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Abstract—The concept, rough truth, is first presented in 
rough logic. It is a logical value, and lies between truth and 
falsity. By combining rough logic with modal logic, rough 
validity of the rough axioms is studied in this paper, which 
has close links with the logical value: rough truth. Because 
an axiom of modal logic corresponds to a rough axiom, the 
study of this paper actually focuses on the analysis of rough 
truth of the axioms in modal logic, which is based on a 
structure constructed in this paper. The structure is linked 
with a series of special states. The research on rough truth 
connects the special states with the rough axioms. At the 
same time, granular computing is introduced to the research 
process. As an approach to data processing, granular 
computing plays an important role in determining whether 
a rough axiom is roughly true or not. Thus, the study also 
demonstrates a way of research on granular computing. The 
conclusions show that each rough axiom is roughly true at 
every state of the structure, which means that each rough 
axiom is roughly valid. This is the desired result.  
 
Index Terms—rough truth, rough validity, rough axiom, 
granular computing, operator 
 

I.  INTRODUCTION 

Modal logic [1][2] is an extension of classical logic. In 
it, the operators □  and ◇  appear in formulas, in 
particular, in axioms, which does not occur in classical 
logic. Naturally, a formal system of modal logic is an 
extension of a formal system in classical logic because of 
the occurrence of □ and ◇. Meanwhile, the operators □ 
and ◇  lead to the emergence of a structure called a 
Kripke model [2] in which the meaning of □ or ◇ can 
be interpreted. Accordingly, the formulas involving □ or 
◇ have their semantics. Although the Kripke model is 
different from a semantic structure of classical logic, the 
formulas in modal logic still take truth or falsity as the 
logical values, which have the same situation as classical 
formulas. So, it is worthwhile to discuss the subject that 
formulas of modal logic take other logical values situated 

between truth and falsity. This is what we are going to 
study in this paper. 

Now recall rough logic [3] in which Z. Pawlak, the 
originator of rough set theory, introduced five logical 
values: truth, falsity, rough truth, rough falsity and rough 
inconsistency. Among them, rough truth is a logical value 
that lies between truth and falsity, and does not occur in 
modal logic. The investigation on rough truth about the 
formulas of modal logic will be what we discuss in the 
following. Actually, the developments in [4] and [5] have 
integrated rough sets with modal logic. The former 
mainly study the connection between the axioms of 
modal logic and algebraic properties of binary relations, 
but it is not concerned with rough truth. The latter creates 
a special system of modal logic based on an incomplete 
information system, but the special system is linked with 
the traditional method, its formulas still take truth or 
falsity as the logical values. Thus, the analysis on rough 
truth about logical formulas, in particular, about the 
axioms of modal logic will be an interesting subject that 
will be studied in this paper. We will concentrate our 
attention on rough truth of the formulas defined in this 
paper, especially on rough truth about the rough axioms 
which correspond to the axioms in modal logic. 

With this end in view, we will integrate modal logic 
with rough logic, which will correlate with new operators. 
The new operators being similar to the modal operators 
□ and ◇ will be connected with rough truth. According 
to the general steps in mathematical logic, we need to 
define formulas. This reminds us of the formulas in 
modal logic that involve the operators □  or ◇ , and 
makes us notice the formulas in rough logic that are 
based on an information system S=(D, A, V, f )[3]. So we 
have the idea of integrating the two sorts of the formulas. 
What we do will follow this idea. The formulas in this 
paper will extend the formulas in rough logic, also will 
involve new operators. Making use of the formulas, we 
will define granules, and explain what is granular 
computing. This enables us to establish a connection 
between rough truth and the axioms in modal logic. Thus, 
formulas will be an important basis of the following 
discussion. We now start from the definition of formulas.  
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II.  FORMULAS AND ROUGH TRUTH 

A.    Construction of Formulas 
The formulas in this paper will be an extension of the 

formulas in rough logic. Also, the formulas will involve 
some operators as in modal logic. From [3] we know that 
the formulas of rough logic are based on an information 
system S=(D, A, V, f ), where D={u1,…, um} is a finite 
set call the universal set; A={a1,…, an} is the attribute set, 
each element of A is referred to as an attribute; V is also a 
finite set which is the range of f , an element of V is called 
a value; f is a function from D×A to V, such that for <u, 
a>∈D×A, there is a unique value v∈V, satisfying f(u, 
a)=v. Generally, the expression f(u, a)=v is abbreviated 
to a(u)=v. Thus, each attribute a(∈A) is actually a 
function from D to V.  

Let S=(D, A, V, f ) be an information system. We now 
recall the formulas in rough logic. If a∈A and v∈V, the 
notation (a, v) is called an atomic formula [3] in rough 
logic. By logical connectives, other formulas based on 
atomic formulas can be obtained, such as (a1, v1)∧(a2, v2), 
(a1, v1)∨(a2, v2), (a1, v1)→(a2, v2) etc. are formulas [3] in 
rough logic, where a1, a2∈A, and v1, v2∈V.  

The formulas in this paper will be linked with U that is 
a finite set called a universal set. We use U n(n≥1) to 
stand for U×…×U, the Cartesian product of n factors of 
U. An element of U n is denoted by <u1,…, un>, where ui

∈U(i=1,…, n). For a natural number m(≥1), if H is a 
subset of U m, i.e. H⊆U m, then H is called an m-place 
relation on U. We will use m-place relations to define 
formulas that will be the basis for our study. 

Either in rough logic or in modal logic, formulas are 
based on a symbol system. In order to define formulas, a 
symbol system needs to be introduced.  

Definition 1. Let U be a universal set. The symbol 
system on U is defined by the following: 

1)  Constant: if u∈U, u is called a constant on U. 
2)  Variable: x1, x2, x3,… denote variables on U. 
3)  Term: constants and variables are called terms on U, 

and t1, t2, t3,… are used to stand for any term. 
4)  Relation: P, Q, S, H etc. or P1, P2, P3,… denote any 

m-place relation on U (m≥1). 
5)  Logical connectives: ﹁, ∧, ∨, →. 
6)  Punctuation: the symbols “ ( ”, “ ) ” and “ , ” are 

used as punctuation marks.   ▌ 
Using the symbol system on U, we can define atomic 

formulas or formulas. 
Definition 2. Let U be a universal set, and P be an m-

place relation on U (m≥1). If t1,…, tm are m terms, then 
P(t1,…, tm) is called an atomic formula on U.    ▌ 

For example, P(x1,…, xn, u1,…, um-n )(n≤m) is an 
atomic formula on U, where x1,…, xn are variables, u1,…, 
um-n (∈U) are constants, they are all terms, and P(⊆U m) 
is an m-place relation on U. 

In modal logic, there are two modal operators □ and 
◇ expressing “necessity” and “possibility” respectively. 
Although the formulas involving □ or ◇ are interpreted 
in Kripke models [2], the formulas still take truth or 

falsity as the logical values. Thus research on rough truth 
of formulas will be different from the study in modal 
logic. To this end, we intend to connect rough truth with 
special formulas which are similar to the axioms in modal 
logic. To get the special formulas, we introduce two 
operators ■ and ◆ corresponding to □  and ◇ 
respectively. The semantics of the new operators will be 
given in definition 6. The purpose of introducing ■ and 
◆ is to define formulas. 

Definition 3.  Let U be a universal set. The formulas 
on U are inductively defined as follows: 

1) Every atomic formula P(t1,…, tn) is a formula on U. 
2) If φ is a formula on U, then ﹁φ, ■φ and ◆φ are 

formulas on U. 
3) If φ and ψ are formulas on U, then φ∧ψ, φ∨ψ and 

φ → ψ are formulas on U. 
4) Formulas on U are generated by using 1), 2) or 3) in 

finite steps.    ▌ 
Definition 2 shows that an m-place relation(m≥1) 

determines an atomic formula. Also, from definition 3, 
we know that formulas on U are based on atomic 
formulas. Thus each formula on U has close links with m-
place relations. Since there may exist variables in each 
atomic formula, any formula may also contain variables. 
If there are n variables x1,…, xn in a formula φ, then φ is 
called an n-place formula, and is also denoted by φ(x1,…, 
xn) in order to stress the n variables. 

B.   Semantic Sets of Formulas 
   For every formula on U, we will define its logical 
values by introducing the semantic set of the formula. In 
fact, rough logic [3] is concerned with this concept which 
can be briefly described in the following paragraph: 

Let S =(D, A, V, f ) be an information system. The 
notation (a, v) is called an atomic formula in rough logic, 
where a∈A and v∈V. For u∈D, if a(u)=v, we say that u 
satisfies (a, v). Let |(a, v)|={u | u∈D, and u satisfies (a, 
v)} that is subset of D, and consists of the elements 
satisfying (a, v). In rough logic, the set |(a, v)| is referred 
to as the meaning of (a, v). In addition, for formulas (a1, 
v1)∧(a2, v2), (a1, v1)∨(a2, v2) and (a1, v1)→(a2, v2), their 
meanings are defined by |(a1, v1)∧(a2, v2)|=|(a1, v1)|∩|(a2, 
v2)|, |(a1, v1)∨(a2, v2)|=|(a1, v1)|∪|(a2, v2)|, and |(a1, v1)→
(a2, v2)|=～|(a1, v1)|∪|(a2, v2)|, respectively. Thus, every 
formula in rough logic has its meaning.  

Being similar to the meaning of a formula in rough 
logic, the semantic set of some formulas on U can be 
defined. Consider the following discussion. 

Let P⊆U m, and let P(x1,…, xn, u1,…, um-n) be an n-
place atomic formula on U, where x1,…, xn are variables, 
u1,…, um-n are constants, and 1≤n≤m. For <t1,…, tn>∈
U n, if < t1,…, tn, u1,…, um-n>∈P, then we say that  <t1,…, 
tn> satisfies P(x1,…, xn, u1,…, um-n). When n=1, <t1> is 
simply denoted by t1. 

For an n-place atomic formula P(x1,…, xn, u1,…, um-n) 

(n≥1), let us consider the set {<t1,…, tn> | <t1,…, tn>∈
U n, and <t1,…, tn> satisfies P(x1,…, xn, u1,…, um-n)} 
which is denoted by |P(x1,…, xn, u1,…, um-n)|. Clearly, it 
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is a subset of U n, i.e. |P(x1,…, xn, u1,…, um-n)|⊆U n. We 
refer to |P(x1,…, xn, u1,…, um-n)| as the semantic set of the 
atomic formula P(x1,…, xn, u1,…, um-n). 

In addition atomic formulas, the semantic set is also 
linked with other formulas. Consider the formulas which 
do not involve the operators ■ and ◆. If φ is such a 
formula, we use |φ| to denote the semantic set of φ. The 
next definition makes it clear. 

Definition 4.  Let φ and ψ be n-place formulas on U (n
≥1). The operators ■ and ◆ do not occur in φ and ψ. 
The semantic set determined by each of the formulas that 
do not involve the operators ■ and ◆ are inductively 
defined as follows: 

1) |﹁φ| = ～|φ| (=U n
－|φ|). 

2) |φ∧ψ| = |φ|∩|ψ|. 
3) |φ∨ψ| = |φ|∪|ψ|. 
4) |φ → ψ| = |﹁φ|∪|ψ|.          ▌ 
This definition shows that if φ and ψ are n-place 

formulas on U, and do not involve the operators ■ and 
◆, then the semantic sets |﹁φ|, |φ∧ψ|,  |φ∨ψ| and |φ → 

ψ| are subsets of U n, i.e. |﹁φ|⊆U n, |φ∧ψ|⊆U n, |φ∨
ψ|⊆ U

n and |φ → ψ|⊆U n. Besides, when <t1,…, tn>∈|φ|, 
we say that <t1,…, tn> satisfies φ. So, |φ|={<t1,…, tn> | 
<t1,…, tn>∈U n, and <t1,…, tn> satisfies φ}, i.e. |φ| 
consists of the elements that satisfy φ. 

C.   Further Explanation for Formulas 
   First, we are sure that the formulas in definition 3 are an 
extension of the formulas in rough logic. In fact, consider 
an information system S = (D, A, V, f ). Let (a, v) be an 
atomic formula in rough logic, where a∈A and v∈V. 
Since a (∈A) is a function from D to V, it can determine 
a binary-relation, say Pa, on U, where U=D∪V, such that 
for <u, v>∈D× V(of course <u, v>∈U×U), <u, v>∈Pa 
if and only if a(u) =v. Thus, we can get Pa(x1, v) that is a 
unary-place atomic formula on U, where x1 is a variable, 
and v(∈U) is a constant. For u∈D(of course u∈U), u 
satisfies Pa(x1, v) if and only if <u, v>∈Pa if and only if 
a(u) = v, if and only if u satisfies (a, v). This indicates that 
the atomic formula (a, v) is actually the unary-place 
atomic formula Pa(x1, v). Since binary-place relations are 
a special case of m-place relations, the atomic formulas in 
definition 2 extend the atomic formulas in rough logic. 
Notice that the formulas in definition 3 are based on 
atomic formulas. Hence, the formulas in this paper are an 
extension of the formulas in rough logic. The formulas on 
U cover a wider range. 

Second, in some cases, an n-place formula on U can 
become an m-place formula on U, where m＞n, or m＜n. 
Let us consider the following explanation: 

Let φ(x1,…, xn) be an n-place formula(n≥1), and the  
operators ■ and ◆ do not occur in φ(x1,…, xn). From the 
paragraph below definition 4, we know that |φ(x1,…, 
xn)|={<t1,…, tn> | <t1,…, tn> ∈ U n, and <t1,…, tn> 
satisfies φ(x1,…, xn)}. For a natural number m and m＞n, 
let |φ(x1,…, xn)| ={<t1,…, tn , tn+1,…, tm> | <t1,…, tn , 
tn+1,…, tm>∈U m, <t1,…, tn> satisfies φ(x1,…, xn), and 

tn+1,…, tm∈U}, then |φ(x1,…, xn)| is a subset of U m, i.e. 
|φ(x1,…, xn)|⊆U m. In this case, φ(x1,…, xn) can be viewed 
as an m-place formula and m＞n. On the other hand, for a 
natural number m and m＜n, select the constant elements 
um+1,… , un∈U, we therefore get the m-place formula 
φ(x1,…, xm, um+1,…, un) and |φ(x1,…, xm, um+1,…, un)|⊆ 

U m. In accordance with this way, an n-place formula φ 
can be regarded as an m-place formula, where m＞n or m
＜n. So, if φ is an n-place formula, ψ is an m-place 
formula, and n≠m, then φ and ψ can all be taken as 
either n-place or m-place formulas. Thus, the semantic 
sets |φ∧ψ| = |φ|∩|ψ|, |φ∨ψ| = |φ|∪|ψ| and |φ → ψ| = |﹁
φ|∪|ψ| may be either a subset of U n, or a subset of U m, 
which depends on the need of discussion. Generally, if 
φ(x1,…, xn) is an n-place formula on U, it is natural that 
|φ(x1,…, xn)| is a subset of U n, i.e. |φ(x1,…, xn)|⊆U n. 

D.   Rough Truth of Formulas 
   We know that rough logic is based on an information 
system S=(D, A, V, f ). Rough truth is a logical value 
defined in rough logic. It is connected with a structure (D, 
R) called an approximation space [6], where R is an 
equivalence relation on D, and is determined by some 
attributes of A. In this paper, rough truth will also 
correlate an approximation space which is somewhat 
different from (D, R). The approximation space is 
composed of Un and R, denoted by (U n, R), where U is a 
universal set; R is an equivalence relation on U n(n≥1). 
Now we explain the reason why U n, rather than U, occurs 
in the approximation space (U n, R): 

Let φ(x1,…, xn-1, xn) be an n-place formula on U. It 
follows from definition 4 that |φ(x1,…, xn-1, xn)| is a subset 
of U n, i.e. |φ(x1,…, xn-1, xn)|⊆U n. Let ψ = φ(x1,…, xn-1, u), 
where u∈U, and u is a constant. It is clear that ψ is an (n-
1)-place formula, and |ψ|⊆Un-1. Thus, the objects in a 
semantic set not only correlate with U n, but also with U. 
In this paper, rough truth will be defined by both a 
semantic set and an approximation space. Space (U n, R) 
will be a suitable structure for the definition. 

Let M=(U n, R) be an approximation space, and U n/R= 
{[b1],…, [bt]} be the partition of U n, where bi=<t1,…, tn>
∈U n, and [bi]={w | w=<t1,…, tn>∈U n and <bi, w>∈R} 
which is referred to as an equivalence class (i= 1,…, t). 
And we call Un/R the partition of U n relative to R. When 
X⊆U n, R-upper approximation R*(X) [6], and R-lower 
approximation R*(X) [6] about X in rough set theory are 
defined by the following expressions: 

R*(X)=∪{[bi] | [bi]∈U n/R and [bi]∩X ≠∅},  
    R*(X)=∪{[bi] | [bi]∈U n/R and [bi]⊆X}. 
Where the notation “∪{A | A is a set, and …}” expresses 
the union of the elements in {A | A is a set, and …}. For 
example, ∪{A, B, C}=A∪B∪C. Hence, if X ⊆U n, then 
R*(X)⊆U n and R*(X)⊆U n. Also, by the definition of R-
upper and R-lower approximations about X, we have 
R*(X)⊆X ⊆R*(X). 

Now we use the semantic set of a formula to define 
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logical values of the formula. From next definition we 
will notice that upper approximation and a semantic set 
are linked together, which will lead to the definition of 
rough truth. 

Definition 5. Let (U n, R) be an approximation space, 
and φ be an n-place formula on U. If the operators ■ and 
◆ do not occur in φ, then: 

1) If |φ|=Un, then φ is said to be true in (U n, R), 
denoted by U n

 φ. 
    2) If |φ| ≠U n, then φ is said to be false in (U n, R), 
denoted by U n φ. 

3) If R*(|φ|)=U n, then φ is said to be roughly true in 
(U n, R), denoted by (U n, R) φ.       ▌ 

This definition shows that rough truth of φ, i.e. φ is 
roughly true in (U n, R), is determined by R-upper 
approximation about the semantic set |φ| that is subset of 
U n. Thus, rough truth of φ is relevant to both U n and R 
which forms the approximation space (U n, R). But truth 
and falsity of φ are only related to U n, not correlating 
with the equivalence relation R. 

Since |φ|⊆R*(|φ|)⊆U n,  it is easy to know that |φ| = U
n 

implies R*(|φ|)= U
n. Thus, if φ is true in (Un, R), then φ 

must be roughly true in (U n, R). But, R*(|φ|)= U
n cannot 

guarantee |φ|=U n. This illustrates that rough truth is 
weaker than truth. On the other hand, it is not difficult to 
know that falsity is weaker than rough truth, which means 
that we can find a formula φ, such that φ is false in (U n, 
R), i.e. |φ|≠Un, but φ is not roughly true in (U n, R), i.e. 
R*(|φ|) ≠U n. Thus rough truth lies between truth and 
falsity. Besides, there is a formula which is true and 
roughly true in (U n, R). Also, there is a formula which is 
roughly true and false in (Un, R). These characteristics 
are different from the truth value of a formula in classical 
logic and in other non-classical logics, because the logical 
values in definition 5 are determined by different cases of 
the semantic set |φ| which is a subset of U n. We will give 
a definition in section 3 which shows that the semantic 
set |φ| and R-upper approximation R*(|φ|)  are all granules. 
Hence the logical values in definition 5 are defined by 
different cases of granules. 

To discuss the semantics of the operators ■ and ◆, 
we consider a set denoted by Rn, such that  Rn={R | R is 
an equivalence relation on U n}, where n ≥ 1. Also, 
consider a another set denoted by Pn, defined as Pn={(U n, 
R) | R∈Rn}. Let ⊆ be the relation of set containment. 
Because ⊆ is reflective, anti-symmetric and transitive, ⊆ 
is a partial order and (Rn, ⊆) is a partially ordered set. 
Using the relation ⊆, we define a relation on Pn, denoted 
by ≤  which is also a partial order, satisfying the 
condition: for (U n, R1), (U

n, R2)∈Pn, (U n, R1) ≤(U n, R2) 
if and only if R1⊆R2. Obviously, (Pn, ≤) is a partially 
ordered set. Since Pn is uniquely determined by U and n, 
and is linked with U n, we call (Pn, ≤) the structure on U n.  

The structure (Pn, ≤) can be regarded as an extension 
of an information system S = (D, A, V, f ). In fact, let us 
consider its attribute set A={a1,…, an}. For each ai∈A, 

since ai is a function from D to V(i=1,…, n), ai can 
determine an equivalence relation on D, denoted by Rai, 
such that <uj, uk>∈Rai if and only if ai(uj)= ai(uk) for uj, 
uk∈D. We therefore get an approximation space (D, Rai) 
which uniquely corresponds to the attribute ai. Let <(D, 
Ra1),…, (D, Ran)> be the structure composed of the 
approximation spaces which correspond to the attributes 
of A. Information system S = (D, A, V, f) is closely linked 
to <(D, Ra1),…, (D, Ran)>. So, we can base rough logic 
on the structure <(D, Ra1),…, (D, Ran)>. Now, let U=D∪

V. Consider (Pn, ≤) which is the structure on U n(n≥1). 
Since Pn consists of all the approximation spaces on U n, 
(Pn, ≤) can be viewed as an extension of <(D, Ra1),…, 
(D, Ran)>. The relation ≤ in (Pn, ≤) is a concept not 
occurred in <(D, Ra1),…, (D, Ran)>. It establishes 
connections between the elements of Pn. 

The structure (Pn, ≤) will be used as a model in which 
the semantics of the operators ■  and ◆  will be 
interpreted.  

Note that in definition 5 we use (Un, R) φ to denote 
rough truth of φ in (U n, R), where φ does not involve the 
operators ■  and ◆ , of course, φ may be an atomic 
formula. Thus, if the operators ■ and ◆ do not occur in 
formula φ, (Un, R) φ has been defined already. This is 
the basis for the next definition. 

Definition 6. Let φ be a formula on U, the operators ■ 
or ◆ occur in φ, and (Pn, ≤) be the structure on U n. For 
(U n,  R)∈Pn, the notation (Un, R) φ is used to denote φ 
is roughly true in (U n, R), which is recursively defined as 
follows: 

1) If φ = ■ψ, or φ =  ◆ψ, then: 
i)  (U n, R) ■ψ  if and only if for every (U n, R1)∈Pn, 

if (U n, R) ≤(Un, R1), then (U n, R1) ψ. 
ii) (U n, R) ◆ψ if and only if there exists (Un, R1)∈

Pn and (U n, R) ≤(U n, R1), such that (U n, R1) ψ. 
2) If φ = ﹁■ψ, or φ =  ﹁◆ψ, then: 
i) (U n, R) ﹁■ψ  if and only if there exists (U n, R1)

∈Pn and (U n, R) ≤(U n, R1), such that (U n, R1) ψ fails 
to hold. 

ii) (U n, R) ﹁◆ψ if and only if for every (U n, R1)∈
Pn, if (U n, R) ≤(U n, R1), then (U n, R1) ψ does not hold. 

3) If φ = ψ1∧ψ2, φ = ψ1∨ψ2, or φ = ψ1→ ψ2, where 
the operators ■ or ◆ occur in ψ1 or in ψ2, then: 

i) (U n, R) ψ1∧ψ2  if and only if (U n, R) ψ1 and (U n, 
R) ψ2. 

ii) (U n, R) ψ1∨ψ2  if and only if (U n, R) ψ1 or (U n, 
R) ψ2. 

iii) (U n, R) ψ1→ψ2 if and only if (U n, R) ψ1 implies 
(U n, R) ψ2.       ▌ 

This definition shows that the semantics of the 
operators ■ and ◆ is similar to the interpretation of the 
modal operators □ and ◇ which express “necessity” and 
“possibility” respectively in modal logic. Thus, we might 
think that ■  expresses “rough necessity” and ◆ 
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expresses “rough possibility”. 
From 1) and 2) of definition 6, we know that (U n, 

R) φ is closely connected with (U n, R1) ψ. When ψ 
does not involve the operators ■ and ◆(of course, ψ 
may be an atomic formula), (U n, R1) ψ represents that ψ 
is roughly true in (U n, R1)(see definition 5). Thus, (U n, 
R) φ has close links with rough truth. Also, from 3) of 
definition 6, we can see that (U n, R) φ is defined by (U n, 
R) ψ1 or (U n, R) ψ2. Since (U n, R) ψ1 and (U n, 
R) ψ2 are eventually returned to consider the items 1) or 
2) of definition 6, (U n, R) φ also correlates with rough 
truth. Thus, (Un, R) φ is used to denote rough truth of φ 
in (U n, R) (see definition 6). 

The above discussion is mainly aimed at the definition 
of rough truth for the formulas on U. From definitions 5 
and 6, we know that rough truth of formula φ falls into 
two cases: 

a) The operators ■ and ◆ do not appear in φ. In this 
case, rough truth of φ is defined in an approximation 
space (U

n, R) which is analogous to a semantic model in 
classical predicate logic [7]. In fact, a semantic mode in 
classical predicate logic is generally denoted by (D, τ), 
where D is a non-empty set, τ is a function, and every 
classical formula can be interpreted as a statement which 
is true or false in (D, τ). The approximation space M= 

(U n, R) and the model (D, τ) play a similar role. 
b) The operators ■ or ◆ occur in φ. In this case, we 

take (Pn, ≤) as a structure to define rough truth of φ, 
which follows the way in modal logic. In fact, The 
formulas □ψ and ◇ψ in modal logic is interpreted in the 
structure (W, ≤, V) called a Kripke model [1][2], where 
W is a set of states, ≤ is a binary relation on W, and V is 
a function. □ψ is true at state w(∈W) if for every w’∈W, 
when w ≤w’, ψ is true at state w’. ◇ψ is true at state w if 
there exists w’∈W and w ≤w’, such that ψ is true at state 
w’. The definition about (U n, R) ■ψ or (U n, R)  ◆ψ 
just imitate the definition in model logic. Every 
approximation space (U n, R) in (Pn, ≤) corresponds to a 
state in the Kripke model (W, ≤, V). Thus the structure 
(Pn, ≤) can be regarded as a particular Kripke model. 
The particularity is obvious because Pn consists of 
approximation spaces. 

From definitions 5 and 6, we know that the logical 
values of the formula φ are relevant to the semantic set |φ|, 
which is different from the definition of logical values in 
modal logic, or in classical logic. The semantic set will 
lead to the concept of granules. 

III.  GRANULES AND GRANULAR COMPUTING 

In recent years, many scholars focus their attention on 
the study of granular computing which is an active 
research topic in information science. From the informal 
point of view, scholars generally regard granular 
computing as various combinations or computations of 
granules, such as the union of granules, the intersection of 
granules, upper approximation about granules, etc. Thus, 
granular computing is based on granules. However, what 

is a granule? As an informal explanation, a granule is 
viewed as a part of a whole, or is a clump of elements 
drawn together from the whole. In order to make data 
processing, we often need to divide a whole into parts 
which can be viewed as clumps of elements drawn from 
the whole. Generally, the method of getting a clump is 
based on a property that the elements of the clump satisfy. 
Since a formula not involving the operators ■ and ◆ 
actually describes a property, we will use the formulas to 
produce granules. Let φ be an n-place formula, and the 
operators ■ and ◆ do not occur in φ. By definition 4 we 
can get the semantic set |φ|, and |φ|⊆U n (n≥1). If U n is 
taken as a whole, then |φ| is a part of the whole U n, which 
gives rise to a definition about granules. 

Definition 7. Let φ be an n-place formula on U, and φ 
do not involve the operators ■ and ◆. The semantic set 
|φ| is called a granule corresponding to φ.      ▌ 

It follows from definition 4 that |φ| is a subset of U n, i.e. 
|φ|⊆U n. Moreover, if R is an equivalence relation on U n, 
we have R*(|φ|)⊆U n. The discussion in [8] shows that 
there exist a formulas φ1 on U, such that |φ1| = R*(|φ|) . So, 
R-upper approximation R*(|φ|)  is a granule corresponding 
to φ1. Thus, the logical values of φ, given in definition 5, 
are determined by different cases of granules. 

As mentioned above, the informal understanding about 
granular computing can be regarded as combinations or 
computations of granules. In [8], the authors have made a 
definition of granular computing, which shows that 
granular computing is various correspondences from G n 
to G, where G is a set of granules, and n≥1. Specifically, 
the correspondences from |φ| to ～|φ| (=|﹁φ|), from |φ| 
and |ψ| to |φ|∩ |ψ|(=|φ∧ψ|), from |φ| and |ψ| to |φ|∪
|ψ|(=|φ∨ψ|), from |φ| and |ψ| to |﹁φ|∪|ψ| (=|φ→ψ|), and 
from |φ| to R*(|φ|)  are granular computing. We are not 
going to define what is granular computing in this paper. 
For the detailed discussion, we refer the reader to ref. [8]. 
As long as we remember that these correspondences are 
granular computing, it is enough for us to make the 
following discussion. 

IV.   ROUGH TRUTH OF ROUGH AXIOMS 

We will introduce rough axioms in this section, and 
analyze whether the rough axioms are roughly true in 
each (U n, R) ∈Pn. The structure (Pn, ≤) will be taken as 
a model in following investigation. Firstly, we discuss the 
properties of the structure (Pn, ≤). 

A.  Properties of (Pn ,  ≤) 
Let U be a universal set, and (Pn, ≤) be the structure 

on U n. Since U n varies with the change of U or n, U and 
n have close links with Pn, as well as with the structure 
(Pn, ≤). 

In order to make research, it is necessary to discuss the 
properties of (Pn, ≤). Some properties are summarized as 
the following propositions.  

Proposition 1. Let φ be an n-place formula on U, and 
φ do not involve the operators ■ and ◆. Let (Pn, ≤) be 
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the structure on U n. For (U n, R1), (U
n, R2)∈Pn, if (U n, R1)

≤(U n, R2), then (U n, R1) φ implies (U n, R2) φ. 
Proof For simplicity, an element <t1,…, tn>∈U n is 

denoted by x or b, i.e. x=<t1,…, tn> or b=<t1,…, tn>. 
 Suppose that (U n, R1) φ. By (U n, R1)≤(U n, R2), we 

have R1⊆R2. Let U n/R1={S1,…, Sr} and U n/R2={T1,…, Ts} 
be the partitions of U n relative to R1 and R2 respectively. 
Of course, U n=S1∪…∪Sr =T1∪…∪Ts. For any Ti∈

U n/R2, there is an element b∈U n, such that Ti ={ x | x∈
U n and <b, x>∈R2}. Let Sj = { x | x∈U n and <b, x>∈
R1}, then Sj∈U n/R1. From R1⊆R2 we know Sj ⊆Ti. It 
follows from (U n, R1) φ that R1*(|φ|)=U n which means 
Sj∩|φ|≠∅. By Sj⊆Ti, we get Ti∩|φ|≠∅. Thus for any 
Ti ∈ U n/R2, Ti ∩ |φ| ≠ ∅ from which we derive 
R2*(|φ|)=U n. Hence, (U n, R2) φ.       ▌ 

We know that for a partially ordered set (L, ≦), if any 
two elements a, b(∈L) have a least upper bound a∨b(∈
L), and a greatest lower bound a∧b(∈L) about the 
partially ordered relation ≦ , then (L, ≦ ) is called a 
lattice [9]. Consider the partially ordered set (Rn, ⊆), 
where Rn ={R | R is an equivalence relation on U n}. We 
have the following proposition. 

Proposition 2.  (Rn, ⊆) is a lattice. 
Proof For R1, R2∈Rn, R1∩R2 is also an equivalence 

relation on Un. Thus R1∩R2∈Rn, and R1∩R2 is the 
greatest lower bound of R1 and R2 about the relation ⊆. 
On the other hand, suppose that t(R1∪R2) is the transitive 
closure of R1∪R2, then t(R1∪R2) is the least equivalence 
relation containing R1 and R2(see P155 in [9]). Hence t(R1

∪R2)∈Rn, and t(R1∪R2) is the least upper bound of R1 
and R2 about ⊆. Thus, (Rn, ⊆) is a lattice.   ▌ 

Because Pn is closely connected with Rn, and for (U n, 
R1), (U

n, R2)∈Pn, (U n, R1) ≤(U n, R2) if and only if R1⊆ 

R2. By proposition 2, we get the following result: 
Proposition 3.  (Pn, ≤) is a lattice.       ▌ 
Thus, for any elements (U n, R1), (U

n, R2)∈Pn, there is 
an element (Un, R3)∈Pn, such that (U n, R3) is the least 
upper bound of (U n, R1) and (U n, R2); meanwhile, there is 
an element (U n, R4)∈Pn, and (U n, R4) is the greatest 
lower bound of (U n, R1) and (U n, R2).  

The conclusions in propositions 1 and 3 will be used in 
the following proofs. 

B.  Rough Axioms, Rough Rules and Rough Validity 
In modal logic, the formal system S5 consists of the 

following axioms which involve the modal operators □ 
or ◇: 

① □φ → φ, 
② □(φ → ψ) →(□φ → □ψ), 
③ □φ → □□φ, 
④ ◇φ → □◇φ. 
Generally, the formal system consisting of the axioms 

① and ② is called the system T, and the formal system 
consisting of the axioms ① , ②  and ③  is called the 
system S4. Based on the axioms, the formal deduction in 

T, S4 or S5 can be implemented by the following rules of 
deduction: 
⑤ φ → ψ, φ ψ (i.e. ψ is a direct consequence of φ 

→ψ and φ). 
⑥ φ □φ (i.e. □φ is a direct consequence of φ 

when φ is an axiom). 
 Axioms ①－④ are formulas of modal logic. When 

they are interpreted in a Kripke model, their logical 
values take truth or falsity. Hence, modal logic is two-
valued logic. It is the same as classical logic. Also, for 
rules ⑤ and ⑥, we always concern ourselves with the 
property that the rules keep truth. For example, for rule 
⑤ φ → ψ, φ ψ, we are concerned about what truth 
value, truth or falsity, taken by φ → ψ and φ can keep ψ 
being true. And for rule ⑥ φ □φ, we generally pay 
our attention to the condition of φ which guarantees □φ 
is true. These also show that modal logic only correlates 
with truth and falsity which are taken as logical values of 
formulas. In order to make different research, our 
investigation on ①－⑥ will focus on rough truth. To this 
end, we replace the operators □ and ◇ in ①－⑥ by ■ 
and ◆ respectively, and get the following expressions: 
    ⑴ ■φ → φ, 

⑵ ■(φ → ψ) → (■φ → ■ψ), 
⑶ ■φ → ■■φ, 
⑷ ◆φ → ■◆φ, 
⑸  φ → ψ, φ ψ, 
⑹  φ ■φ. 
We call ⑴－  ⑷ rough axioms,  and  ⑸ ⑹ rough rules. 

It is clear that rough axioms ⑴－  ⑷ are formulas of 
definition 3. 

Let us consider the formula φ →  ψ in which the 
connective → occurs. In classical logic, when truth of φ 
implies truth of ψ, the formula φ → ψ is said to be valid. 
Proceeding in a manner similar to this concept, we 
introduce rough validity. 

Definition 8.  Let (Pn, ≤) be the structure on U n, and 
φ → ψ be an n-place formula on U. The formula φ → ψ is 
said to be roughly valid in (Pn, ≤), if for every (U n, R)∈
Pn, rough truth of φ in (U n, R) implies rough truth of ψ in 
(U n, R), i.e. (Un, R) φ implies  (U n, R) ψ.       ▌ 

Rough validity of φ → ψ in (Pn, ≤) means that for 
every (U n, R)∈Pn, the formula φ → ψ is roughly true in 
(U n, R), i.e. (U n, R) φ → ψ(see definition 6), where the 
operators ■ or ◆ appear in φ or in ψ. So, research on 
rough validity of φ → ψ is to investigate whether rough 
truth of the antecedent φ can imply rough truth of the 
consequent ψ, or to investigate whether φ → ψ is roughly 
true in each (Un, R)∈Pn 

C.  Rough Validity of Rough Axioms 
We now discuss rough validity of rough axioms ⑴－

⑷. The above analysis indicates that for a rough axiom, 
such as ⑷ ◆φ → ■◆φ, rough validity of it in (Pn, ≤) 
is to decide whether rough truth of the antecedent ◆φ 
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can imply rough truth of the consequent ■◆φ in each 
(U n, R)∈Pn, i.e. whether (Un, R) ◆φ can imply (U n, 
R) ■◆ φ for every (U n, R) ∈ Pn. Now we first 
investigate this rough axiom. 

Theorem 1.  Let φ be an n-place formula on U, and φ 
do not involve the operators ■ and ◆. If (Pn, ≤) is the 
structure on Un, then the rough axiom ⑷ ◆φ → ■◆φ is 
roughly valid in (Pn, ≤). 

Proof For (Un, R)∈Pn, suppose that (U n, R) ◆φ. 
Let (U n, R1)∈Pn, and (U n, R) ≤(U n, R1). Since (U n, R) 

◆φ, by definition 6, there exists a (U n, R2)∈Pn, and 
(U n, R) ≤(U n, R2), such that (U n, R2) φ. Consider (U n, 
R1) and (U n, R2). By proposition 3, there must be a (U n, 
R3)∈Pn, such that (U n, R3) is the least upper bound of 
(U n, R1) and (U n, R2). Therefore (U n, R1) ≤(U n, R3) and 
(U n, R2) ≤ (U n, R3). Since (U n, R2) ≤ (U n, R3), by 
proposition 1, (U n, R3) φ. Since (U n, R1) ≤(U n, R3), we 
derive (U n, R1) ◆φ from definition 6. It has been 
proved that for any (U n, R1)∈Pn, if (U n, R) ≤(U n, R1), 
then (U n, R1) ◆φ. By definition 6 again, we have (U n, 
R) ■◆φ. Thus, rough axiom ⑷ ◆φ →  ■◆φ is 
roughly valid in (Pn, ≤).        ▌ 

Because (U n, Ri) φ (i=2, 3) is defined by Ri*(|φ|)= Un, 
the granules |φ|, R2*(|φ|) and R3*(|φ|) are linked to the 
proof of this theorem. It has been mentioned in section 3 
that the correspondence from |φ| to R2*(|φ|), or to R3*(|φ|) 
is granular computing. Thus, the process of judging rough 
validity of rough axiom ⑷ ◆φ → ■◆φ is relevant to 
granular computing. By this way, we can investigate 
other rough axioms. 

Let us examine rough axiom ⑵ ■(φ → ψ) → (■φ → 
■ψ). Its equivalent form can be expressed as ⑵ (■(φ → 
ψ)∧■φ) → ■ψ. But we must point out that this rough 
axiom is not roughly valid, i.e. rough truth of ■(φ → ψ)
∧■φ may fail to imply rough truth of ■ψ in an 
approximate space (U n, R), which can be illustrated by 
the following example. 

Example. Let U={u1, u2, u3}, and let R=U×U. It is 
clear that R is an equivalence relation on U, thus (U, R) is 
an approximation space which belongs to Pn, where n =1. 
Also, we can get U/R={U}, the partition of U relative to 
R. Let H={<u1, u1>} and Q={<u2, u3>}. H and Q are 
binary-place relations on U. Consider the formulas φ= 

H(x1, u1) and ψ=Q(x1, u1). Because x1 is a variable and u1 
is a constant, φ and ψ are unary-place formulas on U. 
Since |φ|= |H(x1, u1)|={u1}, |ψ|= |Q(x1, u1)|=∅ and |﹁φ| 

=～|φ|  =U - |φ|  =U -{u1} ={u2, u3}, we have R*(|φ|)=U, 
R*(|﹁φ|)=U and R*(|ψ|)=∅. Note that (U, R) is the 
greatest element of the lattice (Pn, ≤), where n=1. Thus 
for (U n, R1)∈Pn, if (U, R) ≤(U n, R1), then (U n, R1)=(U, 
R). In this case, making use of the property: R*(|φ → ψ| )=  
R*(|﹁ φ|∪ |ψ|)=R*(|﹁ φ|∪∅)=R*(|﹁ φ|)=U, and by 
R*(|φ|)=U, we have (U n, R) ■(φ → ψ) and (U n, R)
■φ. So,  (U n, R) ■(φ → ψ)∧■φ. Whereas, it follows 
from R*(|ψ|)=∅ that (U n, R) ■ψ fails to hold. Thus the 

rough axiom ⑵ (■(φ → ψ)∧■φ) → ■ψ is not roughly 
valid in (Pn, ≤), where n=1.   ▌ 

However, if we slightly change the form of rough 
axiom  ⑵ (■(φ → ψ)∧■φ) → ■ψ, rough validity will 
hold. The following paragraph explains how we change 
the rough axiom: 

Suppose that φ is a formula that does not involve ■ 
and ◆. For (U n, R)∈Pn, if φ is true in (U n, R), i.e. |φ|= 
U n(see definition 5), then the granule |φ| does not depend 
on the equivalence relation R, it follows that for any (U n, 
R1)∈Pn, φ is true in (U n, R1). Thus, we introduce the 
notation □φ which can be regarded as a special formula, 
although the formulas in definition 3 are not relevant to 
the symbol □. Also, we use (U n, R) □φ to express Un 

φ or |φ|= U n
 (see definition 5), which represents that φ 

is independent of R, and for each (U n, R1)∈Pn, φ is true 
in (U n, R1), i.e. U n φ or |φ|= U n. Now, consider the 
formula ⑵’ (■(φ → ψ)∧□φ) → ■ψ. It is clear that ⑵’ 
is a new version of rough axiom ⑵ (■(φ → ψ)∧■φ) → 
■ψ. We also refer to ⑵’ (■(φ → ψ)∧□φ) → ■ψ as a 
rough axiom. The next theorem shows that ⑵’ (■(φ → ψ)
∧□φ) → ■ψ is roughly valid in (Pn, ≤). 

Theorem 2. Let φ and ψ be n-place formulas on U, and 
do not involve the operators ■ and ◆. If (Pn, ≤) is the 
structure on Un, then rough axiom  ⑵’ (■(φ → ψ)∧□φ) 
→ ■ψ is roughly valid in (Pn, ≤). 

Proof For (U n, R)∈Pn, suppose that (U n, R) ■(φ → 

ψ)∧□φ. By definition 6, (U n, R) ■(φ → ψ) and (U n, 
R) □φ. From (U n, R) ■(φ → ψ), we get (Un, R1) (φ 

→ ψ) for (U n, R1)∈Pn and (U n, R) ≤(U n, R1). Since φ 
and ψ do not involve the operators ■ and ◆, It follows 
from definition 5 that R1*(|φ → ψ|)=U n. Meanwhile, by 
(U n, R) □φ, we have |φ|=U n. Hence, R1*(|φ →  ψ|)= 

R1*(|﹁φ|∪ |ψ|)=R1*((～ |φ|)∪ |ψ|)=R1*((～U n)∪ |ψ|)=  

R1*(∅ ∪ |ψ|)=R1*(|ψ|). So, R1*(|ψ|)=U n, that is (U n, 
R1) ψ. Hence, It has been proved that for any (U n, R1)∈
Pn, if (U n, R) ≤(U n, R1), then (U n, R1) ψ. By definition 
6, (U n, R) ■ψ. Thus, rough axiom  ⑵’ (■(φ → ψ)∧□

φ) → ■ψ is roughly valid in (Pn, ≤).      ▌ 
Since the relation ≤ is reflective and transitive on Pn, 

we are able to prove rough axioms  and ⑴ ⑶ are roughly 
valid in (Pn, ≤). 

Theorem 3.  Let φ be an n-place formula on U, and φ 
do not involve the operators ■ and ◆. If (Pn, ≤) is the 
structure on Un, then: 

1) Rough axiom  ⑴ ■φ → φ is roughly valid in (Pn, 
≤). 

2) Rough axiom  ⑶ ■φ → ■■φ is roughly valid in 
(Pn, ≤). 

Proof 1) For (U n, R)∈Pn, suppose that (U n, R) ■φ. 
By definition 6, we have (Un, R1) φ for any (U n, R1)∈
Pn and (U n, R) ≤ (U n, R1). Since the relation ≤  is 
reflective, we have (U n, R) ≤(U n, R). Thus (U n, R) φ. 
Therefore, rough axiom  ⑴ ■φ → φ is roughly valid in 
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(Pn, ≤). 
2) For (U n, R)∈Pn, suppose that (U n, R) ■φ. Let 

(U n, R1)∈Pn and (U n, R) ≤(U n, R1). For any (U n, R2)∈
Pn and (U n, R1) ≤(U n, R2), since ≤ is transitive, we have 
(U n, R) ≤(U n, R2). It follows from (U n, R) ■φ that (Un, 
R2) φ. This indicates that for any (U n, R2)∈Pn, when 
(U n, R1) ≤(Un, R2), (U n, R2) φ. By definition 6, (U n, 
R1) ■φ. Thus, we have proved the result that for any 
(U n, R1)∈Pn, when (U n, R) ≤(U n, R1), (U n, R1) ■φ. 
By use of definition 6 again, (U n, R) ■■φ. Hence, 
rough axiom  ⑶ ■φ → ■■φ is roughly valid in (Pn, 
≤).   ▌ 

Note that the condition “φ does not involve the 
operators ■ and ◆” can be removed from this theorem. 

There are other formal systems in modal logic which 
include the following axioms: 
⑦ □φ → ◇φ, 
⑧ φ → □◇φ. 
Corresponding to  and ⑦ ⑧, we get the following 

rough axioms  and ⑺ ⑺. 
⑺ ■φ → ◆φ, 
⑺ φ → ■◆φ. 
It is easy to prove that ⑺ ■φ → ◆φ and ⑺ φ → ■◆

φ are roughly valid in (Pn, ≤ ). In rough axiom ⑺, 
formula φ should not involve the operators ■ and ◆. 

From definition 5, we know that rough truth of φ is 
linked to the R-upper approximation R*(|φ|) that is a 
granule, i.e. there is a formula ψ, such that |ψ|=R*(|φ|)[8]. 
At the same time, since rough validity of the rough 
axioms has close links with rough truth (see definition 8), 
rough validity is relevant to granules. Also notice that the 
correspondence from |φ| to R*(|φ|) is granular computing 
[8]. The processes of determining whether rough axioms 

, ⑴ ⑵’, ⑶ and  ⑷ are roughly valid in (Pn, ≤ ) are 
supported by granular computing which can be viewed as 
an approach to data processing.  

D.  The Condition of Keeping Rough Truth 
The role of a rule of deduction is to get a new formula 

from other formulas. For instance, by rough rule ⑸ φ → 
ψ, φ ψ, the formula ψ can be derived from the 
formulas φ → ψ and φ. Also, rough rule ⑹ φ ■φ is a 
process of deduction from φ to ■φ. For rough rule ⑸ φ 
→ ψ, φ ψ, what condition that the formulas φ → ψ 
and φ satisfy can make ψ roughly true. And for rough rule 
⑹ φ ■φ, what condition of φ can guarantee ■φ is 
roughly true. The following theorems will give the 
answers to these questions. 

Theorem 4. Let φ and ψ be n-place formulas on U, and 
the operators ■ or ◆ occur in φ or in ψ. Let (Pn, ≤) be 
the structure on U n. For (U n, R)∈Pn, if φ → ψ and φ are 
roughly true in (U n, R), then ψ is also roughly true in (U n, 
R). 

Proof By definition 6, if φ → ψ is roughly true in (U n, 
R) (i.e. (U n, R) φ → ψ), then rough truth of φ (i.e. (U n, 
R) φ) implies rough truth of ψ (i.e. (U n, R) ψ). Now, 

suppose that φ → ψ and φ are roughly true in (U n, R). 
Then it follows from definition 6 that ψ is roughly true in 
(U n, R).     ▌ 

So, as long as φ → ψ and φ are roughly true in (U n, R), 
rough rule ⑸ φ →  ψ, φ ψ will keep rough truth, 
where the operators ■ or ◆ occur in φ or in ψ. 

When the operators ■ or ◆ occur in φ or in ψ, and φ 
→ ψ is roughly valid in (Pn, ≤), by definition 8 we know 
that if φ is roughly true, then ψ is also roughly true in 
each (U n, R)∈Pn, or φ → ψ is  roughly true in (U n, R) 

(see definition 6). Thus, when φ → ψ is roughly valid in 
(Pn, ≤), rough truth of φ can guarantee rough truth of ψ 
in each (U n, R)∈Pn. Since the conclusions in theorems 1
－3 show that rough axioms , ⑴ ⑵’,  and  ⑶ ⑷ are 
roughly valid in (Pn, ≤), for each of the rough axioms, 
such as ⑶ ■φ →■■φ, rough truth of the antecedent ■
φ can imply rough truth of the consequent ■■φ in each 
(U n, R)∈Pn. Thus, if a rough axiom, such as ⑶ ■φ →■

■φ,  is taken as the formula φ → ψ in rough rule ⑸ φ → 
ψ, φ ψ, then as long as the antecedent ■φ is roughly 
true in (U n, R), the consequent ■■φ deduced by this 
rule is certainly roughly true in (U n, R). 

Theorem 5. Let φ be an n-place formula on U, and φ 
do not involve the operators ■ and ◆. Let (Pn, ≤) be 
the structure on U n. For each (U n, R)∈Pn, if (U n, R) φ, 
then (U n, R) ■φ. 

Proof Suppose that (U n, R) φ. Since the operators ■ 
and ◆ do not occur in the formula φ, it follows from 
proposition 1 that we have (U n, R1) φ for any (U n, R1)
∈Pn and (U n, R) ≤(U n, R1). Thus, as long as (U n, R1)∈
Pn and (U n, R) ≤(U n, R1), (U n, R1) φ is true. From 
definition 6, we conclude (U n, R) ■φ.        ▌ 

This theorem illustrates that for (U n, R)∈Pn, if φ is 
roughly true in (U n, R), then ■φ is certainly roughly true 
in (U n, R), where φ does not involve the operators ■ and 
◆. In this case, as long as φ is roughly true, rough rule ⑹ 
φ ■φ will keep rough truth.   

In theorems 1－3 the operators ■ and ◆ do not occur 
in the formulas φ and ψ, and theorem 5 requires the 
formula φ not to involve ■ and ◆. If these conditions 
are removed, and ■ or ◆ may occur in φ or in ψ, could 
we still get these theorems? This will be a problem we are 
going to investigate in the future. 

Making use of the formulas on a universal set U, and 
based on (Pn, ≤), the structure on U n, we have made 
researches into rough validity of the rough axioms which 
have the same forms as the axioms in modal logic. Rough 
validity of a rough axiom is to investigate whether rough 
truth of its antecedent can imply rough truth of its 
consequent in each (U n, R)∈Pn. So, rough validity has 
close links with rough truth. The connection between 
rough validity and the rough axioms is the major study in 
this paper, which reflects the idea of integrating rough 
logic with modal logic. Also, the method of combining 
logic with granular computing plays an important role in 
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our proofs. Although our research mainly focuses on 
theoretical aspect, the study has laid a foundation for 
applications, and we will take up the research in the 
future. 

V.    CONCLUSION 

The study about rough validity of the rough axioms is 
the important work in this paper. Because rough truth 
originates in rough logic, and the rough axioms have the 
same forms as the axioms of modal logic, our study 
embodies the idea of integrating rough logic with modal 
logic. Meanwhile, the study of combining granular 
computing with mathematical logic forms an approach to 
data processing.  

From the definition we know that rough validity is 
closely related to rough truth which is a logical value. In 
classical logic, the deduction that depends on logical 
values is referred to as semantic deduction. Observe the 
discussion in this paper. The analysis on rough validity of 
rough axioms ⑴－⑷ has close links with the deduction 
produced by rough rules ⑸ or ⑹. Because rough validity 
is related to rough truth that is a logical value, the process 
of deciding whether the rough axioms are roughly valid is 
therefore semantic deduction. We might refer to it as 
roughly semantic deduction.  

Now, consider rough axioms ⑴, ⑵’, ⑶, ⑷, as well as 
rough rules ⑸ and ⑹ which form a formal system. Based 
on the system, it is possible to conduct formal deduction. 
The study in this paper shows that corresponding to the 
formal deduction, the roughly semantic deduction keeps 
rough truth. In this case, the formal system is said to have 
the property of soundness. But in order to conduct formal 
deduction in the formal system, and make the soundness 
true, it is necessary to analyze rough validity of every 
axiom in classical logic, because every formal system in 
modal logic is an extension of a formal system in 
classical logic. However the above analysis on rough 
validity of the rough axioms has laid a foundation for 
such efforts. Further research is required. Importantly, in 
[10], [11] and [12] the authors have introduced a method 
correlating with roughly semantic deduction which may 
be used in further investigation. Lastly, we point out that 
granular computing plays a key role in the proofs of the 
theorems. 

ACKNOWLEDGMENT 

This work was supported by the National Natural 
Science Foundation of China under Grant No. U1204606, 
and by the Natural Science Foundation of Henan 
Province of China under Grant No. 082300410340. 

REFERENCES 

[1] Chagrov, ZakHaryas Chev, Modal Logic, Cambridge, MA, 
USA: MIT Press, 1998. 

[2] S. Kripke. “Semantic analysis of modal logic”, Zeitxchrift 
für Mathematische Logik und Grundlagen der Mathematik, 
No.9, 1963, pp.67-96. 

[3] Z. Pawlak, “Rough logic”, Bulletin of Polish Academy of 
Sciences Technical Sciences, vol.35, No.5-6, 1987, 
pp.253-258. 

[4] Y. Y. Yao, “Constructive and algebraic methods of the 
theory of rough sets”, Information Sciences, No.109, 1998, 
pp.21-47. 

[5] A. Nakamura, M. J. Gao, “A rough logic based on 
incomplete information and its application”, International 
Journal of Approximate Reasoning, vol.15, No.4, 1996, 
pp.367-378. 

[6] Z. Pawlak, Rough Set─Theoretical Aspects of Reasoning 
about Data, Dordrecht, Holland: Kluwer Academic 
Publishers, 1992. 

[7] A. G. Hamilton, Logic for Mathematicians, Cambridge, 
England: Cambridge University Press, 1988. 

[8] Yan Lin, Liu Qing, “A logical method of formalization for 
granular computing”, The Proceedings of 2007 IEEE 
International Conference on Granular Computing, Silicon 
Valley, California, USA, 2007, pp.22-27 

[9] B. Kolman, R. C. Busby, S. C. Ross, Discrete 
Mathematical Structures(fourth edition), New Jersey, USA: 
Prentice-Hall, 2001. 

[10] Yan Lin, Yan Shuo, “Granular reasoning and decision 
system’s decomposition”, Journal of Software, vol.7, No.3, 
2012, pp.683-690. 

[11] Yan Lin, Sui-hua Wang, Xue-Dong Zhang, “Semantic 
reasoning study for rough logic about n-ary formulas”, The 
Proceedings of 2006 IEEE International Conference on 
Granular Computing, Atlanta, Georgia, USA, 2006, 
pp.381-384. 

[12] Yan Lin, Liu Qing, “Researches on granular reasoning 
based on granular space”, The Proceedings of 2008 IEEE 
International Conference on Granular Computing, 
Hangzhou, Zhejiang, China, 2008, pp.706-711. 

 
Lin Yan, Henan Province, China, born 
in 1957. Computer Science M. Sc., 
graduated from Institute of Software, 
Chinese Academy of Science. His 
research interests include mathematical 
logic, non-classical logic, rough set 
theory, granular computing and rough 
logic. 

He is a professor of College of 
Computer and Information Engineering, Henan Normal 
University. 

 
Shuo Yan, Henan Province, China, 
born in 1987. Computer Science M. Sc., 
graduated from Beijing Jiaotong 
University. Now he is a Ph. D. 
candidate of Beijing Jiaotong 
University. His research interests 
include mathematical logic, decision 
logic and computer algebra. 

 
 

JOURNAL OF SOFTWARE, VOL. 9, NO. 2, FEBRUARY 2014 273

© 2014 ACADEMY PUBLISHER


