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Abstract—Null dereference is a common occurring bug in 
programming languages such as C. In this paper, we 
propose a path-sensitive and context-sensitive approach that 
performs a backward dataflow analysis to identify null-
dereference bugs. One novel feature of our approach is that 
with the help of aliasing predicates, it can perform strong 
updates in presence of aliasing, thus eliminating false 
positives. The aliasing predicates are introduced on the 
premise of a canonical representation for program being 
analyzed. Moreover, a context-sensitive algorithm for inter-
procedural null-dereference analysis is also presented in this 
paper, which also contributes to improve accuracy. We have 
implemented this approach, and give an evaluation of it on a 
set of open source benchmarks. The experimental results 
verify the effectiveness of our approach, and show that it is 
suitable for exploring large real programs with reasonable 
accuracy.  
 
Index Terms—Null-dereference Analysis, Aliasing, Strong 
updates, Context-sensitive Inter-procedural Analysis 

I.  INTRODUCTION 

Null dereference is a kind of bug that commonly 
occurs in programs, and many static tools and approaches 
have been developed for detecting such bugs (e.g. [1, 2, 5, 
7, 13]). However, it’s not an easy work to achieve the 
detection in an accurate and efficient way. Aliasing is 
something that one cannot ignore when doing the null-
dereference analysis [19]. Failure to take into account 
aliasing can limit the usefulness of an approach. 
Furthermore, strong updates are required for precision, 
but are difficult to perform in presence of aliasing. Even 
pre-computed may-alias and must-alias information may 
not enable strong updates enough, since at a given 
program point two variables may be aliased under some 
paths and not aliased under other paths. In addition, inter-
procedural analysis also needs to be considered, for the 
occurrences of the null-dereference bugs often involve 
interactions among multiple procedures, [1]. 

In this paper, we propose a bug-detection approach 

which is context-sensitive and path-sensitive, to address 
the problem of identifying the null-dereference bugs in C 
programs. Starting at a dereference point in the program 
be analyzed, our approach propagates a set of symbolic 
states backwards along the control flow graph (CFG), to 
find whether there are sufficient bases to report this 
dereference as a possible bug. The symbolic state takes 
predicates as a condition, under which the value held by 
some witness (which represents a single memory location) 
is null and will flow into the initial dereference point. 
Once the condition is satisfied, a null-dereference bug is 
found. During the backward analysis, the symbolic state 
may be updated due to the effects of the assignment 
statements, and the predicates can be evaluated according 
to several custom-defined rules rather than a constraint 
solver. In addition, branch correlations are also taken into 
account to realize the path-sensitive analysis. A backward 
analysis only explores the program paths that are relevant 
to analyzing a dereference point, which makes our 
approach scalable. 

A novel feature of our approach is that by means of 
aliasing predicates, our approach achieves to perform 

 
Figure 1. Example code 
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strong updates in presence of aliasing. Considering a 
certain program point at which two l-value expressions 
[12] may be aliased with each other, our approach takes 
advantage of aliasing predicates to give a pair of 
hypotheses: one is that the aliasing relationship between 
the two expressions is definitely established; and the 
other is opposite. Then both the hypotheses can be 
respectively validated and invalidated by the backward 
analysis when it arrives at the statements that confirm or 
contradict the hypotheses. As a result, superfluous 
symbolic states are excluded and strong updates are 
accomplished, thus reducing many false positives. 

The aliasing predicates are introduced on the premise 
that all the expressions in the program being analyzed are 
translated into a canonical representation. Owing to this 
canonical representation, our approach can explicitly 
model the address of a memory location that an l-value 
expression refers to. Furthermore, our approach utilizes 
constraints on such addresses to determine whether l-
value expressions are aliased with each other or not. 
These constraints are just the so-called aliasing predicates. 

In addition to aliasing, interactions among multiple 
procedures introduces another complication that a 
dereference operation is directly or indirectly associated 
with a parameter, for the possible values of the parameter 
can be only known after all the call sites examined. 
Furthermore, procedural side effects and return values 
also have non-ignorable effects on data flows, which one 
needs to pay attention to when performing inter-
procedural analysis.  

Our approach achieves to perform inter-procedural 
analysis in a context-sensitive manner through the way of 
partial transfer functions, or summary table [9, 10], with a 
few modifications to adapt backward traversal. The main 
idea is that to perform efficient analysis of called 
procedures, our approach computes and saves summary 
information at call sites; by reusing summary information, 
it avoids reanalyzing a procedure in a context in which 
the procedure has been analyzed previously. 

We have implemented a prototype of our approach as 
an extension of Defect Testing System (DTS) [11], which 
is a general automatic bug-detection framework for C 
programs, especially GCC programs. To estimate the 
effectiveness of our approach, we apply this prototype on 
a set of open source GCC benchmarks. The preliminary 
experimental results are encouraging, for more bugs 
unknown before are found, and meanwhile false positives 
are reduce.  

In summary, the main benefit of our approach is that it 
enables an accurate and efficient null-dereference 
analysis for C programs. That is it detects as many 
potential bugs as possible; it performs strong updates in 
presence of aliasing, hence eliminates false positives that 
are identified by the one depending on weak updates; and 
it scales to large programs. The main contributions of this 
paper include: (1) a novel set of designed features that 
together enable a bug-detection approach for null 
dereferences in real C programs with reasonable precision; 
(2) an implementation of this approach; (3) experiment 

studies, using large open-source, that illustrate the 
effectiveness and usefulness of this approach. 

The rest of this paper is organized as follows: Section 
II explains the canonical representation introduced by our 
approach. And the main features of our approach are 
illustrated in section III, which also gives the algorithm 
for inter-procedural null-dereference analysis. Section IV 
first discusses the experimental environment and then 
reports on preliminary experimental results obtained from 
analyzing 5 open source GCC benchmarks. In section V, 
we survey related work, and conclude the paper in section 
VI. 

II. CANONICAL REPRESENTATION 

After the abstract syntax tree is built, all the 
expressions in the program under test are translated into a 
canonical representation with the following syntax: 

::=  *

Constant                   c Const
Primitive address     a Addr
Allocative address   t Alloc
Expression               e Expr   e c | a | t | e | e#f

∈
∈

∈
∈

 

There are five kinds of expressions in the canonical 
representation: constant c, primitive address a, allocative 
address t, dereference expression *e and offset expression 
e#f. Constants indicate numeric constants, string 
constants or sizeof expressions in the source code. 
Primitive addresses and allocative addresses respectively 
model symbolic addresses of variables and memory 
allocation sites. What should be pay attention to is that 
there is one address tmalloc per allocation site, and one 
symbolic address ax for each variable x. A dereference 
expression *e denotes the value of the memory location 
that expression e points to. And an offset expression e#f 
means an address in memory which is obtained by adding 
an offset f to the base location that expression e refers to. 
In addition, arithmetical and relational operations among 
expressions are also taken into account, but not explained 
here for simplicity. If x is a variable in the source code, 
then the C expression &x is described as ax; expression x, 
as *ax; expression *x, as **ax; expression x.f, as *(ax#f); 
and expression x->f, as *((*ax)#f).  

An l-value in C programs is a kind of expression that 
refers to a memory location [12]. Such an expression is 
translated into a dereference expression *e in the 

 
Figure 2. Structure of formula. The term e denotes an arbitrary 

expression in canonical representation. 
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canonical representation. The name l-value comes from 
the assignment e1 = e2 in which the left operand e1 must 
be an l-value expression. Furthermore, for an l-value *e 
in the canonical representation, the expression e explicitly 
holds the address of the memory location that *e 
represents.  

Aliasing is something that one cannot ignore when 
performing null-dereference analysis. And it is usually 
defined as follow: 
• Two l-value expressions are aliased if and only if 

they refer to the same memory location [19]. 
Considering what has been mentioned above, in the 
canonical representation, the definition of aliasing can be 
evolved as:  
• Two l-value expression *e1 and *e2 are aliased if 

and only if the predicate e1 == e2 (which means the 
address of the memory location that *e1 refers to 
should be equal to the address of the one that *e2 
refers to) is valid. 

In the rest of the paper, such kind of predicate is 
regarded as an aliasing predicate. And with the help of it, 
our approach can perform strong updates in presence of 
aliasing, thus enhancing precision of the null-dereference 
analysis. The details will be explained in section III.A. 

Besides the work above, for facilitating subsequent 
backward analysis, our approach also takes some other 
measures to optimize the structure of the source code. For 
instance, it introduces temporary variables to eliminate 
side effects in expressions and flatten nested procedure 
calls; and it converts short-circuit operators such as &&, ||, 
and ?: into if-else statements to eliminate control flow 
within expressions; and moreover, as shown in Figure X, 
it also adds two extra expressions to explicitly denote the 

true and the false branch conditions of an if-else 
statement (similar measures are taken for other selection 
statements). 

III. NULL-DEREFERENCE ANALYSIS 

Our approach is composed of a backward data-flow 
analysis. Starting from a dereference point, it propagates 
a series of symbolic states backwards along the control 
flow graph (CFG) to identify whether there is a NULL 
value that may be eventually transferred to the initial 
dereference point along some path, which implies that a 
null-dereference bug may occur.  

The symbolic state is of the form a tuple <w, es> that 
consists of two components: 
• Witness: the witness w, which is generally a 

dereference expression in our implementation, refers 
to a single memory location. It currently holds the 
value of interest that may flow into the initial 
dereference point. Besides, there are two special 
symbols ε and η for witness. The value of the former 
is definitely NULL and the value of the latter 
opposite. 

• Execution state: the execution state es is a formula 
which is defined in Figure 2. It represents the 
condition under which a null-dereference bug might 
occur. Specially, a predicate in the execution state is 
called as a root predicate as long as it constraints the 
witness.  

EXAMPLE 1. Consider the code shown in Figure 1 
and we will use it as an example to demonstrate how our 
approach works. The CFG built for this code is shown in 
Figure 3, where all the expression has been translated into  

TABLE I.  
WITNESS TRANSFORMATIONS AS WELL AS SOME CORRESPONDING ALTERNATIONS IN EXECUTION STATE.  
Statement Witness transformation 

Assignment 

*e1 = *(e2…#f) 

< w[*(e2...#f) / *e1], es[*(e2...#f) / *e1] ∧ e2 != NULL > 

if  *e1 ∈ Sub+(w) ∪ {w} 

< w, es ∧ e0 != el >, < w[*(e2...#f) / *e0], es[*(e2...#f) / *e0] ∧ e2 != NULL ∧ e0 == e1 > 

if  ∃ *e0 ∈ Sub+(w) ∪ {w} s.t. MayAlias(*e1, *e0) 

*e1 = a2 

< η, es[a2 / *e1] > 
if  w =s *e1 

< w[a2 / *e1], es[a2 / *e1] > 
if  *e1 ∈ Sub+(w) 

*e1 = t2 

<ε, es[t2 / *e1] > 
if  w =s *e1 

< w[t2 / *e1], es[t2 / *e1] > 
if  *e1 ∈ Sub+(w) 

*e1= NULL 
<ε, es[NULL/ *e1] > 
if  *e1 ∈ Sub+(w) 

Branch 
condition *e1== NULL 

< ε, es[NULL / *el] > 
if  w =s *e1 
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Figure 3. CFG built for the example code shown in Figure 1 and Symbolic states propagated backwards along the CFG to check whether there exists a 

null-dereference bug at label 11. 

 
Figure 4. A comparison between weak updates and strong updates. 
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the canonical representation, and specially two extra 
nodes (5T and 5F) are added as successors of if-else 
statement at label 5 to explicitly represent its true and 
false branch conditions, similar measure is also taken on 
the if-else statement at label 8. In order to check the 
dereference operation at label 11 is a bug or not, our 
approach propagates a series of symbolic states 
backwards along the CFG. The initial state is <*ay, *ay 
== NULL> in which the current witness is the 
dereference expression *ay and the current execution state 
is the root predicate *ay == NULL. 

Each statement potentially transforms the symbolic 
state that comes from its successor. The transfer functions 
for the two components of a symbolic state are 

::  
  (  )
updateWitness Statement Witness Execution state

Witness Execution stateρ
× ×

→ ×
 

and  ::  
   (  )
updateEState Statement Execution state

Execution stateρ
×

→
 

which are respectively explained in section III.A and 
section III.B. Then the function 

::  
   (  )
update Statement Witness Execution state

Witness Execution stateρ
× ×

→ ×
 

defines the overall backward effect of an individual 
statement on a state tuple: 

( ,  ,  ) = 
{ ',  '  |  ',  ' ( , ,  )
                        ',  ' ( ) }

update st w es
w es w es updateWitness st w es

w w es updateEState es

< >
< > < >∈ < >

= ∈∨
 

The objective of the transformation at an individual 
statement is to accept a post-state φ = <w, es>, and 
return a set of pre-states φ’ = <w’, es’> that are over-
approximation of the weakest preconditions [6] of φ 
concerning the statement. 

A symbolic state is propagated backwards along the 
control flow graph until one of the following conditions 
encountered: a) the witness is updated to η; b) the 
execution state evaluates false; c) the witness is updated 
to ε and the execution state evaluates to true. In the first 
two cases, the analysis abandons traversal, since either 
there is no NULL value that flows into the initial 
dereference point, or the path that the analysis currently 
traces is infeasible. In the third case, a null-dereference 
bug is identified and a bug-found message will be emitted. 

What should be emphasized is that: a symbolic state is 
regarded as invalid if it satisfies either of the first two 
cases; otherwise, a symbolic state is regarded as valid. 
Moreover, a symbolic state is called as a bug-found state 
whenever it satisfies the third case.  

A.  Witness Transformations and Strong Updates 
In this subsection, we begin to discuss the witness 

transformations as well as some corresponding alterations 
in the execution state.  

The idea behind the transformations is based on the 
observation that at every program point, there is only a 
single witness l-value that currently holds the value of 

interest, such that subsequent statements will copy the 
value of interest from this l-value to the dereference point 
being detected. Therefore, when proceeding backward 
analysis, our approach re-traces the chain of assignment 
statements that cause the value of interest to be 
transferred among l-values, and then accordingly updates 
the witness along with some corresponding alterations in 
the execution state. 

In some simple cases, such transformations can be 
easily regarded as performing substitutions going 
backwards.  

EXAMPLE 2. As shown in Figure 3, we start the null-
dereference analysis from the statement at label 11 to 
identify whether there exists a bug or not. *ay is taken as 
the initial witness. At label 10, we find that the value of 
*ay is copied from *((*ax)#f), thus we substitute *((*ax)#f)  
for the witness accordingly and meanwhile replace every 
occurrence of *ay in the execution state with *((*ax)#f). In 
addition, an predicate *ay != NULL is introduced into the 
execution state to ensure that the value of the witness can 
be transferred to the dereference point at label 11 without 
any exception. Similar transformation also occurs at label 
9. 

Besides the cases above, aliasing is something that one 
cannot ignore when doing the null-dereference analysis; 
failure to take into account aliasing can limit the 
usefulness of an approach. Furthermore, strong updates 
are required for precision but difficult to perform. Even 
precise pre-computed may-alias and must-alias 
information may not enable strong updates enough, since 
at a given program point two l-values may be aliased 
under some paths and not aliased under other paths. 

Owing to the canonical representation, we can 
explicitly model the address of a single memory location 
that an l-value refers to. Moreover, for two l-value *e1 
and *e2, we utilize the predicate e1 == e2 and e1 != e2 to 
respectively represent two incompatible condition: the 
former under which *e1 and *e2 are aliased; and the latter 
under which they are not. Such predicates are the so-
called aliasing predicates mentioned in previous section. 
With the help of them, our approach achieves to perform 
strong updates in presence of aliasing. Consider an 
assignment *el = *er and suppose the witness *ew is not 
syntactically equal to but may be aliased with *el. We (i) 
hypothesize that *ew and *el are aliased, then substitutes 
*er for the witness and add an aliasing predicate ew == el 
into the execution state (in which every occurrence of *ew 
is replaced with *er) through logical AND operation; and 

Figure 5. Definition of sub-expressions 
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also (ii) hypothesize that *ew and *el are not aliased, then 
keep *ew as the witness and add an aliasing predicate 
ew != el into the execution state (which has no other 
alterations) through logical AND operation too. Either of 
the hypotheses can be confirmed or contradicted by the 
subsequent analysis when it arrives at the statement that 
validates or invalidates the corresponding aliasing 
predicate. 

EXAMPLE 3. Let’s explore the symbolic states 
presented in Figure 3. *az is one witness following the 
statement at label 4. We don’t have a syntactic match 
between **ap and *az, but a query to pre-computed may-
alias information shows that they may be aliased. To 
handle this situation soundly, we take measure as talked 
above to obtain two updated symbolic states: one in 
which an aliasing predicate az == *ap is introduced and 
the witness is accordingly updated to *((*ax)#f); one in 
which an opposite aliasing predicate az != *ap is 
introduced and the witness is kept as *az. Subsequently at 
label 3, we abandon the second symbolic state, for its 
corresponding aliasing predicate gets invalidated due to 
the find that the value of *ap comes from az. 

Moreover, we give a comparison between strong 
updates and weak updates in Figure 4 (the code shown in 
Figure 4 is a fragment of the one shown in Figure 1), and 
the weak updates presented here are very similar as the 
approaches adopted by PSE [21] and Xylem [7].The main 
difference between the two is whether to apply aliasing 
predicates during the analysis. The strong updates are 
able to exclude the spurious states generated at label 4. In 
contrast, the weak updates cannot, hence yield a false 
positive at label 2. 

What has been mentioned above is all covered in the 
function updateWitness. It accepts a statement st and a 
witness w as well as an execution state es, and computes 
a set of l-values that are copied by st to w, meanwhile 
there are some corresponding alterations in es. Table I 
defines this function for some statements; and it is 
identity for others. The notations are as follow: the term 
e0, e1 and e2 refer to arbitrary expressions in the canonical 
representation; a2 denotes a primitive address, and t2 
represents a allocative address; for a witness w and 
expression e1 and e2, w[e1/e2] denotes w in which every 
occurrence of e2 is replaced by e1, and es[e1/e2] has a 
similar meaning; Sub+(e), which is defined in Figure 5, 
represents a set that includes all the sub-expressions of 

expression e, and one can easily deduce that any element 
in Sub+(e) maps a prefix of the C expression that e 
corresponds to; *(e…#f) is used to represent either *e or 
*(e#f). The transformations at assignments are not 
repeated again for the idea behind them has been 
discussed above. Given branch condition *e1 == NULL, 
it is regarded as equivalent to assignment *e1 = NULL in 
case that it is a null check for the witness, then the 
witness is updated according to what occurs at 
assignment *e1 = NULL.  

B.  Execution State Transformations and Grouping 
Symbolic States 

In this subsection, we first talk about the function 
updateEState, which is used to perform the 
transformations for the execution state. It accepts a 
statement and an execution state, and then returns a set of 
possible execution states just preceding the statement. 

Table II defines this function for assignments and 
branch conditions; and it is identity for other statements. 
Given an execution state es which is of the form a 
formula, the notation Term(es) means a set that includes 
all the terms in es; and as shown in Figure 5 the sub-
expressions of each term in es together constitute 
Sub+(es). 

Similar as what changes happen to a witness, every 
term in an execution state is potentially updated due to 
the effect of an assignment statement. And in respect to 
the transformation that occurs at a branch condition such 
as e1 == e2, the updated execution state is of the form a 
conjunct which contains the branch condition and the 
predicates in the incoming state. In this way, our 
approach keeps correlation among different branches and 
achieves path-sensitive analysis.  

EXAMPLE 4. As shown in Figure 3, the symbolic 
state coming from the true branch of the if-else statement 
at label 8 cannot be propagated to the true branch of the 
if-else statement at label 5, for the branch condition 
contained in its execution state is invalidated by the 
statement at label 6. 

TABLE II.  
EXECUTION STATE TRANSFORMATIONS AT SOME STATEMENTS 

Statement Execution state transformation 

Assignment *e1 = e2 

es[e2 / *e1] 

if  *e1 ∈ Sub+(es) ∪ Term(es) 

es ∧ ( e0 != e1 ), es[e2 / *e0] ∧ ( e0 == el ) 
if  ∃ *e0 ∈ Sub+(es) ∪ Term(es)  

s.t. MayAlias(*e1, *e0) 

Branch 
condition e1 op e2 es ∧ ( e1 op e2) 

 

Figure 6. Simplification rules 
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Besides what has been mentioned above, in order to 
avoid an exponential blow-up of paths, our approach 
takes a measure that inspired by the forward analysis in 
ESP [4] to group the symbolic states. The function Merge, 
which is defined as follow,  

[ ]( ) { ,  ( )  |   }

            [ ] {  |    ( ) }

 [ ]s ss dMerge ss w es s w LVs

where ss d w s ss w witness s

ss w∈ ∅= < > ∈

= ∈ =

∨ ∧ ≠

∧
 

is used to accomplish the process. The term LVs means a 
set of l-value expressions in a procedure; witness(s) and 
es(s) are separately used to obtain the witness and 
execution state of a symbolic state s. This function 
accepts a set of symbolic states, and then groups the 
elements of the set based on the witness. All the 
execution states in one group are merged together to 
construct a formula by logical OR operation. For 
example, after the merging of < *e, e == NULL ∧ *ac == 0 > and  < *e, e == NULL ∧ *ac != 0 >, the 
symbolic state < *e, e == NULL > is obtained. 

C.  Simplification Rules 
After the above transformations, each predicate in an 

execution state can be evaluated to true, false or 
unknown according to some custom-defined rules; and 
furthermore, the formula can be validated, invalidate or 
simplified.  

Figure 6 shows a few of sampling rules used in our 
simplifier. The notations e1 and e2 refer to different 
arbitrary expressions in the canonical representation; and 
either a1 or a2 means a primitive address that denotes the 
address of a variable; t1 and t2 are distinct allocative 
addresses for different memory allocation sites; as for the 
symbols f, p and q, they are used to describe distinct 
offsets away from some base locations.  

Rule 1 is straightforward.  
Rule 2-3 hold the observation that no matter a 

primitive address or an allocation address is unique, since 
the memory locations allocated at different sites are 
disjoint and different variable are stored in distinct 
memory locations. Furthermore, Rule 4 denotes that the 
primitive address for any variable is never equal to 
NULL. But as for an allocative address, because of the 
potential failure of memory allocation, it is considered to 
be equal to NULL for conservation. Rule 5 keeps this 
idea and it is reasonable, for many develop standards (e.g. 
MISRA C [20]) demand there must be a null check after 
each dynamic allocation in C program.  

Rule 6 shows that for two offset expressions, as long 
as their offsets are different, no matter their bases are 
equal or not, they are distinct. 

Rule 7 is based on the fact that a conjunct with a pair 
of conflicting predicates is invalid and evaluated to false. 

Rule 8 demonstrates a kind of simplification method. 
That is for a conjunct with a predicate in the form of e1 == c1, it replaces the other occurrences of e1 in the 
conjunct with c1. Considering the conjunct shown in Rule 
8, after the replacement, if the constant c1 is really greater 
than the constant c2, then the conjunct is reduced to e1 == c1; otherwise it is evaluated to false, for its sub 
predicate c1 > c2 is invalid. 

 
Figure 7. Algorithm for inter-procedural analysis 
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Rule 9 takes a similar method of Rule 8 to do the 
simplification. 

What should be pay attention is that our approach 
repeatedly applies these simplification rules on a formula 
until a fix pointer is reached. 

D.  Inter-procedural Algorithm and Optimizations 
The algorithm for inter-procedural null-dereference 

analysis is presented in Figure 7. Our approach achieves 
to perform inter-procedural analysis in a context-sensitive 
manner through the way of partial transfer functions, or 
summary table [9, 10], with a few modifications to adapt 
backward traversal. The reason why partial transfer 
functions are used is that: an effective and classical way 
to do inter-procedural analysis is by means of transfer 
functions to summarize the behavior of procedures for all 
possible inputs [10]; however, for null-dereference 
analysis that relates to pointers, enumerating all the 
possible aliasing combinations for every input to form 
complete transfer functions is impractical, moreover, 
most of those combinations typically never occur in the 
program under test; thus we compute partial transfer 
functions to summarize the procedures for relevant inputs 
that occur in the program. 

The main idea behind the algorithm is as follow: 
suppose we are processing procedure foo and we 
encounter a call to another procedure bar. We would like 
to apply a transfer function to map the symbolic state s at 
the exit of bar to associated states that would result at the 
entry of bar after propagating s through the procedure 
(and its transitive callees). However, since the body of 

bar contains multiple statements, the transfer function 
must be generated dynamically by analyzing bar. This is 
done be maintaining and updating a summary table ∑ for 
bar. When a call to bar is encountered in foo with 
symbolic state s, the summary table for bar is consulted. 
If no corresponding summary information exits, the 
algorithm descends into bar to analyze it. A call stack CS 
is used to ensure context-sensitive processing of called 
procedure. After returning from bar, the algorithm saves 
the summary information to reuse in subsequent analysis.  

On reaching the entry of foo, the algorithm collects the 
symbolic states propagated here. If foo is not being 
analyzed in a specific context (i.e. the call stack is empty), 
the algorithm continues to propagate these states through 
all the predecessors of foo (and its transitive callers) until 
they can be validated or invalidated. This process is 
accomplished with the help of a container Γ. 

Because of the trade-off among efficiency, cost and 
accuracy, we take some optimization measures to 
determine the extent to which a symbolic state is explored. 

First, we bound the number of predicates in an 
execution state. To deal with this, we associate an age 
with every predicate, which is the number of statements it 
has been propagated through; we have a threshold k1, and 
drop (i.e. reduce to true) a predicate whenever its age 
increase beyond k1. The idea behind dropping old 
predicates is such an observation that branch correlations 
in paths typically occur between branches that are near 
each other in the code. What should be emphasized is that 
the root and aliasing predicates are never dropped. 

Second, we restrict the length of l-value expressions in 
a symbolic state. Another threshold k2 is used here. If the 
length of an l-value expression exceeds k2, we switch that 
expression to an abstract location. The abstract location 
representation is an identifier taken from a finite partition 
of all memory locations obtained from a pre-computed 
flow-insensitive points-to analysis. This representation is 
less precise, since a single abstract location may represent 
a set of memory locations. We use abstract locations to 
ensure termination of the analysis (e.g. on programs with 
recursive data structures).  

Beside the above two, we group the symbolic states 
propagated to the same point in the program. This process 
has been discussed in section III.B and will be not 
repeated again here. 

IV. EXPERIMENTAL EVALUATION 

A. Experimental Setup 
We have implemented a prototype of our approach as 

an extension of Defect Test System (DTS), which is a 
general automatic bug-detection framework for C 
programs, especially GCC programs. In the next 
subsection, to estimate the effectiveness and the accuracy 
of our approach, we conduct two experiments to compare 
it with the original approach that DTS used to perform 
null-dereference detection. That approach depends on a 
forward interval analysis and has been verified as a 
reliable approach [11]. All the two experiments are run 
on a dual-processor 1.80GHZ Pentium E2160 with a 2GB Figure 8. Experimental sample code.  

JOURNAL OF SOFTWARE, VOL. 8, NO. 12, DECEMBER 2013 3127

© 2013 ACADEMY PUBLISHER



physical memory, and have been measured with enough 
repetitions to avoid mistakes. Besides, for simplicity, the 
notation DTS-F and DTS-B are used to respectively 
indicate the approach that DTS ever used and the 
approach that we propose in this paper. 

B. Experimentation Analysis and Discussion 
EXPERIMENTAION 1. We first select some sample 

codes inserted with null-dereference bugs manually as 
experimental object to prove the effectiveness of our 
approach in some extent. 

There are four inspection points in the sample code 
that is demonstrated in Table III. The BP entries denote 
which one is confirmed as a genuine bug by artificial 
identification. As shown in Table III, DTS-F reports three 
bugs at L9, L21 and L22, among which the first two are 
both false positives. Since DTS-F takes a conservative 
measure to deal with the aliasing situation, it believes that 
the value of y at L9 may be NULL, therefore leading to a 
false positive. Due to the context-insensitive manner 
taken by DTS-F to do inter-procedural analysis, it cannot 
distinguish the distinct context conditions at different call 
sites, and then it asserts not only the invoking at L22 but 
also the one at L21 causes a null-dereference bug inside 
of procedure f2. By contrast, DTS-B finds the genuine 
bug at L22 with no false positive, which owns to strong 
updates in presence of aliasing and inter-procedural 
analysis in a context-sensitive manner. 

 EXPERIMENTAION 2. In this part, to investigate 
the capability of DTS-B that detects null-dereference 
bugs in practice, we apply both DTS-B and DTS-F on 5 
open source benchmarks. We believe all the benchmarks 
to be challenging and interesting, since they all contain 
many complex structures.  

The experimental result is presented in Table IV, in 
which: the LINE(s) entries indicate the total lines of 
source code; the term REP and DEF respectively denote 
the number of bugs reported by an approach and the 
corresponding number of genuine bugs identified by 
manual confirmation; the FPR entries represent the false 
positive rate of an approach, whose computational 
formula is FPR=(REP-DEF)/REP*100% ; and the FNR 
entries show the false negative rate of an approach, 
whose computational formula is  

   
FNR(DTS-F)=

OTHER(DTS-B)/(DEF(DTS-F)+DEF(DTS-B)-SAME)*100%
 

and  
FNR(DTS-B)=

OTHER(DTS-F)/(DEF(DTS-F)+DEF(DTS-B)-SAME)*100%
. 

According to the statistics, there are 100725 lines of 
source code together in all the benchmarks. DTS-F 
reports 377 bugs with 321 bugs identified, whereas DTS-
B finds 405 bugs with 365 bugs confirmed. In contrast, 
DTS-B detects 13.71% more bugs (365 → 321); and its 
FPR drops by 4.98%, meanwhile its FNR decreases by 
9.26%. All those imply that DTS-B can improve the 
accuracy of detection. Some details are given below.  

No surprising, both the approaches find some common 
bugs. For instance, such kind of bug “p = malloc(); *p 
= …;”, which means that there exists no null check 
between a memory allocation and its relevant dereference 
operation, is frequently detected. Moreover, DTS-B 
eliminates some false positives and also finds some fresh 
bugs unknown before. Considering the code fragment 
presented in Figure 9, at line 99 in file antiword-
0.37/worddos.c, DTS-F reports a null-dereference bug 
that occurs inside the callee vGetPropertyInfo, for its 
second actual parameter is NULL. But in fact, this bug 
can happen only when the second parameter is NULL and 
meanwhile the last parameter is equal to 7 or 8. Owing to 
context-sensitive inter-procedural analysis, DTS-B 
eliminates this false positive. As for the dereference 
operation at line 384 in Figure 10, DTS-B excludes its 
possibility as a null-dereference bug, since the false 
branch condition of if statement at line 379 ensures that 
the value of pAnchor cannot be NULL. What is shown in 
Figure 11 is a genuine bug found by DTS-B, whereas 
DTS-F neglects it falsely. That is a NULL value held by 
psys may flow into the statement at 682 through the true 
branch of if statement at 665. 

We also analyze the false positives introduced by 
DTS-B and have found some typical reasons. Specific 
structures applied in the test code give rise to some false 
positives. For instance, in file /barcode-0.98/code128.c, 
there exists an array variable codeset consisting of over 

100 members, which causes several analyses failed. Some 

TABLE III.  
RESULT OF EXPERIMENTATION 1 

LOC BP DTS-F DTS-B 

L7 N   

L9 N R  

L21 N R  

L22 Y R R 

File: antiword-0.37/worddos.c
In caller procedure iInitDocumentDOS at line 70
99: vGetPropertyInfo(pFile, NULL, 

NULL, 0, NULL, 0); //false positive

File: antiword-0.37/perperties.c
In callee vGetPropertyInfo at line 17
17: void
18: vGetPropertyInfo(FILE *pFile, const pps_info_type *pPPS,

const ULONG *aulBBD, size_t tBBDLen,
const ULONG *aulSBD, size_t tSBDLen,
const ULONG *aucHeader, int iWordVersion)

22: {

......
37:       switch (iWordVersion) {

...... 
83:          case 6:
84:          case 7:
85:               vGet6Stylesheet(pFile, pPPS->tWordDocument.ulSB,
86:                        aulBBD, tBBDLen, aucHeader);

...... 

Figure 9. One false positive eliminated by DTS-B 
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other false positives are mainly due to optimization 
measures taken by DTS-B viz. dropping aged predicates 
and abstracting overlength l-values. Those usually happen 
when recursive data structures are encountered. Given the 
efficiency of our approach proposed in this paper, these 
accuracy losses can be acceptable. 

In summary, the experimental results demonstrate the 
effectiveness of the approach proposed in this paper, and 
show that it is scalable to large real programs with 
reasonable accuracy.  

V. RELATED WORK 

Many approaches and tools [1, 2, 5, 7, 13, 24] have 
been developed for analyses for null dereference and 
similar safety properties. From the vast literature 
covering this space, we briefly review some of the 
relevant related work. 

Xylem [7] is the most closely related approach to ours, 
though it targets null-dereference analysis of Java 
program. Our approach has several attributes that are 
inspired by Xylem: a backward dataflow analysis from 
each dereference, predicates as dataflow facts, custom-
defined simplification rules for predicates rather than a 
constraint solver. Compared to Xylem, our technical 
innovation is in terms of how we perform strong updates 
instead of weak updates in presence of aliasing; strong 
updates are required for better precision in null-
dereference analysis. 

Salsa [3], also proposed by Xylem’s authors, is an 
approach that aims at sound null-dereference verification. 
It is based on abstract interpretation and gradually 
expands the inter-procedural scope of analysis to 
establish the safety of a dereference. The goal of Salsa is 
to show the absence of bugs. But it may often report 
many spurious warnings (or false positives). By contrast, 
our approach focuses on bug detection to identify as 
many bugs as possible and it emphasizes not on reporting 
all potential bugs, but on reducing false positives. The 
two kinds of approaches represent different trade-offs and 
can be complementary.  

FindBugs [14] is a widely used tool for Java that has 
paid particular attention to finding null dereference bugs 
[15]. FindBugs pattern-matches on constructs that are 
common sources of certain error classed and performs 
some data-flow computation. As our approach is target 
for C programs, it is not possible to do a direct 
comparison. Nevertheless, it is clear that FindBugs would 

not find the many path-sensitive, inter-procedural, and 
aliasing-dependent bugs that our approach uncovers. 

Similar as our approach, PSE [21] performs a 
backward symbolic analysis with the goal of tracing back 
null-dereference bugs and disprove such bugs. But PSE 
does not represent the entire path condition, and 
sometimes falls back to abstract representations of the 
heap. 

Strom and Yellin [5] define a partially path-sensitive 
backward dataflow analysis for checking typestate 
properties, specifically uninitialized variables. By 
comparison, our approach is able to track a value 
backward through pointer-based data structures and 
handle memory aliasing. And our approach prunes out 
infeasible paths through evaluation of predicates.  

Prefix [1] can detect possible null-dereference bugs in 
C and C++ programs by symbolic simulation. Like our 
approach, Prefix uses procedure summaries for scalability 
and is path-sensitive. However, Prefix explicitly explores 
paths one at a time, which is expensive for procedures 
with many paths. Heuristics limit the search to a small set 
of “interesting” paths. In contrast, our approach implicitly 
represents all paths using predicate constraints and path 
exploration is as part of predicate evaluation.  

Xie et.al. [8] present similar approaches for detecting a 
broad class of memory errors. Their approaches feature a 
bottom-up analysis of procedures to compute summaries, 
and a forward path-sensitive analysis within each 

 
Figure 10. Another false positive eliminated by DTS-B 

TABLE IV.  
RESULT OF EXPERIMENTATION 2 

PROJECT LINE(S) 
DTS-F DTS-B 

REP DEF SAME OTHER FPR FNR REP DEF SAME OTHER FPR FNR
antiword-0.37 20213 49 43 39 4 12.24% 0 39 39 39 0 0 8.16%

barcode-0.98 3409 6 6 5 1 0 27.27% 10 8 5 3 0.2 9.09%

spell-1.0 1991 39 21 21 0 46.15% 7.84% 33 25 21 4 24.24% 0 

sphinxbase-0.3 22517 110 97 94 3 11.82% 15.86% 129 117 94 23 9.30% 2.07%

uucp-1.07 52595 173 154 148 6 10.98% 12.79% 194 176 148 28 9.28% 2.74%

total 100725 377 321 307 14 14.85% 12.21% 405 365 307 58 9.88% 2.95%
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procedure that prunes out infeasible paths. By contrast, 
our approach performs a backward analysis within each 
procedure to do the bug detection. 

Some approaches attack null dereferences using user 
annotations on procedure parameters and local checking 
of each procedure body. LCLint [16] uses an unsound 
method to check the safety of dereferences of parameters 
annotated as may-be-null. More recent annotation-based 
systems are much closer to being sound [17, 18]. Current 
annotation languages, which mark a single parameter as 
possibly null or definitely not null, are not expressive 
enough to capture the more path-sensitive and inter-
procedural relationships.  

Model checking [2, 13, 22, 23] is used to check a 
number of safety properties, involving null dereferences. 
Saturn [2] and Calysto [13] generate constraints in 
propositional logic and use Boolean satisfiability solvers 
to discharge the constraints. Scalability of the techniques 
depend both on the scalability of the underlying SAT 
solvers as well as carefully tuned heuristics which keep 
the size of the constraints small. Notably, Saturn 
computes modular summaries to enable inter-procedural 
summary-based analysis. Similar measure is also taken 
by our approach. Whereas Calysto does not perform 
summary-based inter-procedural analysis, but makes use 
of inlined callee representations instead.  

VI. CONCLUSION AND FUTURE WORK 

For identifying null-dereference bugs, we have 
presented an approach that is based on backward 
dataflow analysis. Owing to aliasing predicates, this 
approach can perform strong updates in presence of 
aliasing, thus eliminating many false positives. In 
addition, the other designed features, for instance context-

sensitive inter-procedural analysis, have also contributed 
to improve precision. We have implemented this 
approach, and applied it on a set of 5 open source GCC 
benchmarks. The preliminary experimental results verify 
the effectiveness of this approach, and show that it is 
suitable for exploring large real programs with reasonable 
accuracy. Future work will be guided by the objective of 
continuing to improve the efficiency of the approach, 
while still remaining its precision. In particular, we would 
like to investigate techniques to deal better with 
references to arrays and recursive data structures. Besides, 
we would also like to investigate applications of our 
approach to check problems other that null-dereference 
analysis. 
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