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Abstract—Search-Based Software Testing reformulates 
testing as search problems so that test case generation can 
be automated by some chosen search algorithms. This paper 
reformulates path-oriented test case generation as a state 
space search problem and proposes an intelligent method 
Best-First-Search Branch & Bound to solve it, utilizing the 
algorithms of Branch & Bound and Backtrack to search the 
space of potential test cases and adopting bisection to lower 
the bounds of the search space. We also propose an 
optimization method by removing irrelevant variables. 
Experiments show that the proposed search method 
generates test cases with promising performance and 
outperforms some MetaHeuristic Search algorithms.  
 
Index Terms—Search-Based Software Testing, test case 
generation, Branch & Bound, backtrack, state space search, 
bisection 
 

I. INTRODUCTION 

Software is being integrated into more and more 
systems, so it is becoming increasingly important to fully 
test these systems. One challenge to testing software 
systems is how to generate test cases systematically in an 
effective fashion [1]. It is estimated that testing cost has 
accounted for almost 50 percent of the entire 
development cost [2], if not more. Therefore, a rational 
response is to automate the testing process as much as 
possible, and automatic test case generation naturally 
plays a key role in this process [3]. Specifically, the 
automation of path-oriented test case generation (which 
belongs to the typical control flow testing including those 
using statement coverage, branch coverage and MC/DC 
coverage) will efficiently improve testing quality and 
save the cost of software development [4]. 

A trend in the automation of path-oriented test case 
generation is the application of MetaHeuristic Search 
(MHS) algorithms [5]. The main reason is that test case 
generation problems can often be reexpressed as search 
problems. Some MHS algorithms that have been 
employed for Search-Based Software Testing (SBST) are 

genetic algorithms [6], simulated annealing [7], and ant 
colony optimization [8].These algorithms all require the 
actual execution of the Program Under Test (PUT) and 
the results are not definite. That is, due to the adoption of 
the theory of probability they are categorized as cut-and-
try methods. Usually a large amount of iterations are 
made to automatically generate an input which meets the 
coverage criteria, sometimes causing iteration exception. 
Therefore, choosing the right algorithm for the problem is 
very crucial to the search [9].  

In this paper, considering the drawbacks of MHS 
methods mentioned above and on the base of static 
analysis [10] techniques including interval computation, 
we introduce the algorithms of Branch & Bound and 
Backtrack from the field of artificial intelligence to tackle 
the problem of path-oriented test case generation, which 
is reformulated as state space search. Bisection is used to 
lower the bounds of the search space. We also make 
optimization by irrelevant variable removal (IVR).We 
have made experiments on C programs, and the results 
show that the proposed method performs encouragingly 
in test case generation and has an advantage over some 
MHS methods in terms of coverage.  

The rest of this paper is organized as follows: Section 
II introduces some relevant concepts including Branch & 
Bound, Backtrack and bisection; Section III reformulates 
path-oriented test case generation as a state space search 
problem; Section IV overviews how the state space is 
searched dynamically; Section V describes the proposed 
algorithm and its details; Section VI implements 
experiments and presents analysis to the results; Section 
VII concludes this paper and provides the direction of 
future work. 

II. RELATED WORK 

Branch & Bound (BB) [11] is an efficient method for 
searching the solution space of a problem. The advantage 
of the BB strategy lies in alternating branching and 
bounding operations on the set of active and extensive 
nodes of a search tree. Branching refers to partitioning of 
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the solution space (generating the child nodes); bounding 
refers to lowering bounds used to construct a proof of 
feasibility without exhaustive search (evaluating the cost 
of new child nodes). In BB frame, bisection [12] is often 
used to help prune unneeded part of the solution space. 
Bisection is also normally used in test case generation 
[13]. 

Backtrack [14] is an optimum seeking method which 
searches forward according to the selection conditions to 
achieve a goal. If at a certain step of the search, it is 
found that the goal turns out to be unachievable, then a 
step backward is taken. The point satisfying the backtrack 
condition is a backtrack point. 

In classical BB search, nodes are always fully 
expanded, that is, for a given leaf node, all child nodes 
are immediately added to the so called open list. However, 
considering that only one solution is enough for path-
oriented test case generation, Best-First-Search is our first 
choice, so permutation of variables is required for 
branching to prune the branches stretching out from 
unneeded variables. Meanwhile because the domain of a 
variable is a finite set of possible values which may be 
quite large, bounding is necessary to cut the unneeded or 
infeasible solutions. Hence this paper proposes a new 
algorithm Best-First-Search Branch & Bound (BFS-BB) 
that conducts state space search dynamically to find the 
test case. We also integrate Backtrack algorithm to make 
full use of the past data obtained during the search 
process. 

III. REFORMULATION OF THE PROBLEM 

Many forms of test case generation make reference to 
the control flow graph (CFG) [15] of the program in 
question. A CFG for a program P is a directed graph 
G=(N, E, s, e), where N is a set of nodes, E is a set of 
edges, and s and e are respective unique entry and exit 
nodes to the graph. Each node n∈N is a statement in the 
program, with each edge e=(nr,nt)∈E representing a 
transfer of control from node nr to node nt. A path p 
through a CFG is a sequence p=(n1,n2,…,nq), such that for 
all r, 1≤r<q, (nr,nr+1)∈E. A path is said to be feasible if 
there exists a program input for which the path is 
traversed, otherwise the path is said to be infeasible. The 
feasibility of a path is judged by interval computation. 
Interval computation analyzes and calculates the ranges 
of the variables’ values in the PUT and provides precise 
information for further program analysis [16]. We 
enhance interval computation by adding a library of 
inverse functions in case of the occurrences of library 
functions in the PUT.  

The path-oriented test case generation problem can be 
reformulated as a search problem: X is a set of 
variables{x1,x2,…,xn}, D={D1,D2,…,Dn} is the set of 
domains and Di∈D(i=1,2,…,n) is a finite set of possible 
values for variable xi. For each path, D is defined based 
on the variables’ acceptable ranges. One solution to the 
problem is a set of values for each variable inside its 
domain denoted as V={V1,V2,…,Vn},Vi∈Di, to make the 
path feasible. There might be one, more or no solutions. 
If there is at least one solution, then the search succeeds 

otherwise it fails. The solution space is represented by a 
dynamically constructed tree where each node represents 
a step of the search. With the aid of intelligent rules for 
selecting nodes to explore and pruning those that do not 
lead to a solution, the complexity of the search can be 
drastically reduced as compared to that of an exhaustive 
implicit enumerative search. The search process is based 
on the result of interval computation and a heuristic 
estimate of the remaining part. 

IV. OVERVIEW OF BFS-BB 

We introduce state space search [17], which is an 
important issue in artificial intelligence to tackle the 
search problem. In order to facilitate the implementation 
of BFS-BB, we propose the following definitions. 

Definition1. A state space is a quadruple(S, A, I, F), 
where S is the set of states, A is the set of arcs or 
connections between the states including Permutate, 
Select, Reduce Domain and Backtrack that correspond to 
the steps or operations of the search at different states, I is 
a non-empty subset of S denoting the initial state of the 
problem and F is a non-empty subset of S denoting the 
final state of the problem.  

Definition 2. A state is a tuple(Precursor, Variable, 
Domain, Value, Type, Queue). In a certain stage of the 
search process, from the perspective of current state Scur, 
Precursor provides a link to the previous state; 
Variable=xi∈X (i=1,2,…,n) is an input variable of PUT; 
Domain=Dij ⊆ Di∈D, (i=1,2,…,n; j=1,2,…,m) in the 
form of [min, max]is the current domain of Variable 
which is the set of possible values that may be selected 
for Variable; Value=Vij∈Dij is a value selected from 
Domain; Type marks the type of Scur, which may be active, 
extensive or inactive; Queue is a sequence of variables 
corresponding to Scur.  

Definition 3. State space search is all about finding, in 
a state space (which may be extremely large), one final 
state. 'Final' means that every variable has been given a 
definite value successfully and the path is proved to be 
feasible with all these values by interval computation. At 
the start of the search Precursor is null, and when Queue 
is null the search ends. The path made up of all the 
extensive states makes the solution path of the search. 
State space search is accomplished by BFS-BB in this 
paper. 

When constructing each state, Type is active. 
Queue=Qipre and Variable is the head of Queue. An 
interval computation is carried out to each active state to 
determine the direction of the next step of search. If the 
interval computation succeeds, then Type becomes 
extensive, the remaining variables will be permutated to 
get Queue=Qinext, Scur becomes Precursor, and the head 
of Qinext will be Variable of next state. If interval 
computation fails, Type remains active, according to the 
information from the failed interval computation Reduce 
domain is conducted with bisection, and Value is 
reselected from the reduced domain, all of which mean 
the search will expand to a state with a different value for 
the same variable. If for the same variable all the values 
within its domain are tried out or the interval computation 
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for it has reached the time limit m( which is the branching 
factor, or a threshold used to control the breadth of the 
search tree ,namely, the limit on the number of times of 
interval computation taken for one variable under the 
same condition ), then its Type becomes inactive, 
indicating that the search arrives at a backtrack point and 
will have to backtrack to the previous state Precursor at 
the higher level of the search tree.  

The process of generating a test case for path p takes 
the form of state space search. We need to search the 

state space to find a solution path from an initial state to a 
final state. We can decide where to go by considering the 
possible moves from the current state, and trying to look 
ahead as far as possible. 

V. DETAILS OF BFS-BB 

We proceed by first giving an outline of algorithm 
BFS-BB and then giving the detailed explanations to the 
key parts. The outline of BFS-BB is shown in Fig.1. 

 
 
 

Figure 1.The outline of the search algorithm
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A. Irrelevant Variable Removal  
As mentioned above, X={x1,x2,…,xn}is the set of input 

variables for the program P. The state space should 
concern every xi (i=1,2,…,n) in X. However, it is possible 
that not every input variable will be responsible for 
determining whether every path in P will be traversed or 
not. A simple example follows with a program test1 and 
its corresponding CFG shown in Fig.2 where if_out_5, 
if_out_6 and exit_7 are virtual nodes. Adopting branch 
coverage, there are three paths to be covered, while the 
input variable x3 is only relevant to Path 2:0->1->3->4-
>5->6->7 and Path 3: 0->1->3->5->6->7, but not to 
Path 1:0->1->2->6->7. The numbers along the path 
denote nodes rather than edges of the CFG. Therefore, 
when attempting to generate test case for Path 1, search 
effort on the value of x3 is wasted since it cannot 
influence the traversal of Path 1. Thus, removing 
irrelevant input variables from the search space and only 
concentrating on input variables relevant to the path of 
interest may improve the performance of the search 
process. Relevant and irrelevant variables are defined as 
follows. 

Definition 4. A relevant variable is an input variable 
that can affect whether a particular path p will be traversed 
or not. To put it more precisely, for all the input variables 
{xi |xi∈X, i=1,2,…,n}, there exists a corresponding set of 
values {Vi |Vi∈Di, i=1,2,…,n}, with which p is not 
traversed, but when the value of a particular variable is 
changed, for example, when the value of xg(Vg) is changed 
into '

gV , p is traversed with the input { }'
1 2, ,..., ,...,g nV V V V , then 

xg is a relevant variable to path p.  
Definition 5. An irrelevant variable is an input 

variable that is not capable of influencing whether a 
particular path p will be traversed or not. To put it more 
precisely, for all the sets {Vi |Vi∈Di, i=1,2,…,n}of the 
search space of path p , with which p is not traversed, 
regardless of the change in the value of a particular 
variable, for example, the value of xg(Vg) is changed into 

'
gV , p is still not traversed with the input { }'

1 2, ,..., ,...,g nV V V V , 
then xg is an irrelevant variable to path p.  

 
Figure 2. Program test1 and its corresponding CFG 

 

Generally, for a particular path, whether an input 
variable is relevant or irrelevant cannot be completely 
determined due to the complex structure of programs [18]. 
But we can make conservative estimate of irrelevancy 
with static analysis techniques. Irrelevant variable 
removal (IVR) can result in test case being searched out 
with fewer interval computations for a particular path p 
than if all variables are considered. 

B. Reducing Domain  
Bisection is used to reduce the domain of a variable 

which has been selected a value making path p infeasible, 
together with Tendency, which is a property of a variable 
at a certain position (especially at branches of a CFG) 
providing the direction of the next step of search.  

Definition 6. Tendency map is a mapping table 
<Variable, Tendency>denoting the relationship between 
Variable and Tendency held by a specific branch Br along 
path p. Tendency is determined by branch predicates and 
expressions at the branch. 

Note that there might be more than one tendency maps 
in a program, for each of them is held by a single branch. 
Still take test1 as an example, as mentioned above there 
are three paths to be covered, which are Path 1:0->1->2-
>6->7, Path 2:0->1->3->4->5->6->7 and Path 3: 0->1-
>3->5->6->7, respectively. Accordingly we can get 
tendency maps as shown in TABLE I. 

Take Path 1 as an instance, if Scur =(Pre,x1,D11,V11, 
active,Q1pre) and interval computation fails at branch T_1, 
then we retrieve the corresponding tendency map and get 
the tendency of x1 as the result which is positive. 
Through the retrieval of tendency map we can propagate 
the constraints made up of the branch predicates in a 
more and more precise manner as presented by Fig.3. 

TABLE I. 
TENDENCY MAPS OF FIGURE 2. 

Path Branch Tendency map 
Path 1 T_1 {<x1,positive>,<x2,negative>}

Path 2 F_2 {<x1,negative>,<x2,positive>}
T_3 {<x3,positive>,<x1,negative>}

Path 3 F_2 {<x1,negative>,<x2,positive>}
F_5 {<x3,negative>,<x1,positive>}

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3. The algorithm Reducing Domain 

Algorithm. Reducing domain 
Input    Dij=[min,max]:the domain of xi 
Output Dij: the reduced domain of xi 
begin 
1:  j++; 
2:  Br←position of failure; 
3:  Tendency = get(xi); 
4:// retrieve the tendency map held by Br 
5:  if(Tendency== positive) 
6:         Dij=[Vij+1,max]; 
7:  else if(Tendency==negative) 
8:              Dij=[min,Vij-1]; 
9:  return Dij;  
end

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 361

© 2014 ACADEMY PUBLISHER



VI. EXPERIMENTAL RESULTS AND DISCUSSION 

To observe the effectiveness of BFS-BB, we carried 
out a large number of experiments in our team Code 
Testing System (CTS). Within the CTS framework, the 
PUT is automatically analyzed, its basic information is 
abstracted to form the Abstract Syntax Tree (AST) [19], 
and its CFG is generated. According to the specified 
coverage criteria, the paths to be covered are generated 
and provided for BFS-BB as input. After test cases have 
been generated by BFS-BB, test drive is generated to 
provide the environment to execute the test case. There 
are some auxiliary functions in CTS, including coverage 
observation, presentation of the covered code lines as 
well as the execution results, and the management of test 

cases for the convenience of regression testing. These 
functions of CTS provide comfortable experience for 
users such as the testing personnel.  

The experiments were performed in the environment of 
MS Windows 7 with 32-bits and run on Pentium 4 with 
2.8 GHz and 2 GB memory. The algorithms were 
implemented in Java and run on the platform of eclipse. 
Section A presents a performance evaluation about BFS-
BB, Section B concerns whether BFS-BB outperforms 
other commonly used MHS algorithms in terms of 
coverage. Four programs served as our test beds 
including a benchmark program used in CTS and three 
others in test case generation, and the details of them are 
shown in TABLE II. 

 
 

TABLE II. 
BENCHMARK PROGRAMS USED FOR EXPERIMENTAL ANALYSIS 

Program LOC Variables  Description Source 
branch_bound 402 27 A benchmark used in CTS by authors 

isValidDate 59 16 To check whether a date is valid or not referring to[8] 
calDay 72 3 To calculate the day of the week referring to[20] 

cal 53 5 To calculate the number of days between the two 
given days in the same year 

referring to[21] 

 
 

A. Performance Evaluation  
To evaluate the performance of BFS-BB in test case 

generation, test cases were automatically generated to 
meet three different coverage criteria: statement, branch, 
and MC/DC. In this section, we utilized branch_bound.c , 
which is a relatively long program for unit testing with 
402 lines and 27 input variables and complex structure 
trying to include more content that might appear in real-
world PUTs. Since not all of the 27 variables are relevant 
for a specific path, comparison of search time is made to 
evaluate the effect of IVR. 

Results of branch_bound.c using different coverage 
criteria are shown in TABLE III. The numbers of paths 
and average branches are different owing to different 
coverage criteria taken. BFS-BB generated test cases for 
all the feasible paths, trying to reach 100% coverage. IVR 
had no significant influence on the coverage, but it did on 
the search time. After the adoption of IVR, the search 
time was reduced greatly. Our following analyses all 
involve BFS-BB with IVR.  

For branch_bound.c, BFS-BB was able to cover almost 
every branch, and generating test cases took a few 
seconds for all the feasible paths. The MC/DC coverage 
[22] (which is relatively strict and subsumes statement 
coverage and branch coverage) did not reach 100%, 
because we set time limit for the search time for each 
path as well as the threshold m mentioned above for each 
variable. But we achieved tolerable coverage within 
tolerable time. There exists a trade-off between efficiency 
and success rate.  
 
 

 

 
TABLE III. 

EXPERIMENTAL RESULT USING THREE DIFFERENT COVERAGE 
CRITERIA WITH BFS-BB  

Adequacy 
criterion Paths Average 

Branches 

Average 
Coverage 

% 

Search time 
reduced by 

IVR% 

statement 61 29 100 34 

branch 119 43.33 100 37 

MC/DC 125 43 94 42 

B. Coverage Evaluation 
This section presents results from a practical 

comparison of BFS-BB with GA and SA on three 
different benchmark programs using branch coverage as 
the adequacy criterion, which offers a favorable trade-off 
between costs and efficiency [23].The result is shown in 
TABLE IV. 

It can be seen that BFS-BB reached 100% branch 
coverage on all three test beds which are relatively simple 
programs for BFS-BB and outperformed the algorithms 
in comparison. 

The better performance of BFS-BB results from two 
factors. One is that random testing [24] is a cheap and 
easy technique that can obtain reasonable coverage, 
simple yet effective in finding software fault, so for most 
of the cases, BFS-BB reached a relatively high coverage 
for the first round of search with a high speed. The 
second is that MHS crashed on several occasions due to 
the iteration exception, while the probability of aborting 
is quite low for BFS-BB because it has no demand for 
iteration. 
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TABLE IV. 
COMPARISON WITH SA AND GA USING BRANCH COVERAGE  

Program Paths Branches GA Average Coverage % SA Average Coverage% BFS-BB Average Coverage% 

isValidDate 5 16 99.95 98.21 100 
calDay 20 11 96.31 99.97 100 

cal 7 18 99.02 99.27 100 
 

VII. CONCLUSION AND FUTURE WORK 

This paper presents an intelligent search algorithm for 
path-oriented test case generation that utilizes the 
classical search algorithms of Branch & Bound and 
Backtrack. Experiments show that BFS-BB with IVR 
performs well on C programs. We also conducted 
empirical experiments to compare BFS-BB with some 
commonly used MHS methods, which produced 
encouraging results. This paper makes two major 
innovative improvements. 

First, path-oriented test case generation is often solved 
by optimizing techniques, which may often suffer from 
the problem of local minimal or the initial starting point 
being too far from the solution. Our approach is flexible 
because backtrack is used to change direction of the 
search with efficiency. Second, bisection with tendency 
maps and IVR are used to optimize BFS-BB and 
accelerate the search process.  

Our future research concerns not only how to generate 
test cases to reach high coverage but how coverage 
criteria, generation approach, and system structure jointly 
influence test effectiveness. The fault-finding capability 
of test cases and the effectiveness of the generation 
approach will be our focus for future work. 
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