
General Development Framework and Its
Application Method for Software Safety Case

Fuping Zeng

School of Reliability and System Engineering, Beihang University, Beijing, 100191, China
Email: zfp@buaa.edu.cn

Minyan Lua Deming Zhongb

School of Reliability and System Engineering, Beihang University, Beijing, 100191, China
Email: a lmy@buaa.edu.cn btimothy@gmail.com

Abstract—Safety case has already been adopted and
developed across many industries because it is a good means
to demonstrate whether software safety is acceptable.
Despite the wide requirements for safety cases across many
industries, it is a major challenge to construct compelling
and general software safety arguments. The general
development framework for software safety case(GDFSSC)
and its application method has been discussed in this paper.
Firstly, construction principle for software safety case from
the view of hazard is given. Secondly, the general
development framework for software safety case is proposed.
Then the application method for the GDFSSC based on
GSN pattern is elaborated, and braking control software is
chosen as experimental example for proposed approach.
The experimental results preliminarily show the proposed
approach is feasible and more effective to develop a safety
argument for demonstrating the acceptability of software
with respect to safety.

Index Terms—software safety, safety case, GSN pattern,
development framework

I. INTRODUCTION

Software is becoming increasingly important in
assuring the safe operation of defense, aerospace, nuclear
and railways and so on. Software and its associated
computing systems (computer system hardware and
firmware) are used in on-board and ground systems to
support safety-critical functions such as guidance,
navigation, and health monitoring. Software is also used
to produce safety-critical data and to assist in mitigating
system risks. Therefore the risk associated with the use of
such software must be identified, characterized, analyzed
and mitigated until the risk is reduced to the public. It is
an important and disturbing problem for managers and
developers how to demonstrate whether software safety is
acceptable. Currently, safety case is a good means to
solve this problem.

The concept of presenting safety-related information
and arguments in a formal report initially came from the
nuclear industry, but the notion of ‘safety cases’ is
originated in major industrial accident control regulations
introduced in the process sector in the UK in 1984[1].
Lord Cullen, in his report on the Piper Alpha accident in
1990[2], recommended the introduction of a safety case

regime as part of the regulation of oil and gas facilities
and operation. The purpose of a safety case is to
“communicate a clear, comprehensive and defensible
argument that a system is acceptably safe to operate in a
particular context” [3].

Safety case has already been adopted and developed
across many industries (including defence, aerospace and
railways) and is mandated to use in many safety
standards[4][5]. Extensive work has been done in the area
of safety case. Adelard developed ‘Assurance and Safety
Case Environment(ASCE)’ and ‘Safety Case Manual’
presents the safety case structure as a set of claims which,
using an argument, are supported by evidence[6][7].
Kelly defined and demonstrated a coherent approach to
the development, presentation, maintenance and reuse of
the safety arguments within a safety case[8][9]. Wagner
constructed the safety case for a cruise control system
describe in a case study in the automotive domain with a
special consideration of existing domain-specific
models[10]. Yuan discussed a more recent, argument-
based approach to achieve and demonstrate computer
system safety[11]. The challenge of evaluating
confidence in safety cases is explored in Ref [12].

Despite the wide requirements for safety cases across
many industries, it is poorly understood how to construct
a safety case. On the one hand, many of previous
approaches primarily focused on the presentation, reuse,
confidence and tool of safety case, and the studies about
the development of safety case are not much. On the
other hand, some example of safety case is applied to a
particular software product and the features specific to a
particular software cannot be taken into account in a
generic application. Thus, it is a major challenge to
construct compelling and general software safety
arguments. This is the subject of this paper.

In this paper, we explore the challenges of providing a
general framework for making and justifying decisions
about the arguments and evidence required to assure the
safety of the software. After construction principle for
software safety case is given, the general development
framework for software safety case(GDFSSC) begins to
be presented. Based on which, the method of applying the
GDFSSC is proposed and the corresponding GSN safety

3262 JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.12.3262-3268

case pattern libraries are developed. An overarching
motivation for this work is eventually to advance a
framework which is possessed of stronger applicability
and generality in order to develop software safety case
effectively.

The rest of the paper is arranged as follows. In section
2, the related knowledge about safety case and its
graphical presentation notation is introduced. In section 3,
the general development framework for software safety
case(GDFSSC) is proposed. In section 4, the application
method for the GDFSSC based on GSN pattern is
elaborated, including GSN safety case pattern for
GDFSSC, process for constructing software case and
experiment application. Finally, our work of this paper is
summarized in the last section.

II. RELATED KNOWLEDGE

A. Safety Case
The definition from Defence Standard 00-56[13] is

that ‘a Safety Case is a structured argument, supported by
a body of evidence, that provides a compelling,
comprehensible and valid case that a system is safe for a
given application in a given environment’.

The core concept is that a safety case should
communicate a clear, comprehensive and defensible
argument that a system is acceptably safe to operate in a
particular context, and context-free safety is impossible to
argue. A safety case consists of explicit safety claim, the
evidence that the claim has been met, and the argument
linking the evidence to the claim. The relationship
between these three elements is depicted in Figure 1.
Both argument and evidence are crucial elements of the
safety case that must go hand-in-hand. Argument without
supporting evidence is unfounded, and therefore
unconvincing. Evidence without argument is
unexplained--it can be unclear that (or how) safety
objectives have been satisfied [14].

Figure 1. Structure of safety case

B. GSN & GSN Pattern
Currently, the most well-known notations for

describing safety cases are graphics-based. The Goal-
Structuring Notation (GSN) is a prototypical example of
such a notation. The principal elements of the notation
are shown in Figure 2. These elements are placed
together to form a goal structure. The purpose of a goal
structure is to show how goals are broken down into sub-

goals, and eventually supported by evidence (solutions)
whilst making clear the strategies adopted, the rationale
for the approach (assumptions, justifications) and the
context in which goals are stated. For further details on
GSN see [13].

Figure 2. Principal elements of GSN

Safety cases tend to be huge and complex, and thus
are hard to write and verify. The concept of safety case
patterns in GSN is introduced in order to reuse successful
safety cases patterns. Figure 3 shows a simple goal
structure pattern that uses these extensions. In this
structure, the top-level goal of system safety (G1) is
reexpressed as a number of goals of functional safety (G2)
as part of the strategy identified by S1. In order to support
this strategy, it is necessary to have identified all system
functions affecting overall safety (C1) e.g. through a
Functional Hazard Analysis. In addition, it is also
necessary to put forward (and develop) the claim that
either all the identified functions are independent, and
therefore have no interactions that could give rise to
hazards (G4) or that any interactions that have been
identified are non-hazardous (G3).

C1:Safety Related
Functions of {System X}

(n=#functions)

S1:Argumen
over all safety-

related functions
of system

G1:{System X is Safe}

G2:{Function Y} is
safe

G3: Interactions
between system

functions are non-
hazardous

G3:All system functions
are independent(no

interactions)

n

Indicates that element
remains to be instantiated

Indicates a choice
1 of 2

Indicates a 1-to-
mang relationship

Indicates that element remains to be
instantiated and then developed

Indicates that element
remains to be developed

Figure 3. GSN Extensions for Pattern Description

III. GENERAL DEVELOPMENT FRAMEWORK FOR
SOFTWARE SAFETY CASE (GDFSSC)

JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013 3263

© 2013 ACADEMY PUBLISHER

A. Construction Principle for Software Safety Case
It is the process for safety engineer to fight against

hazard. Hazard comes from the hazardous scenarios,
which are caused when the interactions between system
components deviate from the normal behavior. The
unexpected results that may be dangerous arise from such
hazardous scenarios. Some of hazardous scenarios would
involve software because some of software failures are
the hazard reasons or make the hazard control no action.
Such software failures are called hazardous software
failures in this paper.

The system requirements that prevent system into the
hazardous scenarios are called system safety
requirements, and for software, are called software safety
requirements(SSRs). There are different solutions or
measures to avoid hazardous software failures of SSRs.
Such solutions or measures are called software safety
control, which is the corrective action for hazardous
software failures.

We will have confidence in the delivered software as
long as safety controls are correct, sufficient and realized.
This is the construction principle for development
framework for software safety case, as shown in Figure 4.

cause

Software Safety
Control(SSC)

Software Safety
Requirement(SSR)

Hazardous
Scenario(HS)

Hazard
(HD)

realize

control

Correct and
Sufficient

Hazardous
Software Failure

Correct and
Sufficient

is

is

User

confidence

has

Figure 4. A Sketch Construction Principle for GDFSSC

The above construction principle is further described
as follows:

(1) HDi, i=1,…,n, represents the ith hazard that can
cause accident.

(2) HSi,j, j=1,…, o, represents the jth hazardous
scenario that can cause HDi.

(3) SSRi,j,k, k=1,…, p, represents the kth software
safety requirement that is derived from HSi,j.

(4) SRCi,j,k,m, m=1,…, r, represents the mth software
safety control that can realize SSRi,j,k.

The following gives the conditions on basis of the
above definition.

Condition 1: If there is any of an unacceptable
hazardous scenario, the system will remain in the hazard
condition. In other word, the system will be safe if all of
unacceptable hazardous scenarios do not happen. This
can be expressed in (1).

,

1

[1,], ~ ~
o

i j i

j

i n HS HD
=

∀ ∈ 6∩ (1)

Condition 2: Software safety requirement can
prevent the hazardous scenarios to appear, which can be
expressed in (2).

[1,], [1,]i n j o∀ ∈ ∀ ∈ ，

, , ,

1

~
p

i j k i j
k

SSR HS
=

6∩ (2)

Condition 3: Software safety control can ensure the
correct of software safety requirement, which can be
expressed in (3).

[1,], [1,], [1,]i n j o k p∀ ∈ ∀ ∈ ∀ ∈ ，

, , , , ,

1

r

i j k r i j k
m

SRC SSR
=

6∩ (3)

Corollary 1: The condition 1, condition 2 and
condition 3 will be founded at the same time and the HDi
will not occur if all of the software safety controls (i.e.
SRCi,j,k,m, [] [] [] []i 1,n j 1,o k 1,p m 1, r, , ,∈ ∈ ∈ ∈) are
correct and sufficient. Thus, we have confidence in the
delivered software.
B. General Development Framework for Software Safety
Case(GDFSSC)

Under the guidance of the construction principle for
software safety case, the general development framework
for software safety case(GDFSSC) is proposed as shown
in Figure 5. The elements in GDFSSC are organized into
the package, and there are seven packages altogether.
Table 1 gives the relation between the structure of safety
case and the packages of GDFSSC.

TABLE I.
THE RELATION OF SAFETY CASE STRUCTURE AND GDFSSC

No Safety Case
Structure the Package of GDFSSC

1 Safety Claim 1) Software Safety Claim Package

2 Safety Argument

1) Software Safety Requirement Analysis
Package
2) Hazardous Software Failure Analysis
Package
3) Realization Package for Hazardous
Software Failure Alleviation
4) Verification Package for Hazardous
Software Failure Alleviation
5) Software Safety Process Package

3 Safety Evidence 1) Software Safety Evidence Package
2) Software Safety Process Package

3264 JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013

© 2013 ACADEMY PUBLISHER

Figure 5. Development Framework for Software Safety Case

The framework considers the construction of the

software safety case in terms of the three primary stages:
1) The acquisition of software safety claim
2) The constituent of software safety argument
3) The selection of software safety evidence
From the concept of software safety, software safety

claim is set ‘software can be considered acceptably safe
in the context of a particular system’. Once the software
safety claim has been identified, an argument is required
to show that the software safety claim has been met.
However this is not sufficient to demonstrate the
acceptability of the software. In this paper we identify
two types of evidence that are required for a complete
software safety argument:

(1) Validation Argument Demonstration that the set
of argument objects is complete and “accurate”, e.g.
cover all hazards to which the software can contribute.

(2) Satisfaction Argument Demonstration that all
argument objects have been met.

Satisfaction argument is obtained based on product-
based approach, that is, explicit evidence of safety,
directly linked to the safety requirements of the system.

First, software contributions to system hazards are
acquired from hazard reason and hazard control. Software
safety requirements are developed to mitigate the
contributions of software to system hazards. Thus,
software is acceptably safe if all of software safety
requirements are satisfied; Then, that software safety
requirements are not satisfied means means software has
failed. These failures are called hazardous software
failures. Therefore, software safety requirements can be

demonstrated to satisfy if hazardous software failures are
eliminated or mitigated; Last, hazardous software failures
will be not eliminated or mitigated if software has
defects(i.e. hazardous failure reason). That is, there are
not proper corrective action to avoid the occurrence of
hazardous software failures. Program code and testing
may verify that software has not defects to contribute to
hazardous software failures.

The premise of satisfaction argument is that argument
objects are completely and correctly obtained, including
software safety requirements, hazardous software failures,
code and the result of testing, which can be demonstrated
to meet by validation argument. Validation argument is
obtained based on process-based approach, that is,
recommendation or prescription of development
processes and methods, including six aspects that are
software personnel capability, software tool use, software
process specification, software development method,
software verification and related software environment.
Safety is determined by an appeal to the quality of the
process.

IV. APPLICATION METHOD FOR THE GDFSSC BASED ON
GSN PATTERN

GDFSSC has identified the types of evidence that are
required and gives guidance on the structuring of the
argument, and it is conceptual and independent of
approaches that could be used for its implementation. A
suitable approach for applying the framework and

JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013 3265

© 2013 ACADEMY PUBLISHER

constructing software safety arguments based on GSN
pattern is presented as followings.

A. GSN Safety Case Pattern for GDFSSC
Safety case patterns are based upon reusable goal

structures that can be instantiated to aid the construction
of parts of a safety argument. First the GDFSSC is made
an abstraction using the connotation of safety case pattern,
and then it is described by the GSN pattern. GSN safety
case patterns for GDFSSC consist of a collection of
highly interrelated patterns which can be combined to
form a software safety argument. Dependent on the
system being assessed, a selection of patterns can be
made. These patterns can then be instantiated and joined
together to develop a specific safety argument. There are
six GSN safety case patterns for GDFSSC:

1) System Level Safety Argument Pattern
2) Software Contributions to System Hazards Pattern
3) Software Top Level Safety Argument Pattern
4) Software Safety Requirement Satisfaction Pattern
5) Hazardous Software Failure Elimination Pattern
6) Software Corrective Action Satisfaction Pattern
The architecture in Figure 6 shows the interactions of

these patterns. When instantiated, a number of patterns
have undeveloped goals for which another pattern may
provide a suitable decomposition.

System Level Safety Argument PatternSystem Level Safety Argument

Software Contributions to System
Hazards

Software Top Level Safety Argument

Software Safety Requirement Satisfaction

Hazardous Software Failure Elimination

Software Corrective Action Satisfaction

Figure 6. Architecture of Safety Case Patterns for GDFSSC

For example Software Top Level Safety Argument
Pattern, it is used to identify the argument approach used
for demonstrating the acceptability of a particular
software safety requirement (SSR). It expands on the
undeveloped goal ‘software is acceptably safe in
particular system’ from the Software Contributions to
System Hazards Pattern.

As at the software level, this pattern identifies the
primary claims for developing a software safety argument
(validation, satisfaction). For satisfaction, the pattern
identifies the individual software safety requirements, and
develops an argument that each of SSRs has been
satisfied. For each claim about an individual SSR further
decomposition of the argument is required before specific
items of evidence can be identified. These claims can be
developed further using the Software Safety Requirement
Satisfaction Pattern. For validation, the pattern identifies

the process factors related SSRs, and specific items of
evidence can be identified for the claims about process
factors.

Figure 7 describes this pattern using GSN pattern, and
it contains nine goals, four strategies, two contexts. Two
contexts and one goal need to be instantiated, and six
goals need to be developed.

Figure 7. Goal Structure for Software Top Level Safety Argument

Pattern

B. Process for constructing software case
To better instantiated, the process for constructing

software case based on GSN pattern is given as
followings:

Step 1: The list of system hazards needs to be
identified, and the process factors related system hazards
identification need to be also obtained. Then the severity
for each of system hazards needs to be analyzed. Based
on which, the system level safety case for specific
software can be developed according to System Level
Safety Argument Pattern.

Step 2: The hazard reasons and hazard controls for
each of system hazards need to be discussed, and then
software contributions to system safety case may be
constructed in accordance with Software Contributions to
System Hazards Pattern.

Step 3: Software safety requirements need to be
obtained, at the same time the process factors related
SSRs obtainment need to be considered. The safety level
safety case can be created on the basis of Software Top
Level Safety Argument Pattern.

Step 4: The hazardous software failures, failure
reasons and corrective actions need to be analyzed for
each of software safety requirements. The safety case for
software safety requirement satisfaction can be developed
based on Software Safety Requirement Satisfaction
Pattern.

3266 JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013

© 2013 ACADEMY PUBLISHER

Step 5: The safety case for hazardous software failure
elimination or mitigation on according to Hazardous
Software Failure Elimination Pattern.

Step 6: The program code and the testing result need
be obtained. The safety case for the realization of
hazardous software failure corrective actions can be
constructed based on Software Corrective Action
Satisfaction Pattern.

C. Experiment Application
A safety case has been constructed for safety-critical

braking control software(BCS) as an experimental
example for proposed approach. BCS is part of aircraft
braking system(ABS), used to brake the wheels while
touching the ground.

According to the process for constructing software
case, we first identify the ABS hazards by literature
research, historical data, expert interviews and
brainstorming. At the same time the severity of ABS
hazards is analyzed. Then BCS safety requirements are
developed after BCS contributions to the ABS hazards
are obtained. And then we analyze the hazardous
software failures, failure reasons and failure corrective
actions for each SSR using FMEA method. Last we
construct BCS safety arguments based on six GSN safety
case patterns for GDFSSC. To space limitations, here are

just a part of the application result. The ABS hazard and
its serverity is shown in table 2. Table 3 gives the BCS
contributions and SSR to the hazard ‘explosion or fire’.
Figure 8 shows the safety level safety case for BCS.

TABLE II.
THE ABS HAZARD AND ITS SEVERITY

Hazard Severity
explosion or fire Catastrophic
brake weakness Hazardous

slip and deviation Hazardous
oil pollution Major
false alarm Minor

TABLE III.
BCS CONTRIBUTIONS AND SSR TO THE HAZARD ‘EXPLOSION OR FIRE’

Hazard Software contributions to hazards SSR

explosion
or fire

BCS should have the function of grounding
protection. ABS will not brake if there are
the brake instructions when plane is in the
air. The brake command is delayed when

plane is on the ground.

grounding
protection

BCS should have the function of tire
pressure monitoring. The brake is released

when a single tire bursts. Antiskid is
removed when more than two tires burst

pressure
monitoring

Figure 8. The safety level safety case for BCS

The BCS safety case developed according to the

proposed approach in this paper has been approved by
some stakeholders, e.g. there are designers, operators,
managers and evidence providers. The application result
preliminarily shows the proposed approach is feasible and
more effective to develop a safety argument for
demonstrating the acceptability of software with respect
to safety.

V. CONCLUSIONS

Thus, it is a major challenge to construct compelling
and general software safety arguments.

This paper has presented a general framework that can
identify the types of the required evidence, and its
application method for generating software safety
arguments. Both the underlying concepts and a method of
implementation have been described. This framework
including validation argument and satisfaction argument
is a feasible approach to demonstrating the contribution
of software to system safety, and it would help to

JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013 3267

© 2013 ACADEMY PUBLISHER

improve the demonstration of software safety. Thus their
practical use, it is hoped, will help to produce safer
software.

The following work about this research is to apply
this framework and its application method on a real
project in order to further illustrate the effectiveness of
the proposed approach.

ACKNOWLEDGMENT

This work has been partially project supported by the
National Defense Pre-Research Foundation of China (No.
513190801) and has been supported by Beihang
University of Foundation, China (No. 501LZGF201211
4074).

REFERENCES

[1] “Control of Industrial Major Accidents Hazards
Regulations (CIMAH)”, 1984.

[2] Cullen THL, “The Public Inquiry into the Piper Alpha
Disaster 2 Volumes: Her Majesty's Stationary Office”,
1990.

[3] Kelly TP, “Arguing Safety: A Systematic Approach to
Managing Safety Cases”, University of York, Dept. of
Computer Science, 1998.

[4] “DS 00-55, Requirements of Safety Related Software in
Defence Equipment”. UK: Ministry of Defence, August
1997.

[5] “JSP 430 - Ship Safety Management System Handbook”,
UK: Ministry of Defence, January 1996.

[6] Bloomfield R., Bishop P., “Jones C.C.M., Froome P.K.D.:
ASCAD – Adelard Safety Case Development Manual.
Adelard”,1998.

[7] http://www.adelard.com/index.html.
[8] Kelly T P, McDermid J A, “A systematic approach to

safety case maintenance. Reliability Engineering and
System safety”, 2001(71): 271-284.

[9] Bate.I., Kelly T., “Architectural Considerations in the
Certification of Modular Systems”, In proceeding of
SAFECOMP 2003.

[10] Wagner S, Schatz B, Puchnerz S, et al, “A Case Study on
Safety Cases in the Automotive Domain: Modules,
Patterns, and Models”, 2010 IEEE 21st International
Symposium on Software Reliability Engineering. 2010.

[11] Yuan T, Kelly T, “Argument Schemes in Computer
System Safety Engineering”, Informal Logic. 2011, 31(2):
89-109.

[12] Zeng Fuping, Lu Minyan, Zhong Deming, “Using D-S
Evidence Theory to Evaluation of Confidence in Safety
Case”, Journal of Theoretical and Applied Information
Technology, 2013, 47(1):184-189.

[13] “DS 00-56, Safety Management Requirements for Defence
Systems”. UK: Ministry of Defence, December 1996.

[14] “GSN COMMUNITY STANDARD VERSION 1”, GSN
contributors, 2011.

Fuping Zeng is a lecturer in the School
of Reliability and System Engineering, at
Beihang University, China. Her research
interests are mainly software safety
analysis, safety design and evaluation.

Manyan Lu is a professor in the in the
School of Reliability and System
Engineering, at Beihang University,
China. Her research interests are mainly
software dependability engineering,
reliability engineering.

Deming Zhong is an associate professor
in the in the School of Reliability and
System Engineering, at Beihang
University, China. His research interests
are software quality evaluation, safety
engiering.

3268 JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013

© 2013 ACADEMY PUBLISHER

