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Abstract—Availability of business-critical application 
servers is an issue of paramount importance that has 
received special attention from the industry and academia in 
the last decade. This paper presents two stochastic reward 
net based availability models for a single-server virtualized 
system. The similarity in both models is that software 
rejuvenation is applied at not only virtual machine monitor 
(VMM) level using a time-base policy but also at virtual 
machines (VMs) using a prediction-based policy. The key 
difference is that the passive software replication and the 
active software replication are respectively adopted at the 
VM level of both models. We compare these models in terms 
of steady-state system availability by numerical analysis. 
Results show steady-state system availability with the active 
replication style gets a bit better than that of the passive one. 
Further, we study the impact of two critical parameters, the 
VMM rejuvenation interval and the VM aging detection 
probability, on downtime and on the number of transaction 
lost by sensitivity analysis. 
 
Index Terms—Analytic model, virtualization, availability, 
stochastic reward net, software rejuvenation 
 

I.  INTRODUCTION 

Software aging is the phenomenon of progressive 
degradation of running software image which might lead 
to performance reduction, hang ups or even crashes [1]. 
The primary causes are exhaustion of systems resources, 
like memory-leaks, unreleased locks, non-terminated 
threads, shared-memory pool latching, storage 
fragmentation, or data corruption. This undesirable 
phenomenon has been observed in enterprise clusters 
[2,3], telecommunications systems [4,5], web servers [6] 
as well as other software. It is most likely to manifest 
itself in long-running or always-on applications such as 
web and applications servers, components of web 
services, and complex enterprise systems. 

The primary method to fight aging is software 
rejuvenation proposed by Huang et al. [1]. The main idea 
behind software rejuvenation is to gracefully terminate an 
application and periodically or adaptively restart it at a 
clean internal state. Garbage collection, flushing 
operating system kernel tables, reinitializing internal data 
structures are some examples of what cleaning the 
internal state of a software might involve. An extreme, 

but well known example of rejuvenation is a hardware 
reboot. Rejuvenation has been implemented in various 
types of real life systems – telecommunication systems 
[4,5], transaction processing systems [7], web servers [6] 
and cluster servers [2, 3]. In this paper, we focus on the 
virtualized system, which is becoming more and more 
important as the emergence of cloud computing. 

Virtualization technology is the key element in cloud 
computing[18,19], which is used for software 
infrastructure of cloud computing services to provide 
computing resources over the Internet. A virtual machine 
monitor (VMM) or hypervisor is a thin software layer 
that virtualizes machine resources to allow multiple 
virtual machines (VMs) to be multiplexed on a single 
physical machine and ensures VMs functionally isolated 
from one another. The use of virtualization to consolidate 
servers for enterprise applications is currently used 
widely as a solution to improve system availability 
[8-10,17]. However, both VMM and VMs in a virtualized 
system are subject to software failures during their 
continuous execution due to residual aging bugs. 
Especially for the VMM, it plays a critical role of a 
single-server virtualized system and often becomes the 
single point of failure. Thus, there is an urgent need to 
apply software rejuvenation to such systems to further 
improve system availability. 

The main contribution of this paper is to propose new 
availability models for a single-server virtualized system 
and to discover novel results of comparing existing 
models. For a single-server virtualized system hosting 
two VMs in a passive or active replication mode, 
stochastic reward net (SRN) models of the virtualized 
system are developed by applying a combinatory 
rejuvenation technique that uses a time-based policy for a 
VMM and a prediction-based policy for VMs, which 
capture aging states of VMs and the VMM as well as 
their failures caused by software aging. And then we 
demonstrate that the availability of the virtualized system 
with an active replication mode is higher than the one 
with a passive replication mode, and analyze the 
combined effect of the rejuvenation interval (defined as 
the time between successive rejuvenations) in the 
time-based policy and the detection probability in the 
prediction-based policy on the steady state expected 
availability, downtime and transaction lost by numerical 
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solutions. Further, comparing with the existing models 
for a single-server virtualized system, we discover some 
novel results. 

The rest of paper is organized as follows. Section 2 
presents some related work. Section 3 focuses on some 
motivations for this work. Section 4 presents a considered 
architecture for a single-server virtualized system with 
virtualization and software rejuvenation and provides 
availability models with different rejuvenation policies 
using SRN. To validate the technique, the analysis results 
are presented in Section 5. Finally Section 6 concludes 
the paper.  

II.  RELATED WORK 

There are too many works to improve system 
availability in the literature of software rejuvenation, 
which aim at determining an appropriate rejuvenation 
technique and rejuvenation schedules to minimize system 
downtime or maximize system availability. These works 
can be approximately divided into two categories: 
periodical rejuvenation based on time or work performed, 
and adaptive or proactive rejuvenation where the time to 
resource depletion or performance degradation is 
estimated. Countless studies have shown that the latter 
approach is more efficient, resulting in higher availability 
and lower cost. Our work also falls into the latter 
approach. 

Among the methods to apply proactive software 
rejuvenation two are dominant: time-based approach 
[1-5,7], and the prediction-based (or measurement-based) 
approach [6,11]. The first method attempts to obtain an 
analytic model of a system taking into consideration 
various system parameters such as workload, MTTR and 
also distributions of failure. On this basis, an optimized 
rejuvenation schedule is obtained. The tools used here 
include CTMC models [1], MRGP models [3], SRN 
[2,4,5] and others [7,20,21]. In the prediction-based 
approach, the behavior of running software is monitored 
and the rejuvenation process is only triggered upon 
detection of any anomalies in the behavior of software. In 
our work, we integrate the analytic-based approach with 
the prediction-based approach in a model. 

As the emergence of cloud computing, there are a few 
works focusing on software rejuvenation in a virtualized 
system. Combining virtualization and rejuvenation to 
achieve high availability is used by Machida et al.[8], 
Thein et al.[9,13] and Kourai et al.[10,14,15]. These   
works benefit from consolidation property of 
system-level virtualization. 

Thein et al. [13] present a continuous-time Markov 
chain based analytical model to capture the behavior of 
the virtualized clustering system with software 
rejuvenation. They analyze system availability with the 
time-based rejuvenation policy under different cluster 
configurations, 2 VMs hosted on a single physical server 
and 2 VMs per a physical server in dual physical servers. 
Analysis results show that it is possible to benefit from 
increased availability by integrating virtualization, 
clustering and software rejuvenation. Based on the 
previous work [15], Thein et al. [9] further present a 

virtual machine based software rejuvenation framework 
named VMSR to offer high availability for application 
server systems. They again use a continuous-time 
Markov chain to model a single physical server hosting 
multiple virtual machines in the scheme of hot standby 
with the VMSR framework. Both works [9,13] only use 
the time-based rejuvenation policy for the VM failure 
without considering the VMM failure and its rejuvenation 
issues. However, VMM as the single point of failure of a 
consolidated system plays a critical role in improving 
system availability. Hence we propose a combinatory 
rejuvenation technique here for a single server virtualized 
systems considering the failures and rejuvenation of both 
VMs and the VMM.  

Due to the critical role of VMM, a fast software 
rejuvenation technique for VMM named Warm-VM 
reboot was presented by Kourai et al. [14,15]. Compared 
with Cold-VM reboot that stops all the hosted VMs at the 
VMM rejuvenation, Warm-VM reboot improves the 
availability of the application hosted on VMs by 
introducing the on-memory suspend technique and the 
quick reload mechanism. However, their work only 
focuses on rejuvenating a parent component when the 
parent component is a VMM and the subcomponents are 
VMs. In this paper, we not only take the failures and 
rejuvenation of both VMs and the VMM into account but 
also adopt a different rejuvenation policy for them. 

A comprehensive availability model for a server 
virtualized system with time-based rejuvenations for VM 
and VMM was presented by Machida et al.[8]. Their 
model focuses on the evaluation of the rejuvenation 
techniques for VMM including Warm-VM rejuvenation, 
Cold-VM rejuvenation and Migrate-VM rejuvenation. 
Further, they leverage existed availability models for 
time-based rejuvenation and apply them to a server 
virtualized system to determine the optimum rejuvenation 
schedules in terms of downtime. It is important to note 
that our approach is different from their works in terms of 
rejuvenation policy. They use the time-based rejuvenation 
policy for both VMs and VMM while we are proposing a 
new combinatory rejuvenation technique that uses a 
time-based policy for the VMM and a prediction-based 
policy for VMs. Moreover, our work discusses the impact 
of the configuration of VMs on rejuvenation process. For 
the VM level of a single-server virtualized system, both 
VMs can work in an active or passive software 
replication mode and provide similar services. Thus, we 
develop two SRN models for the cases of using the active 
and passive replication at the VM level respectively to 
analyze system performance from the aspects of 
transaction lost as well as availability and downtime. 
Moreover, we discover some novel results through 
comparing the existing models. 

III.  MOTIVATION 

In the following text, we focus on the motivation of 
using a combinatory policy and applying SRN to model 
system behaviors respectively. 

In a single-server virtualized system, there are two 
critical components, the VMM and the VM hosted on the 
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VMM. Both of them may be failure because of 
aging-related bugs. Because of the VM hosting on the 
VMM, the VM can also be rejuvenated by the 
rejuvenation of its underlying VMM. But downtime cost 
due to the VMM rejuvenation is much more than 
downtime cost due to the VM rejuvenation. This 
motivates us to handle the VM rejuvenation as well as the 
VMM rejuvenation. Further, to rejuvenate any one of the 
VMM and the VM in a proactive way, we have two 
choices for rejuvenation policy, namely the time-based 
policy and the prediction-based one. For the former, we 
need only build an analytical model using assumptions 
about its operational profiles or failure distribution, to 
make the model as close as possible to a real life system 
taking no consideration of its real operation process. So 
in whatever situation, the time-based approach is easy to 
be used. But the approach is not precise to some extent. 
For the latter, we need monitor the behavior of running 
software, collect some resource-related or time-related 
data, validate the existence of aging, analyze system 
performance level and trigger the rejuvenation. The 
above actions can not be taken if absence of the detailed 
configuration of a running system and some embedded 
functionalities in the system. So the prediction-based 
approach is the sole way to apply the optimal 
rejuvenation schedule produced from the time-based 
approach to a real life system, which makes rejuvenation 
come true. Of course, comparing with the time-based 
approach, the prediction-based approach is relatively 
complex, but more precise. In our work, we have 
designed a component named Software Rejuvenation 
Agent (SRA) inside each VM to monitor consumable 
resources and states and carry out rejuvenation operations. 
The existence of SRA makes the adoption of a 
prediction-based policy to the VM possible. This 
motivates us to use a combinatory rejuvenation policy, 
namely the prediction-based policy at the VM level and 
the time-based policy at the VMM level respectively. 

And then we focus on the motivation of adopting SRN 
to model system behaviors dynamics. Models are system 
abstractions in one or more specific aspects, and provide 
the basis for the analysis of system behavior. There are 
several model types that have been used for modeling the 
performability of complex systems. However, the most 
common used model is the state-space based model, 
which can capture the complicated system dependencies. 
This kind of model demands the collection of system 
variables, the values of which define the system state at a 
given point. The state-space based model can further be 
divided into two sub-types: the low-level model and the 
high-level one.  

The low-level model usually uses a stochastic process 
to characterize system behavior dynamics since there are 
significant uncertainties and unpredictable variations 
either inherent in the system or in its inputs. Such 
uncertainties can be taken into consideration via 
stochastic modeling and solution techniques. Several 
stochastic models, such as CTMC (Continuous time 
Markov chain)[1], SMP (Semi-Markov process)[20], 
MRGP (Markov Regenerative Process)[3] and MRM 

(Markov reward model)[21] and so on, has been widely 
used in the field of software rejuvenation modeling. To 
achieve the solutions of these models to analyze system 
performance, we usually make the resulting process a 
homogeneous CTMC by some converting techniques 
regardless of the original type of processes. For example, 
in order to solve the MRGP, we choose to approximate 
the deterministic transitions in MRGP using an r-stage 
Erlang distribution, so the resulting process becomes a 
homogeneous CTMC and the solution techniques for 
Markov chains can be applied. But, this approach has a 
significant shortcoming that the state space of the CTMC 
increases by r due to the approximation. And if we wish 
to model a single-server virtualized system with n 
standby VMs where each VMs has less than six states 
(more details in section 4.1), the overall state space will 
become unmanageable if we were to build the CTMC by 
hand. Thus, in order to avoid the manual construction of a 
high fidelity model we may resort to the following higher 
level model. 

The high-level model usually has not only a rigorous 
mathematical basis, but also a powerful graphical 
representation. With a rigorous mathematical basis, they 
can be automatically transformed into a certain stochastic 
process, and then use the same way as the low-level 
model to analyze system performance. With the powerful 
graphical representation, they allow the designer to focus 
more on the system characteristics being modeled rather 
than on the error-prone specification of system state space. 
From this perspective, the modeling power of the 
high-level model is remarkably greater than the low-level 
one. Due to the graphic nature of the high-level model, 
the changes to models are done easily, while minor 
changes in a Markov chain require redefining all the 
states in the model. This motivates us to use the 
high-level model in our work.  

The widely used high-level models in the field of 
software rejuvenation modeling include SPN(Stochastic 
Petri Net), GSPN(General Stochastic Petri Net)[22,23], 
DSPN(Deterministic and Stochastic Petri Net)[3,7] and 
SRN(Stochastic Reward Net)[2,4,5,8,16], etc. SPN only 
allows exponentially distributed firing times for 
transitions. GSPN extend the SPN by allowing zero firing 
time for some transitions, in which transitions with 
exponentially distributed firing times are called timed 
transitions while the transitions with zero firing times are 
called immediate transitions. For SPN and GSPN, they 
contain only immediate transitions and/or timed 
transitions with exponentially distributed firing time, so 
the underlying stochastic process is a homogeneous 
CTMC. However, we design a transition with 
deterministic distributed firing time for VMM 
rejuvenation clock in our models. Obviously, SPN and 
GSPN can be applicable no longer. As for DSPN, it 
requires all transitions are deterministic. However, our 
models contain not only deterministic transitions, but also 
exponentially distributed firing time transitions. 
Obviously, DSPN can also be inapplicable. As our choice 
in this paper, SRN is a variant of GSPN with a more 
powerful modeling power by several extensions. The first 
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extension is its ability to allow extensive marking 
dependency, which can specify parameters, such as the 
firing rate of the timed transitions, the multiplicities of 
input/output arcs and the reward rate in a marking, as 
functions of the number of tokens in any place in the 
SRN. In our models, the output measures are expressed in 
terms of the expected values of the reward rate functions. 
Another important extension is the ability to express 
complex enabling/disabling conditions through guard 
functions. This can greatly simplify the graphical 
representations of complex systems. In our models, 
almost each immediate transition is assigned with a guard 
function. Moreover, as same as the other high level 
models, an SRN can be automatically transformed into a 
Markov reward model (MRM), steady-state and/or 
transient analysis of the MRM by the tool SPNP [24] 
solves the SRN models. This motivates us apply the tool 
SRN to model the process of software aging and software 
rejuvenation in this paper. 

IV.  AVAILABILITY MODELS 

The benefits of software replicas created by 
virtualization technology are to reduce service 
interruption and optimize the rejuvenation process 
without any additional physical nodes. The proactive 
software rejuvenation with virtualization is just based on 
this principle. In order to study the effects of 
virtualization and software rejuvenation on availability 
for a single-server virtualized system, we provide two 
high level availability models using SRN to depict the 
process of software aging and software rejuvenation. 
Further, we analyze these models in terms of system 
availability, downtime and the number of transaction lost 
by sensitivity analysis. 

A.  System Architecture 
The system architecture of a single-server virtualized 

system is shown in Fig.1. The single-server virtualized 
system consists of a hosting server installing a VMM and 
three VMs running in a dispatcher-worker mode on top of 
this VMM.  

 
Figure 1.  The considered architecture for a single-server virtualized 

system. 

Dispatcher VM will be used for providing fail-over 
capabilities and a myriad of load balancing policies. The 

remaining VMs are in operation and deploy the same 
services, named Worker VM. Our idea is to hold multiple 
replicas of an application in a single physical server by 
virtualization technology, in which one replica is 
designated as primary and all others are designated as 
standbys (or backups). If the primary fails, one of the 
backups takes over as the new primary. This approach 
uses VMs as containers for the replica in order to avoid 
the need for additional hardware and it can provide 
continuous services during rejuvenation. In this paper, we 
create two Worker VMs. The primary application server 
and the standby one will be running on the active Worker 
VM and the standby Worker VM respectively. The VMs 
inform each other about their health using a heartbeat 
mechanism. We also designs a component named 
Software Rejuvenation Agent (SRA) inside each VM to 
monitor consumable resources and states, and another 
component named Rejuvenation Manager (RM) inside 
the VMM to analyze VMs’ behavior, detect their 
anomalies and trigger the rejuvenation of a VM when it 
detects anomalies in the behavior of that VM. The 
existence of SRA and RM makes a prediction-based 
policy for VM possible. Similarly, due to absence of the 
above components, the time-based rejuvenation policy is 
the only one applicable for the VMM.  

B.  SRN Models 
For a VMM rejuvenation, we use the simplest 

rejuvenation approach that shuts down all the hosted 
VMs prior to the rejuvenation regardless of the execution 
states of the VMs. The greatest strength of this approach 
is to clear all of aging states in VMs and VMM by a 
VMM rejuvenation. Of course, this weaknesses of this 
approach are also obvious. Because of the dependency 
between VMs and VMM, the execution of VMs running 
on the VMM may also be interrupted, which results in 
transactions lost and unnecessary downtime of the VMs. 

For a VM rejuvenation, because of the replication 
mode used at the VM level in our considered architecture, 
there are also two different styles, a passive replication 
style and an active one. The former has no backup 
replicas in memory. Upon primary replica failure, a 
backup replica is loaded into memory and assumes the 
role of the new primary replica. The new primary 
replica’s state is initialized from the last checkpoint to 
ensure its state is identical to the state of the old primary 
replica before its failure. The latter, in contrast, has all 
backup replicas created, initialized, and loaded in 
memory. The primary replica state is transferred to all 
backup replicas at the end of every operation on the 
primary replica. When the primary replica fails, a new 
primary replica is chosen from the backup replicas. 
Intuitively, application of the passive replication style 
will result in lower VM availability, longer downtime and 
higher the number of transaction lost. Two rejuvenation 
models using these two policies respectively will be built 
in this section, and this assumption will be verified 
through experiments in section 4. 

In our proposed models, a Petri Net (PN) is a bipartite 
directed graph whose nodes are divided into two disjoint 
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sets - places and transitions. Input arcs are directed arcs 
which connect places to transitions and output arcs are 
directed arcs which connect transitions to places. A 
cardinality may be associated with these arcs. An arc with 
multiplicity m is represented by an ‘/m’ on the arc. The 
distribution of tokens on the places of the PN is called a 
marking of the PN. When representing a PN graphically, 
places are represented by circles and immediate 
transitions, timed transitions and deterministic transitions 
are shown  by  narrow  bars,  hollow  rectangles  
and  filled rectangles, respectively. The number of 
tokens n in place P is represented graphically as the 
number n inside the circle for place P. Variable 
cardinality of an arc is represented by adding a Z on the 
arc. Each transition can also be associated with a guard 

function, which is usually a function of a marking. The 
transition is enabled only when the guard function is 
evaluated to TRUE and all other conditions relating to 
priorities and input arc conditions are met. The reader is 
referred to [25] for a detailed description of SRNs. 

The SRN model with a combinatory rejuvenation 
policy is shown in Fig. 2. The model is represented by 
four SRNs, where Fig.2(a) is the SRN using the 
prediction-based policy at the VM level and the 
time-based policy at the VMM level, and Fig. 2(b) is the 
SRN for the VMM clock model, which is used for 
triggering time-based rejuvenation of VMM. Two 
different replication styles for the standby VMs are 
modeled by the Fig. 2(c) and Fig. 2(d) respectively. 

Figure 2.  SRN models with different replication styles at the VM level 

Combining part (a), part (b) and part (c) of Fig. 2, the 
integrated SRN model represents the failure process, 
recovery process, and combinatory rejuvenation of VMM 
and VMs with the passive replication style. Initially there 
is one token in the Pvm_up, Pvm_standby and Pvmm_up 
respectively, which demonstrates fully stable states of 
VMs and VMM. As time passes, each active VM 
eventually transits to an unstable state (place Pvm_fp) 
through the transition Tvm_fp representing the software 
aging of the VM. The active VM still works in this state 
but its failure chances increase. It is assumed that the RM 

can detect the aging with probability cdet. The Pvm_fp place 
has two immediate transitions with the appropriate 
probability for detecting aging or failures during 
detection process. If the aging is detected, a token is fired 
through tvm_detected and will be deposited in Pvm_detected. If 
the detection process fails, a token is put in Pvm_undetected. 
As time progresses, the active VM eventually transits to a 
failure state (place Pvm_fail) through the transition Tvm_fail. 
Whenever a token is deposited in Pvm_detected or Pvm_fail, the 
active VM suspends all user requests and provides no 
longer services. 
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The recovery process consists of the standby VM 
loaded in memory, the standby VM’s internal state catch 
up and the switching of the current active VM with the 
standby VM. The transition 
Pvm_standby Tvm_available Pvm_available in the SRN model 
represents the standby start time required to perform the 
first step. On a token in place Pvm_available, the standby VM 
is available. The latter two steps of this rejuvenation 
process are performed by using the timed transitions 
Tvm_swt_cold. The rejuvenation and repair of the active VM 
can begin when the standby VM is in an available state 
(place Pvm_available) and the underlying VMM is neither in 
the failure state nor in the rejuvenation state. The guard 
function g7 ensures this condition. In passive replication 
mode, the standby VM’s internal state is initialized from 
the last checkpoint to ensure its state is identical to the 
state of the active VM before the failure. Hence, the time 
for the final catch up step mainly includes the time to 
transfer all pending requests and current sessions from 
the active VM to the standby one. After the switch is 
completed, a token is deposited in place Pvm_reju to mark 
the completion of rejuvenation. When the active VM is 
completely rejuvenated, it is placed back in service as the 
new standby VM. The process can repeat continuously. 
Because of the dependency of VMs and VMM, all tokens 
representing VMs’ operational nodes (i.e. tokens in places 
Pvm_up, Pvm_fp, Pvm_fail, Pvm_pre_repair, Pvm_reju, Pvm_pre_reju, 
Pvm_detect, Pvm_undetected) are removed when the system is 
considered failed (i.e. token in place Pvmm_fail or Pvmm_reju). 
This is accomplished by the guard g5, which enables the 
immediate transitions t3, t4, t5, t6, t7, t8, t9, t10, t13, t12, when 
it detects a token in place Pvmm_fail or Pvmm_reju. In this case, 
it is inevitable to involve unnecessary downtime and lose 
transactions. 

Similarly, when the transition Tvmm_fp fires, a token is 
deposited in Pvmm_fp. If the transition Tvmm_fail fires, a 
token is deposited in Pvmm_fail which represents the VMM 
failure due to the software aging. The effects of common 
mode faults are applied using Tcommon_fault. When this 
transition is fired, VMM failure also occurs. When the 
VMM is recovered from the failure state, the token in 
Pvmm_fail is removed and a token is deposited in Pvmm_up, 
Pvm_up and Pvm_standby respectively by Tvmm_repair transition. 
The time-based periodic rejuvenation is driven by a 
deterministic clock shown in Fig.2(b). When the 
deterministic transition Tvmm_interval fires and deposits a 
token in place Pvmm_reju_start each d time units, the VMM 
rejuvenation is triggered and the immediate transitions 
tvmm_reju0 and tvmm_reju1 are enabled by guarding function g4 
and a token is deposited in Pvmm_reju. Similarly, when the 
VMM rejuvenation cleans up the aging states, the token 
in Pvmm_reju is removed and a token is deposited in Pvmm_up, 
Pvm_up and Pvm_standby respectively by Tvmm_reju transition. 
Whenever in case of VMM rejuvenation or VMM repair, 
both leads to rejuvenation of the whole system and those 
VM related places flushed out because of VMs running 
on the VMM. 

Combining part (a), part (b) and part (d) of Fig. 2, the 
new integrated SRN model represents the failure process, 
recovery process, and combinatory rejuvenation of VMM 

and VMs with the active replication style. The most 
noteworthy difference is that there is no need to take 
some time to make the standby VM activated. Hence we 
use the immediate transition tvm_up to represent this step 
instead of the timed transition Tvm_available in Fig. 2(c). The 
rejuvenation process in practice only consists of standby 
replica’s internal state catch up and the switching of the 
current active replica with the standby replica, which can 
be represented by timed transition Tvm_swt_hot. Moreover, 
the standby VM’s internal state is continuously updated 
with the active VM internal state changes. Hence, the 
total time including the time for the final catch up step 
and the replica switch time in active replication style is 
shorter than the total one in passive replication style. 
After the switch is completed, a token is deposited in 
place Pvm_reju to mark the completion of rejuvenation. 

The guard functions used by these two models are 
summarized in Fig. 2(e), where the guard function g8 is 
only suitable for the model with the passive replication 
style. 

V.  ANALYSIS AND RESULTS 

We used the stochastic Petri net package (SPNP) tool 
[24] to have an evaluation of two rejuvenation models 
applied to the target system. We assumed that all 
transition times of timed transitions in the models are 
exponentially distributed except for Tvmm_interval which is 
deterministic because it represents the fixed rejuvenation 
trigger intervals of VMM. There are many previous 
studies [3-5,8-9,13,16] supporting the use of exponential 
distributions. For examples, in a CTMS (Cable Modem 
Termination System) cluster system, Yun Liu. [4,5] have 
assumed that the distribution of time between hardware 
failures and software failures caused by Heisenbugs are 
exponential, the distribution of time between software 
failures caused by aging-related faults is 
hypo-exponential, and the distribution of failure detection 
time and node switchover/reboot/rejuvenation/giveback 
time are exponential. Of course, the assumption of the 
exponential distribution is not always well-suited for all 
real-world applications. For examples, in Salfner [7], it 
has been concluded from data of a commercial 
telecommunication platform that the distribution of 
time-to-failure can be approximated best by a lognormal 
distribution. In our experiments, the assumption of the 
exponential distribution makes the modeling and 
computation easier. However, our models are not 
restricted to exponential distributions; other well-known 
distributions such as lognormal and Weibull could be 
used as well. The model parameters need be varied with 
different distributions, while the model solutions can be 
left to the tool SPNP. 

Because of the existence of the deterministic transition, 
we used 10-stage Erlang distribution for approximating it. 
The model parameter values used were based on prior 
investigations [8,16] of software aging related failures 
and the application of the software rejuvenation as the 
solution, as shown in Table 1. For an example of λvm_fp, 
the calculation of the default value is as follows. We 
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assume that the mean duration time observed from the 
robust state to the unstable state is one week, namely 
7 × 24 hours. Thus, the VM aging rate is 

1/(7 × 24)=0.005952381, which means the number of 
aging appearance is 005952381 per hour. 

TABLE I.   
PARAMETERS USED IN ALL MODELS 

Parameter values 
Symbol Description Default Value Mean Time 

λvm_fp VM aging rate 0.005952381   1 week 
λvm_fail VM failure rate after aging 0.013888889   3 days  
λvm_recovery VM failure recovery rate 2 30 mins 
λvm_reju VM rejuvenation rate 60 1 min 
λvm_available Standby VM activation rate in cold-standby 60 1 min 
λvm_swt_cold VM state transition rate in cold-standby 120 30 secs 
λvm_swt_hot VM state transition rate in hot-standby 1200 3 secs 
λvmm_fp VMM aging rate 0.001388889       1 month 
λvmm_fail VMM failure rate after aging 0.005952381 1 week 
λvmm_recovery VMM failure recovery rate 1 1 hour 
λvmm_reju VMM rejuvenation rate 30   2 mins 
λvmm_reju_inter VMM rejuvenation trigger rate -- -- 
cdet VM aging detection probability -- -- 

For the simplicity of description, we call the model 
using the combinatory rejuvenation policy with the 
passive replication style “Model A”. Similarly, we call 
the model using the active replication style “Model B”. 

A.  Model A VS. Model B 
In this section, we compare these two models only 

from the aspect of system steady-state availability 
regardless of downtime and transaction lost. The main 
causes are as follows. For downtime, the expected total 
downtime over time interval T is calculated as 

( )avail*  1T P− , where Pavail is system steady-state 
availability probability. Thus, it is easy to find that the 
variation tendency of the expected total downtime is 
opposite to that of steady-state availability. For 
transaction lost, when the active VM is rejuvenated or 
repaired, there are no transactions lost because of the 

current transactions transferred to the standby VM and 
the subsequent user requests queued by the Dispatcher 
VM. Thus, the replication style using by both models 
should be no impact on whether transactions lose or not. 

 Availability models capture the failure, repair and 
rejuvenation behavior of systems and their components. 
In the above two models, the impact of critical 
parameters, such as the rejuvenation trigger intervals of 
VMM and aging detection probabilities of VM, on 
steady-state availability was studied. Service is available 
when VMM is in the robust state or the failure probable 
state and the active VM pertains to one of states: the 
robust state, the failure probable state and the failure 
detection missing state. Fig.3 shows the results of 
steady-state availability by varying the VMM 
rejuvenation trigger interval and the VM aging detection 
probabilities independently.
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Figure 3.  Steady-state availability for both models by varying the rejuvenation interval of VMM and aging detection probability of VM 

In the first case, the VM aging detection probability is 
fixed at 0.1, 0.5 and 0.9 respectively. For an example of 
the aging detection probability c=0.5, when varying the 
VMM rejuvenation interval from 5 hours to about 100 
hours, we can find that the larger rejuvenation interval 
lead to the higher system steady-state availability. At a 
certain rejuvenation interval, in this case λvmm_reju_inter 
≈ 100, system steady-state availability is maximized. 
System availability appears to drop very slowly with the 

rejuvenation interval greater than 100 hours. We may 
directly see that there is such a variation tendency for 
both models. This is caused by the fact that more frequent 
rejuvenation increases the availability due to the 
rejuvenation and less frequent rejuvenation also increases 
the availability caused by software failure. Further, we 
see that system steady-state availability of model B is 
almost better than that of model A if the rejuvenation 
interval increases over 20 hours. This result is caused by 
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the fact that the time to rejuvenation for the passive 
replication style is longer than that of the active one 
because of no time needed for the standby VM loaded in 
memory with the active replication style. 
 In the second case, when the VMM rejuvenation interval 
is fixed, we can find that the higher aging detection 
probability is better than the lower one in terms of system 
steady-state availability. This result shows that it is very 
important to make the aging detection probability more 
close to 1 in the prediction-based rejuvenation policy. In 
fact, it is also very difficult and impossible to do this. So 
in the following discussions, we assume that the highest 
detection probability is 0.9.  

From the above discussions, we can draw a conclusion 
that model B using the active replication style is better 
than model A using the passive one in terms of 
steady-state system availability. 

B. Sensitivity Analysis  
For an example of Model B, we focus on investigating 

the impact of two critical parameters, aging detection 
probability and the VMM rejuvenation interval, on the 
downtime in this section. The expected total downtime 
consists of the downtime due to software rejuvenation 
and the downtime due to system failure. Hence, we also 
analyze the two downtime components that contribute to 
the expected total downtime here. In case of software 
rejuvenation or software failure, the expected downtime 
over time interval T is calculated as T * Punavail, where 
Punavail is system steady-state unavailability probability 
due to software rejuvenation or software failure, T is time 
interval and its value is set to 1,440 minutes. 

In the first case of the VMM rejuvenation interval is 
set to 120 hours, execution results of model B by varying 
values of the aging detection probability cdet are shown in 
Fig. 4. As the probability cdet increases, the expected 
downtime due to software rejuvenation only slightly 
increases, however the expected downtime due to 
software failure and the expected total downtime 
markedly decrease. Further, we find that the expected 
downtime of software failure is always greater than that 
of software rejuvenation regardless of values of cdet. 
Hence, we can draw a conclusion that at a given 
rejuvenation interval, the recovery process is the main 
contributor to the expected downtime and the higher the 
aging detection probability leads to the lower the 
expected total downtime. 

In the second case of the aging detection probability 
cdet is set to 0.9, execution results of model B by varying 
the VMM rejuvenation interval are shown in Fig. 5. As 
the rejuvenation interval increases, the downtime due to 
software rejuvenation firstly rapidly drops and then 
slightly increases, meanwhile the downtime due to 
software failure firstly slightly increases and then slightly 
drops. The variation tendency of the expected total 
downtime is almost the same as that of the downtime due 
to rejuvenation. When the rejuvenation interval is 80 
hours or less, the rejuvenation process is the main 
contributor to the expected total downtime with 51.1% to 
99.9% of the expected total downtime. Especially when 

the rejuvenation interval are less than 30 hours, the 
rejuvenation process contributes to the expected total 
downtime with 91.7% to 99.9% of the expected 
downtime. On the other hand, when the rejuvenation 
interval is more than 80 hours, the failed system with 
52.9% to 80.7% of the expected downtime is the greater 
contributor. This finding is inline with the premise that 
the use of proactive rejuvenation reduces the chance of 
system failures caused by software aging. The above 
results are caused by the fact that more frequent 
rejuvenation increases the downtime due to the 
rejuvenation and less frequent rejuvenation also increases 
the downtime caused by software failure. By finding the 
point which minimizes the expected downtime, we can 
solve the optimal rejuvenation interval. 

 
Figure 4.  The expected downtime due to software rejuvenation and 

failure with different aging detection probabilities of VM 

 
Figure 5.  The expected downtime due to software rejuvenation and 

failure with different rejuvenation intervals of VMM 

As analyzed before, the aging detection probability 
should be no impact on whether transactions lose or not. 
Hence, we focus on the impact of the VMM rejuvenation 
interval on the number of transactions lost. When VMM 
is rejuvenated or repaired, transactions lose because of 
VMM shutting down all the hosted VMs prior to the 
rejuvenation or repair regardless of the execution states of 
the VMs. The expected number of transactions lost due to 
VMM rejuvenation and VMM repair can be computed 
from the throughputs of the transitions Tvmm_reju and 
Tvmm_repair for each SRN model. We will execute model B 
again to analyze the expected number of transactions lost 
with different VMM rejuvenation intervals. Results with 
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varying rejuvenation intervals and the fixed value of 0.9 
for detection probability cdet are shown in Fig. 6. 
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Figure 6.  The expected number of transactions lost with different 

rejuvenation intervals 

As seen from Fig.6, the expected number of 
transactions lost due to VMM rejuvenation is monotone 
decreasing with the increasing rejuvenation interval. The 
higher rejuvenation rate  (i.e. the rejuvenation interval is 
less than 30 hours) has a significant impact on the 
expected number of transactions lost. However, when the 
rejuvenation interval increases to more than 30 hours, 
VMM repair instead of VMM rejuvenation is the new 

greater contributor to the expected number of transactions 
lost. Further, when the rejuvenation interval increases 
from 80 to 500, the expected number of transactions lost 
due to rejuvenation gradually levels off at about 0.159. 
When the rejuvenation interval increases to infinity, this 
means that VMM has no rejuvenation operation. The 
expected number of transactions lost will be equal to the 
number of transactions lost associated with VMM repair. 
Form the above analysis, we can find that the 
rejuvenation interval has almost no impact on the 
expected number of transactions lost only if it is greater 
than a proper value got from the solution of SRN model. 

C. Model B VS. Other Models 
To further validate the effect of our models and 

rejuvenation policies, we consider the existing models 
with different policies including no rejuvenation, just the 
VMs rejuvenation using the prediction-based 
rejuvenation policy, just the VMM rejuvenation using the 
time-based rejuvenation policy, and both the VMM and 
the VMs rejuvenation with the time-based policy. Further, 
we compare the effect of these policies with model B, and 
the results are shown in Fig. 7, where the aging detection 
probability of the VMs used in the prediction-based 
policy is fixed at 0.9 and the VM interval used in the 
time-based policy is 120 hours.
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Figure 7.  Comparison of rejuvenation effects using different rejuvenation policies

From Fig. 7, the findings we got are as followings:  
 There is no system availability improvement in case 

of just rejuvenating the VMs by comparison to the 
case of no rejuvenation. However, there is an 
obvious system availability improvement in case of 
just rejuvenating the VMM by comparison to the 
case of no rejuvenation. The result shows that due to 
the availability of the upper-level VMs depending 
on the availability of the lower-level VMM, the 
extreme limit of system availability depends on the 
maximum VMM availability. Thus, rejuvenating the 
VMM is the most efficient way of improving system 

availability. 
 There is an obvious system availability 

improvement in case of rejuvenating both the VMM 
and the VMs regardless of rejuvenation policies 
used by comparison to the case of just rejuvenating 
the VMM. The results show that the further system 
availability improvement depends on 
simultaneously improving the availability of both of 
the VMM and the VMs. Further, comparing our 
policy with the time-based policy applied to both the 
VMM and the VMs, we find that our policy is much 
better than the competitor. 
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VI.  CONCLUSIONS 

We have presented and analyzed comprehensive 
availability models for a class of system with deployment 
of virtualization technology and software rejuvenation. 
Results of the first experiment showed two models were 
with the same variation tendency and the model with the 
active replication style is obviously better than that of the 
model with the passive one in terms of system 
steady-state availability. Further, for an example of model 
B, we finished two other experiments in order to analyze 
system rejuvenation and repair process by varying two 
critical parameters, the VM aging detection probability 
and the VMM rejuvenation interval. Experimental results 
showed that the aging detection probability had a very 
important impact on the expected downtime and the 
higher the aging detection probability led to the lower the 
expected total downtime. However, we also showed the 
aging detection probability had no impact on whether 
transactions lost or not. Under a given parameter value 
for the aging detection probability, we observed that more 
frequent rejuvenation increases the downtime due to the 
rejuvenation and less frequent rejuvenation also increases 
the downtime caused by software failure. By finding the 
point which minimizes the expected downtime, we could 
solve the optimal rejuvenation interval. Moreover, we 
also observed that a proper VMM rejuvenation interval 
has almost no impact on the number of transactions lost 
and the repair process is the main contributor to the 
expected number of transactions lost. 

In the future work, we will discuss some methods to 
carefully determine the optimal combinatory of the VMM 
rejuvenation interval and the VM aging detection 
probability so as to achieve higher steady-state 
availability and lower downtime. 
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