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Abstract—In order to resolve conflict between convergence 
speed and population diversity of particle swarm 
optimization (PSO) algorithm, an improved PSO, called 
reverse-learning and local-learning PSO (RLPSO) 
algorithm, is presented in which a reverse-learning behavior 
implemented by some particles while local-learning 
behavior adopted by elite particles in each generation. 
During the reverse-learning process, some inferior particles 
of initial population and each particle’s historical worst 
position are reserved to attract a particle to leap out of local 
optimums. Furthermore, the Hamming distance between 
the inferior particles is set to no less than a default rejection 
distance the aim of which is to maintain the diversity of 
population and improve RLPSO’s exploration ability. In 
each generation, the difference between the best particle 
and the second-best particle is used to guide the best one to 
carry out local search which is crucial for improving 
RLPSO’s exploitation ability. The results of experiments 
show that RLPSO has a good global searching ability and 
convergence speed especially in high dimension function. 
 
Index Terms—particle swarm optimization, reverse 
learning, local learning, premature convergence 
 

I.  INTRODUCTION 

Particle swarm optimization (PSO) algorithm is a 
global optimization method that originally developed by 
Kennedy and Eberhart in 1995[1]. Unlike other 
evolutionary computation algorithms, in which some 
genetic operations such as selection, crossover and 
mutation operators are adopted to manipulate a new 
individual, PSO searches for an optimum by each 
particle’s flying through the problem space. This search 
mechanism enables PSO has high operating efficiency, 
fast convergence speed, and implementation simplicity.  

Owing to its outstanding characters, PSO has been an 
effective tool for solving global optimization problems 
during the past two decades, such as non-linear function 
optimization, signal processing[2], image reconstruction 

[3], engineering optimization [4], etc. Although PSO has 
obtained some promising results in many research fields, 
many experiments also indicate that the traditional PSO 
algorithm easily falls into local optima while solving 
complex multimodal problems. Aiming at the issue, 
many researchers have made great effort during the past 
decade which will be discussed in Section II.  

Based on previous works, a novel algorithm, called 
reverse-learning and local-learning particle swarm 
optimizer (RLPSO), is proposed in this paper. In RLPSO, 
some new features are proposed. First, much useful 
information within in some weak particles as well as in 
the best particle is taken into account to prevent 
population from prematurity. Second, a simple 
differential operator on some elite particles is adopted to 
enhance the exploitation ability of PSO.    

The rest of this paper is organized as follows. Section 
II describes the framework of traditional PSO and 
reviews some improved PSOs. The detail of RLPSO 
algorithm is presented in Section III. Section IV 
describes the experimental study on RLPSO and 
comparison of 3 various improved PSO algorithm. 
Finally, conclusions are given in Section V. 

II.  RELATED WORKS 

A.  PSO 
Similar to other swarm intelligence heuristic algorithm, 

PSO is a population-based stochastic optimization 
technique. In PSO, a continuous process of optimization 
is described as each particle’s flying while is described as 
population’s evolution in genetic algorithm (GA).  

When searching in a D-dimensional hyperspace, the ith 
particle in PSO has a velocity vector Vi = [vi1, vi2, . . . , viD] 
and a position vector Xi = [xi1, xi2, . . . , xiD] to indicate its 
current state, where i is a positive integer indexing the 
particle in the swarm and D is the dimensions of the 
problem under study. The position vector Xi is regarded 
as a candidate solution of the problem while the velocity 
vector Vi is treated as a particle’s search direction and 
step. During the process of optimization (or flying), each Corresponding author: Xuewen Xia, email: laughkid@163.com,
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particle decides its trajectory according to its personal 
historical best position vector pbesti = [pbi1, pbi2,…, pbiD] 
(i.e., pbest location) and the global best-so-far position 
vector gbest = [gbi1, gbi2,…,gbiD ] (i.e., gbest location). 
The update rules of a particle’s velocity and position are 
very simple, which are defined as 

( ) ( )1
1 1 2 2

t t t t t t
ij ij ij ij j ijv c r pb x c r gb xω υ+ = ⋅ + ⋅ ⋅ − + ⋅ ⋅ −  (1) 

            1t t t
ij ij ijx x v+ = +                     (2) 

where ω is the inertia weight; c1 and c2 are the 
acceleration coefficients that determine the relative 
learning weight for pbesti and gbest, which called 
self-cognitive and social influence, respectively; r1 
and r2 are two random numbers that are uniformly 
distributed over [0, 1]; i represents the current particle; 
and j represents the current dimension.   

B.  Some Modified PSO 
Although PSO has been successfully applied in 

various fields since it was first introduced, especially in 
some complex, large scale, nonlinear and 
non-differentiable optimization problems, there are still 
many deficiencies in PSO algorithm, such as low 
accuracy of resolution, premature convergence and curse 
of dimensionality, etc. In order to solve above-mentioned 
problems, several modifications have been introduced to 
improve the performance of the traditional PSO during 
the past decade.  

From the aforementioned parameters in PSO we know 
that the inertia weightω  and the acceleration constants c 
play important roles in optimization process. It is a 
simple and effective strategy to improve the efficiency of 
PSO that selecting a proper set of parameters or 
introducing a useful parametric adaptation mechanism. 
For example, in order to regulate swarm’s convergence 
speed and global searching ability, Shi and Eberhart 
adopted a method of linearly deceasing ω with the 
iteration for PSO in [5] and then introduced a fuzzy 
adaptive ω method for PSO in [6]. In [7], the adjustment 
of ω not only depends on the current iterations of 
evolution but also relies on the current population 
diversity. Ratnaweera et al. [8] developed a 
self-organizing H-PSO with time-varying acceleration 
coefficients. After making stability and astringency 
analysis for traditional PSO, a set of optimized 
parameters was proposed by Trelea and M. Jiang in 
[9][10], respectively.  

The population topology has a significant effect on the 
performance of PSO. There are several common 
topologies, such as ring, wheels, stars and Von Neumann 
neighbor structure, have been widely used in many 
variants of PSO [11]. After that, some topology tuning 
strategies have been proposed basing on the common 
topologies. In [12], a fully informed PSO, called FIPS, 
was proposed by Mendes et al., in which a particle uses a 
stochastic average of pbest’s from all of its neighbors 
instead of using its own pbest and the gbest in the update 
equation. In [13], Euclidian distance between particles is 

deemed as a criterion to select proper pbest and gbest for 
a specific particle. In addition, many dynamic topologies, 
in which the static topologies have been replaced by 
some dynamically adjusted neighbor models, were 
introduced in [14][15] to avoid deficiencies of fixed 
neighborhoods. These modifications on topology 
improve the local searching ability and overcome the 
premature phenomena of PSO in deferent degree. 

The choice of which learning pattern to use is very 
important for PSO to achieve a good results. Liang et al. 
[16] developed a comprehensive learning PSO (CLPSO) 
for multimodal problems. In CLPSO, a particle uses 
different particles’ historical best information to update 
its velocity, and for each dimension, a particle can 
potentially learn from a different exemplar. Changhe Li 
et al.[17] presented a self-learning particle swarm 
optimizer (SLPSO), in which each particles has four 
candidates learning-patterns to cope with different 
situations in the search space. In [18], a common single 
gbest is replaced by a group of elite particles. And a 
rejection strategy is adopted to enable the elites widely 
distributed in the search space. In [19], a novel Baldwin 
effects based learning strategy is adopted to improve the 
performance of PSO, in which the historical beneficial 
information is utilizes to increase the potential search 
range and retains diversity of the particle population. 

Although the modifications of PSO can generally be 
categorized into the aforementioned types, it should be 
pointed out that some complicated PSO variants may 
adopt multiple strategies above-mentioned 
simultaneously. The improvement strategy adopted in 
this paper involves parameter adjustment and learning 
pattern adjustment. 

III.  RLPSO ALGORITHM 

As introduced above, the main aims of these strategies 
that adopted by PSO are to maintain population diversity 
and to improve global search ability with a high 
convergence speed. In this paper, a reverse learning 
strategy is selected to maintain population diversity while 
a local research strategy is adopted by gbest to improve 
the convergence speed. The details of the strategies are 
described as follow, respectively. 

A.  Reverse Learning of Moderate Particles 
So far, most PSO algorithms use a similar learning 

pattern for all particles, in which each particle in a swarm 
learns from its own best historical experience and its 
neighborhood’s best historical experience. This 
monotonic learning pattern may cause the swarm lack of 
intelligence to deal with different complex situations. 
The monotonic learning pattern is widely applied in most 
PSO because a hypothesis that there is little useful 
information in an inferior particle. However, it’s just as 
true that an inferior particle may have good values on 
some dimensions of the solution vector though the 
particle has the worst values on other dimensions. The 
reason why the performance of elite particles is better 
than the performance of inferior particles is that the elite 
particles have good values on more dimensions than the 
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inferior particles, or the solution is vulnerable to the 
dimensions on which the elite particles acquire good 
values. So it is an arbitrary decision to regard that there is 
little useful information embedded in an inferior particle. 
In addition, there is usually a long distance between an 
inferior particle and a suboptimal particle. This trait of 
the inferior particles may be employed to drag some 
particles to jump out of local optimal. Hence, how to 
discover more useful information embedded in the 
inferior particles and thus how to utilize the information 
to improve PSO’s global search ability are important for 
us.  

 In this paper, when the optimum information of the 
swarm is stagnant during the search process in a 
D-dimensional hyperspace, n particles will participate in 
a reverse learning. An inferior position in the initial 
population ( )0 0 0 0 0

1 2, ,... ,...,k k k kj kDW w w w w=  ( 1 k m≤ ≤ ) 
and the historical inferior position of  the ith particle, 
denoted as ( )1 2, ,..., ,...,i i i ij iDW w w w w=  (1 i n≤ ≤ ), are 
used as two new exemplars to guide particle i flying by 
changing its speed and direction( whether it can be 
effectively applied in the adjustment of particle’s 
position). This behavior is called reverse-learning 
process in this paper, which is described as follows:    

 ( ) ( )1 0
3 3 4 3

t t t t t
ij ij ij ij ij kjc r x w c r x wυ ω υ+ = ⋅ + ⋅ ⋅ − + ⋅ ⋅ −  (3) 

where c3 and c4 are the acceleration coefficients that 
determine the relative weight of self-cognitive and social 
influence from inferior positions; rand r3 and rand r4 are 
two random numbers that are uniformly distributed over 
[0, 1]; 0

kjw represents the kth inferior position in the jth 

dimension; t
ijw represents personal historical worst 

position of particle i in the jth dimension at t time. The 
meaning of other parameters can refer to equations (1) 
and (2). 

After reverse-learning process, some particles could 
jump out of local optimization and redistribute over the 
search space. To make these particles have a more 
widespread distribution condition, a longer rejection 
radius R between the inferior positions 0

kW is necessary. 
So when choosing the inferior particles position in the 
initial population, we should account for not only the 
fitness of them but also the rejection radius between them. 
The algorithm to initialize a subpopulation consisting of 
m inferior positions that satisfy a predefined rejection 
radius is described as Algorithm 1. 

B.  Local Research by Historical Optimal Position 
To obtain a accurate solution, each elite in a 

population should not only take responsibility for guiding 
the evolutionary search but also make self-directed 
learning. In this paper, the global historical best position 
gbest makes local research based on the differential 
between itself and the second global historical best 
position sgbest, which is defined as (4).  

       ( )*
tgbest gbest r d gbest sgbest= + ⋅ ⋅ −    (4) 

where r is a random numbers that uniformly distributed 
over [0, 1], by which gbest could adjust direction of the 
local research; td is a weighting factor of the differential 
value at the tth iteration. In general, the distance between 
gbest and the global optimal solution will become shorter 
and shorter along with evolution of population. So the 
radius of local research should have similar variation 
trend during the evolution. In this paper, td decreases 
linearly during the run time, which is updated as follow: 

               ( )1 1 /t td d t T+ = ⋅ −             (5) 

where T is a maximum number of search iterations and t 
is the current search iteration.  

After the local research, greedy-choice strategy is 
applied to 1gP  and '

1gP , which is defined as (6). 

( ) ( )* *, >

,

gbest if fit gbest fit gbest
gbest

gbest other

⎧⎪= ⎨
⎪⎩

(6) 

where fit(x) is the fitness of position x. 

C.  Adjustable Maximum Flying Velocity maxV  

As introduced in Section II, we know that a 
well-designed maximum flying velocity maxV could make 
a particle search the problem space with a reasonable 
step length. Many experiments demonstrated that maxV  
is set in the interval of 10% ~20% of search space could 
obtain a preferable result. However, we think it is 
preferable that different maxV should be adopted by 
different particles at different stages in the optimization. 
For example, a particle that responsible for “exploration” 
requires a high flying velocity to improve probability of 
global search. On the contrary, and the end of 
optimization, a particle with stronger velocity restraint 
enables itself to obtain a more accurate resolution.  

When the optimum information of a swarm is stagnant 
during the search process, what we want is to help some 
particles to jump out of local optimal via the reverse 
learning process in which a larger maxV  could enable 
these particles to escape from the local optimal with a 
high velocity. Finishing the reverse learning, however, 
the particles need to adjust their velocity to a smaller 
value in order to meet the requirement of local search.   

 Together with the aforementioned components, the 
implementation of the RLPSO algorithm is summarized 
in Algorithm 2. 

IV.  BENCHMARK TESTS AND DISCUSSION  

A.  Test Functions 
The performance of the developed RLPSO is 

evaluated through nine well-known functions that often 
used as test suite in numerical experiments. The details of 
these functions are described as Table I. The optimal 
objective values of these functions for minimization are 
all zero.  
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Algorithm 1. Construction of inferior subpopulation 

INPUT: Initial population { }0 0 0 0

1 2
, , ...

N
X X X X= , Rejection radius R, Initial inferior population { }W φ=  

OUTPUT: Population { }0 0 0
1 2, , ..., mW W W W=  

Begin 
Step 1. Evaluate 0X and rearrange it in ascending order sort by fitness. After rearrange, without loss of generality, the population is still 

recorded as : { } 0 0

0 0 0
1 2, ,..., , , , [1, ]& &

i j
N X X

X X X fit fit i j N i j≤ ∈ <  

   0

1
W = 0

1
X , count=1, { }0

count
W W W= ∪ ,  i=1; 

Step 2. FOR i=2 TO N  
        IF count m≥   Break; 

        ELSEIF ( )0 0|| || ,1
j i

j W X R j count∀ − > ≤ ≤  

count++; 0 0

count i
W X= ; { }0

count
W W W= ∪ ;  

        END IF 
ENDFOR 

Step 3. WHILE count m<     
         Random generate a new paticles ind; 

IF ( )0|| || ,1
j

j ind W R j count∀ − > ≤ ≤   count++; 0

count
W ind= ; { }0

count
W W W= ∪ ; 

            END IF 
      END WHILE 
End 
 

Algorithm 2. RLPSO Algorithm 

INPUT: D-dimensional optimized function; N (Population size); m (Inferior subpopulation size); Coefficients c1,c2,c3 and c4; max
ω and 

min
ω (maximum and minimum of inertia weight); 

max
V ( maximum flying velocity); Ltimes(iterations of reverse learning); n(the number of particles that 

participate in a reverse learning); 
0

d (weighting factor); 

OUTPUT: Population historical best position 1gP ; 

Begin 
Step 1. Generate initial population { }0 0 0 0

1 2
, , ...

N
X X X X= and velocity ( )0 0 0 0

1 2
, , ...,

N
V V V V= ;Set

i i i
P B X= = ,t=0; 

Step 2. Evaluate population tX ; Set 1gP =the best particle, 2gP =the second best particle; 

Step 3. Construct a inferior population W according Algorithm 1; 
Step 4.  WHILE (Not meet the stop condition) 

Step 5.     Update tV and tX according to formulas (1) and (2), respectively; 

Step 6.     Evaluate population tX ; Update
i

P ,
i

B , 1gP and 2gP ; 

Step 7.     1gP performs local learning procedure according to formula (3); Update td  according formula (4);  

Step 8.     IF Meet the reverse learning condition 
Step 9.         Adjust 

max
V ; 

Step 10.        Update 
1 ~t t

QV V and 
1 ~t t

QX X  according to formula (5)and (2), respectively; 

Step 11.        Update
1 ~t t

Q NV V+
and 

1 ~t t
Q NX X+

 according to formula (1)and (2), respectively;  

Step 12.    END IF 
Step 13.    t=t+1； 
Step 14.  END WHILE 
End 

 

B.  Experimental Setting 
Three variant PSO algorithms are selected for 

comparisons. The first one is DEPSO algorithm [21] in 
which DE and PSO are adopted as two basic 
optimization methods. According to the current success 
rates of DE and PSO, DEPSO select a better one to guide 
subsequent optimization process. The second one is 
RCPSO which introduced in [18]. In RCPSO, a common 
single gbest is replaced by a group of elite particles. To 

keep the diversity of population, a rejection strategy is 
adopted by the elite particles. According to Section II, 
the modification of DEPSO and RCPSO can be 
categorized into Hybridization strategies and 
Learning-patterns adjustment, respectively. The last peer 
algorithm is a recent standard PSO algorithm named 
PSO2007 available on the Particle Swarm Central: 
http://www.particleswarm.info. For more details about 
these peer algorithm, the reader is referred to 
corresponding literatures.   
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In this experimental, we chose two different 
dimensions, including D=10 and D=100, for these test 
function introduced in Table I to test the scalability of 
algorithms on low-dimension and high-dimension 
function optimization. According to the different 
dimensions, two population sizes are set as N=20 and 
N=30 respectively. The configuration of each peer 
algorithm taken from the literature is exactly the same as 
that used in the original paper. Note that all optimizers 
involved in the experiment were implemented on a PC 
with 2.93GHz Pentium CPU, 4.0GB memory, Windows 
7 operator system and all algorithms were implemented 
in MATLAB 2009a.  

C.  Results and Discussion 
In this section, each algorithm was executed 100 

independent runs over the 9 test functions in two cases, 
which are 10 and 100 dimensions, respectively, with the 
corresponding population size setting as 20 and 30, 
respectively.  The experimental results in the form of 
the mean value (Mean), minimum value (Min), standard 
deviation value (SD) and mean run-time (RT) of finally 
discovered best object values are presented in Table II 
and Table III, where the best result of Mean and Min on 
each problem among all algorithms is shown in bold.  

From the experimental results in Table II, it can be 
seen that RSPSO obtains the best mean results on F2, F6 
and F9 where RLPSO achieves the second-best results 
that slightly worse than the best results. Since F6 and F9 
are two unimodal functions which selected to examine 
the exploitation ability of an algorithm, we can draw a 
conclusion that rejection mechanism in RSPSO and local 
learning mechanism in RLPSO are benefit to improve the 
exploitation ability and increase the solution accuracy. 
Meanwhile, RLPSO obtains the best results on F1, F3, F7 
and F8 while SPS2007 achieves the best results on F4 and 
F5.  Although DEPSO and RSPSO are much more 
inferior to RCPSO and RLPSO on function F1, it should 
be pointed out that these four algorithms have obtained 
almost identical solution accuracy in most cases except 
DEPSO trapping in local optimum 23 out of 100 runs 
while SPS2007 trapping in local optimum 3 out of 100 
runs. From the experimental results in Table III, we can 
see that, with the increasing of functional dimension 
from 10 to 100, RLPSO obtains the best results on most 
functions except on F2 and F6. It also should be pointed 
out that in spite of the mean value obtained by RLPSO 
on F2 and F6 are not the best one, the number of 
minimum values on F2 that less than 10-14 is 79 out of 
100 runs while the number of minimum values on F6 
that less than 10-38 is 85 out of 100 runs. So we can say 
that RLPSO is the best one among the four peer 
algorithms especially for solving high-dimensional 
function when success rate and solution accuracy are 
considered together.  

From the experimental results shown in Table II and 
Table III we can see that time-consuming of PSO2007 is 
the lowest than other algorithms benefit of its simple 
operators while the time-consuming of RSPSO is the 
longest due to its construction of elite subpopulation. For 
example, if the elite subpopulation size is M in RSPSO, 

we need to make at least M*(M-1)/2-1 Euclidean distance 
calculations between particles in each generation in order 
to maintain the elite subpopulation diversity. In addition, 
the rejection radius also needs to be calculated in each 
generation. DEPSO is more time-consuming than 
PSO2007 not only because of DEPSO need to make 
statistical analysis but also because of differential 
evolution algorithm is more time consuming the 
traditional PSO. In RLPSO, two novel learning 
mechanism called reverse learning and local learning are 
adopted. Note that there is no extra time-consuming 
during the reverse learning model for there is no 
additional operators except a reverse flying direction of 
some particles. Although an inferior subpopulation is 
needed in RLPSO, unlike the construction of elite 
subpopulation in RSPSO, the inferior subpopulation only 
constructed one time after population initialization. 
During the local learning process, particle 1gP makes 
local research in some different fly directions which 
cause the time-consuming of RLPSO is more than it of 
PSO2007. As the dimensions is increase from 10 to 100, 

1gP will take more time to execute local research. So 
RLPSO is less time-consuming than DEPSO in 10D 
while RLPSO is more time-consuming than DEPSO in 
100D. In fact that if we execute the local research of 1gP  
and the fly process of other particles in parallel, RLPSO 
can obtain the same time-consuming as PSO2007.  

Aside from the aforementioned targets presented in 
Table 4 and Table 5, convergence speed is also an 
important assessment criterion for PSO algorithm. The 
plots in Fig 1 show the convergence progress of the mean 
solution values of the 50 trials during the run for 
functions F4, F7, F8 and F9. In the four functions, F8 and 
F9 are unimodal functions selected to test convergence 
speed and solving accuracy of algorithm while F4 and F7 
are multimodal functions adopted to examine global 
search ability of algorithm. It can be observed from the 
figure that PSO2007 has faster convergence speed in 
solving F8 and F9 with low dimensions than other peer 
algorithms in the initial stage of evolution. However, 
DEPSO, RSPSO and RLPSO have faster convergence 
speed than PSO2007 at the later evolution process.  At 
the same time, we see that RLPSO has the fastest 
convergence speed and most accurate results in solving 
these unimodal functions when the functional dimension 
increases from 10 to 100. The same conclusion can be 
obtained from the optimization of function F7. During the 
process of optimization of function F4 with 10 
dimensions, RLPSO obtains the best result and the fastest 
convergence speed. However, once the dimension is 100, 
RLPSO only provides the second-best performance for 
function F4.  In fact, RLPSO obtains the best 
performance for all trial functions except function F4. 
Due to limited space, the convergence progresses of 
other functions listed in Table3 are not presented in this 
paper. So it could be an understatement to say that 
RLPSO is more suitable for high-dimensional function 
optimization. 
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TABLE I.   

BENCHMARK PROBLEMS 

Function name Definition Search space Global fmin(x*) x* 

Acley  ( )2
1 1 1

1 1( ) 20 20exp 0.2 exp cos 2D D

i ii i
F X e x x

D D
π

= =

⎛ ⎞ ⎛ ⎞= + − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑ ∑  [ ]32,32 D−  0 0.0D 

Alpine ( )2 1
( ) | sin 0.1 |D

i i ii
F X x x x

=
= +∑  [ ]10,10 D−  0 0.0D 

Rastrigin  ( )( )2
3 1
( ) 10cos 2 10D

i ii
F X x xπ

=
= − +∑  [ ]5.12,5.12 D− 0 0.0D 

Schwefel P1.2 ( )( )4 1
( ) 418.9829 sin | |D

i ii
F X D x x

=
= −∑  [ ]500,500 D−  0 420.9687D 

Girewank 2
5 1 1
( ) ( / 4000) cos( / ) 1

DD

i ii i
F X x x i

= =
= − +∑ ∏  [ ]600,600 D−  0 0.0D 

Schwefel P2.22 6 1 1
( ) | | | |DD

i ii i
F X x x

= =
= +∑ ∏  [ ]10,10 D−  0 0.0D 

Rosenbrock  ( ) ( )( )21 22
7 11
( ) 100 1D

i i ii
F X x x x−

+=
= − + −∑  [ ]30,30 D−  0 0.0D 

Sphere 2
8 1
( ) D

ii
F X x

=
=∑  [ ]100,100 D−  0 0.0D 

Sum of different power ( )1
9 1
( ) | |D i

ii
F X x +

=
=∑  [ ]1,1 D−  0 0.0D 

TABLE II.  

COMPARISON RESULTS OF MEANS AND VARIANCES IN 10 DIMENSIONS  (D=10, N=20) 

 F1 F2 F3 
Mean Min SD RT Mean Min SD RT Mean Min SD RT

DEPSO 2.17e-01 3.55e-15 3.84e-01 0.83 3.02e-08 7.41e-78 5.89e-08 0.56 4.79e+00 4.46e-13 1.51e+00 0.73
RCPSO 3.52e-15 0 7.03e-17 0.92 1.07e-15 6.28e-79 1.06e-15 0.99 6.03e+00 9.95e-01 2.14e+00 0.93
SPS2007 1.16e-02 3.55e-15 2.29e-02 0.24 6.50e-06 1.70e-69 1.22e-05 0.22 5.91e+00 9.95e-01 2.02e+00 0.23
RLPSO 3.52e-15 0 7.03e-17 0.62 3.13e-15 2.08e-67 2.02e-15 0.45 5.67e-01 0 6.92e-01 0.70
 F4 F5 F6 

Mean Min SD RT Mean Min SD RT Mean Min SD RT
DEPSO 8.51e+02 2.38e+02 2.63e+02 0.97 7.91e-02 0 3.54e-02 0.97 1.52e-04 2.11e-39 2.92e-04 0.52
RCPSO 1.25e+03 2.37e+02 2.62e+02 0.93 8.24e-02 7.40e-03 3.02e-02 0.96 3.14e-23 1.70e-44 6.19e-23 0.92
SPS2007 6.65e+02 1.18e+02 1.76e+02 0.25 3.76e-02 0 2.00e-02 0.24 1.11e-31 7.39e-36 1.88e-31 0.21
RLPSO 1.08e+03 4.77e+02 2.28e+02 0.78 5.02e-02 0 2.66e-02 0.70 1.05e-34 2.93e-45 2.00e-34 0.55
 F7 F8 F9 

Mean Min SD RT Mean Min SD RT Mean Min SD RT
DEPSO 6.39e+02 2.71e-03 1.06e+03 0.52 1.81e-55 3.95e-61 2.78e-50 0.48 4.30e-103 6.03e-118 8.26e-103 1.20
RCPSO 4.88e+00 1.19e-03 4.43e+00 0.96 1.03e-62 1.11e-85 2.04e-62 0.99 2.80e-107 4.00e-152 5.50e-107 2.77
SPS2007 5.12e+00 4.82e-02 3.37e+00 0.22 1.50e-52 5.70e-61 2.88e-52 0.21 1.53e-98 3.18e-108 2.81e-98 0.68
RLPSO 2.84e+00 1.15e-03 2.36e+00 0.53 1.43e-60 3.51e-79 6.60e-60 0.55 6.75e-107 4.34e-139 1.29e-106 1.39

TABLE III.   

COMPARISON RESULTS OF MEANS AND VARIANCES IN 10 DIMENSIONS (D=100, N=30) 

F1 F2 F3 
Mean Min SD RT Mean Min SD RT Mean Min SD RT 

DEPSO 2.47e+00 1.25e+00 3.90e+00 1.87 1.23e+00 5.69e-02 1.15e+00 1.81 2.49e+02 1.71e+02 2.81e+01 1.99
RCPSO 2.79e+00 1.63e+00 3.96e-01 2.58 3.03e+00 1.72e-01 2.75e+00 2.51 2.53e+02 1.65e+02 2.99e+01 2.52
SPS2007 2.20e+00 1.22e+00 4.05e-01 1.44 8.69e+00 2.62e-01 3.70e+00 1.37 3.06e+02 1.05e+02 5.65e+01 1.44
RLPSO 1.01e-12 1.81e-13 8.53e-13 2.30 8.69e+00 3.09e-13 6.60e+00 2.19 2.20e+01 6.96e+00 2.44e+01 2.31
 F4 F5 F6 

Mean Min SD RT Mean Min SD RT Mean Min SD RT 
DEPSO 1.95e+04 1.21e+04 1.81e+03 1.97 7.80e-01 2.85e-01 1.98e-01 2.03 2.96e+00 1.17e-01 2.11e+00 1.94
RCPSO 1.95e+04 1.12e+04 1.67e+03 2.73 1.75e+00 1.20e-01 1.79e+00 2.67 4.35e+01 3.88e-01 5.87e+01 2.09
SPS2007 1.69e+04 1.27e+04 1.36+03 1.53 9.16-02 1.14e-02 6.56e-02 1.54 1.05e-01 1.41e-02 7.57e-02 1.12
RLPSO 1.69e+04 1.14e+04 1.74e+03 2.31 2.32e-02 0 2.28e-02 2.16 4.50e+00 5.89e-50 2.55e+00 1.79
 F7 F8 F9 

Mean Min SD RT Mean Min SD RT Mean Min SD RT 
DEPSO 8.05e+04 4.38e+02 1.35e+05 1.74 4.62e+00 6.91e-01 2.90e+00 1.58 1.58e-25 1,53e-30 2.10e-25 1.99
RCPSO 8.11e+03 3.49e+02 1.33e+03 2.30 1.08e+02 4.37e-01 1.98e+02 2.29 6.84e-30 3.80e-35 1.17e-29 2.70
SPS2007 4.92e+02 3.01e+02 8.32e+01 1.37 2.17e-01 1.44e-01 2.44e-01 1.20 3.75e-23 7.19e-29 6.45e-23 1.51
RLPSO 4.35e+02 7.21e+01 2.99e+02 2.17 1.99e-20 1.80e-25 3.56e-20 1.80 3.04e-51 1.80e-91 5.83e-51 2.08
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Figure 1. Comparison of convergence performance on 4 test functions in two different dimensions. (a)F4(10D). (b)F4(100D). (c)F7 (10D). 
(d)F7(100D). (e)F8 (10D). (f)F8(100D). (g)F9 (10D). (h)F9(100D). 
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V.  CONCLUSIONS 

In this paper, we presented a modified PSO called 
RLPSO algorithm in which a reverse-learning process 
and a local-learning process are adopted to make the 
search effective and efficient. In each generation, a 
local-learning by the best particle is executed after 
standard flying process. While the population traps in 
local optimum, the reverse-learning process is carried out 
to help some particles jump out of the local optimum. 
During the reverse-learning process, some inferior 
particles in initial population and the historical inferior 
positions of particles are used as new exemplars to guide 
particles flying. While selecting the inferior particles in 
the initial population, we set a reject radius to make the 
inferior particles widely distributed in search space 
which can improve the diversity of population while after 
reverse-learning process. Furthermore, the difference of 
the best particle and the second-best particle in each 
generation is used to guide the best one to carry out local 
search.   

Simulation results reveal that RLPSO has a good 
global searching ability and convergence speed 
especially in high dimension function. 
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