark Harman, Phil McMinn, Jefferson Teixeira de Souza,
and Shin Yoo, “Search based software engineering:
techniques, taxonomy, tutorial,” Empirical Software
Engineering and Verification, Springer Berlin Heidelberg,
2012, pp. 1-59.

[10] Fuad, Mohammad Muztaba, Debzani Deb, and Jinsuk
Baek. “Static analysis, code transformation and runtime
profiling for self-healing,” Journal of Computers, vol. 8,
no.5, 2013, pp. 1127-1135.

[11] Jalilvand, Abolfazl, and S. Khanmohammadi, “A new
method for constructing the search tree in branch and
bound algorithm,” Proc. the 9th International Multitopic
Conference (INMIC 05), IEEE Computer Society, 2005,
pp.1-5.

[12] Delling, D., Goldberg, A. V., Razenshteyn, I., and
Werneck, R. F., “Exact combinatorial branch-and-bound
for graph bisection,” ALENEX, 2012, pp. 30-44.

[13] Sami Beydeda and Volker Gruhn., “BINTEST-search-
based test case generation,” Computer Software and
Applications In Computer Software and Applications
Conference (COMPSAC 03), IEEE Computer Society,
2003, pp. 28-33.

[14] Lisgara, E. G., G. I. Karolidis, and G. S. Androulakis,
“Advancing the backtrack optimization technique to obtain
forecasts of potential crisis periods,” Applied Mathematics,
vol. 3, no.30, 2012, pp. 1538-1551.

[15] Phil McMinn, “Search-based software test data generation:
a survey,” Software Testing, Verification and Reliability,
vol. 14, no.2, 2004, pp. 105-156.

[16] Hickey, Timothy, Qun Ju, and Maarten H. Van Emden.,
“Interval arithmetic: from principles to implementation,”
Journal of the ACM, vol. 48, no. 5, 2001, pp. 1038-1068.

[17] Daniel Szer, Francois Charpillet, and Shlomo Zilberstein. ,
“MAA*: A heuristic search algorithm for solving
decentralized POMDPs,” Proc. the 21st Conference on
Uncertainty in Artificial Intelligence (UAI 05), Edinburgh,
Scotland, July 2005, pp. 576–583.

[18] Phil McMinn, Mark Harman, Kiran Lakhotia, Youssef
Hassoun, and Joachim Wegener, “Input domain reduction
through irrelevant variable removal and its effect on local,
global, and hybrid search-based structural test data
generation,” IEEE Transactions on Software Engineering,
vol. 38, no. 2, 2012, pp.453-477.

[19] Pattanayak, Binod Kumar, Sambit Kumar Patra, and
Bhagabat Puthal, “Optimizing AST node for Java script
compiler a lightweight interpreter for embedded device,”
Journal of Computers, vol. 8, no.2, 2013, pp. 349-355.

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 363

© 2014 ACADEMY PUBLISHER

[20] E.Alba and F.Chicano, “Observation in using parallel and
sequential evolutionary algorithms for automatic software
testing,” Computers and Operators Research, vol. 35, 2008,
pp. 3161-3183.

[21] P.Ammann and J.Offutt, “Introduction to software testing,”
Cambridge University Press, 2008, pp. 32

[22] Rajan, Ajitha, Michael W. Whalen, and Mats PE
Heimdahl., “The effect of program and model structure on
MC/DC test adequacy coverage,” Proc. ACM/IEEE 30th
International Conference on Software Engineering (ICSE
08), IEEE Computer Society, 2008, pp. 161-170.

[23] Fan Chunrong, Chen Zhenyu and Xu Baowen, “Comparing
logic coverage criteria on test case prioritization,” Science
China Information Sciences, vol. 55, no. 12, 2012, pp.
2826-2840.

[24] Patrice Godefroid, Nils Klarlund, and Koushik, “DART:
directed automated random testing,” ACM Sigplan Notices.
vol. 40, no. 6, ACM, 2005, pp. 213-223.

Ying Xing was born in Liaoning
Province, China. She is a Ph.D.
candidate in the State Key Laboratory of
Networking and Switching Technology,
Beijing University of Posts and
Telecommunications.

Also she is a lecturer in School of
Electronic and Information Engineering,
Liaoning Technical University. She

obtained her Master Degree from Liaoning Technical
University in 2007. Her research interests include software
testing and static analysis.

Junfei Huang was born in Zhejiang
Province, China in 1977. He received his
Ph.D. from Beijing University of Posts
and Telecommunications in 2004.

He is currently a lecturer in the State
Key Laboratory of Networking and
Switching Technology, Beijing
University of Posts and
Telecommunications. His research

interests include static analysis and cloud computing.

Yunzhan Gong was born in Shandong
Province, China in 1962. He received his
Ph.D. from Institute of Computing
Technology, Chinese Academy of
Sciences in 1991.

He is currently a professor and
supervisor of doctoral students in the
State Key Laboratory of Networking and
Switching Technology, Beijing

University of Posts and Telecommunications. His research
interests include fault tolerant computing and software testing.

Yawen Wang was born in Shanxi
Province, China in 1983. She received
her Ph.D. from Beijing University of
Posts and Telecommunications in 2010.

She is currently a lecturer in the State
Key Laboratory of Networking and
Switching Technology, Beijing
University of Posts and
Telecommunications. Her research

interests include static analysis and automatic software testing.

Xuzhou Zhang was born in Hebei
Province, China in 1987. He received his
B.S from HuaZhong University of
Science and Technology.

He is currently a postgraduate in
the State Key Laboratory of Networking
and Switching Technology, Beijing
University of Posts and
Telecommunications. His research

interest is software testing.

364 JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

