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Abstract—Undeniable signatures, introduced by Chaum
and van Antwerpen, require a verifier to interact with the
signer to verify a signature, and hence allow the signer
to control the verifiability of his signatures. Convertible
undeniable signatures allow the signer to convert unde-
niable signatures into ordinary signatures. In this paper
we propose some extended variants of the famous Diffie-
Hellman assumption on bilinear group system, then design
a new convertible undeniable signature scheme and provide
proofs for all relevant security properties based on the new
assumption in the random oracle model. The advantages of
our scheme are the short length of the signatures, the low
computational cost of the signature, the receipt generation
and the provable security.

Index Terms—convertible undeniable signature, provable
security, bilinear pairing

I. INTRODUCTION

The two most important properties of ordinary digital
signatures are nonrepudiation and universal verifiability.
Non-repudiation guarantees that a signer cannot deny his
or her commitment to a message or a contract at a later
time, and the property of universal verifiability allows
everybody to check the correctness of a signature. For
privacy reasons, it is preferable, in many applications,
that the verification of signatures be controlled or (at least)
limited by the signer. Therefore, the concept of undeniable
signatures was introduced by Chaum and van Antwerpen
[1]. In this setting, the verification (and the denial) of
a signature requires the cooperation of the signer. And
non-repudiation is still guaranteed, since the signer cannot
convince the verifier that a correct signature is invalid or
that an incorrect signature is valid.

The security of the protocol in [1] relies on the discrete
logarithm problem, but suffers from the fact that the
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interactive protocols were not zero-knowledge. One year
later, Chaum improved significantly the initial proposal by
providing a zero-knowledge version in [2]. In 1991, the
concept has been refined by giving the possibility to trans-
form an undeniable signature into a self-authenticating
signature. These convertible undeniable signatures, pro-
posed in [3] by Boyar, Chaum, Damgard and Pedersen,
provide individual and universal conversions of the signa-
tures. Unfortunately, this ElGamal like scheme has been
broken in 1996 by Michels, Petersen, and Horster [5]
who proposed a repaired version with heuristic security.
Since then, many schemes have then been proposed, based
upon classical signatures, such as Schnorr [6], ElGamal
[7] and RSA [8]–[10]. In 2004, Monnerat and Vaudenay
[11] proposed short undeniable signatures based on the
computation of characters which do not provide the
conversion property. In 2005, Laguillaumie and Vergnaud
[12] presented a new efficient convertible undeniable sig-
nature scheme based on bilinear maps. Its unforgeability
is tightly related, in the random oracle model, to the
computational Diffie-Hellman problem and its anonymity
to a non-standard decisional assumption. Convertible un-
deniable signatures have given rise to many applications
in cryptography [3], [13], [14]. In 2006, Kurosawa and
Takagi [15] proposed a new approach for selectively
convertible undeniable signature Schemes, and presented
two efficient schemes based on RSA. In 2007, Yue et
al. [16] constructed a new convertible signature without
random oracles based Waters signature scheme. In 2008,
Aimani et al. [17] gave two specific approaches for build-
ing universally convertible undeniable signatures from a
large class of pairing-based signatures. In 2009, Huang
and Wong [18] proposed a new efficient construction of
fully functional convertible undeniable signature, which
supports both selective conversion and universal conver-
sion, and is immune to the claimability attacks. In 2010,
Phong et al. [19] proposed two convertible undeniable
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signature schemes satisfying anonymity in the standard
model. In 2010, Kikuchi et al. [20] proposed a framework
for constructing convertible undeniable signatures from
weakly-secure standard signatures, and presented a con-
crete instantiation employing a standard signature scheme
proposed at Eurocrypt’09. In 2011, Schuldt and Matsuura
[21] presented an updated definition and security model
for schemes allowing delegation, and highlight a new
essential security property, token soundness and proposed
a new convertible undeniable signature scheme satisfying
this security. In 2012, Zhao and Ye [22] proposed a cer-
tificateless undeniable signature scheme based on bilinear
maps.

From the above survey, it is obvious that the design-
ing of provably secure convertible undeniable signature
scheme with high efficiency and short length has been
a cryptographic task full of challenge. Motivated by this
challenge, we propose a new convertible undeniable sig-
nature scheme which can be seen as the natural extension
of the BLS short signature scheme [23] and the unde-
niable signature in [1]. Like the convertible undeniable
signature scheme in [12], our scheme also use non-
standard computational number theory assumption rela-
tive to the so-called xyz-Diffie-Hellman problem. Howev-
er, our generalization and extension of the Diffie-Hellman
assumption on bilinear groups seems more natural and the
resulting convertible undeniable scheme is more compat-
ible to the atomic digital signature (BLS short signature)
and more efficient in computation and size. Additionally,
our proving technique is also different from that of [12].
In all, our scheme has the following advantages over its
counterparts : short length, computational efficiency, both
universally and individually convertibility, and provable
security in the random oracle model [24].

The rest is organized as follows. In Section 2, we
review some mathematical background including bi-
linear maps, the number-theoretic problems underlying
our scheme and designated-verifier noninteractive zero-
knowledge proof system. Specially, we gradually extend
the famous Diffie-Hellman assumption to a new but less
standard one — one-more tripartite-Diffie-Hellman prob-
lem — for the provable security. We recall the formaliza-
tion of convertible undeniable signature scheme and its
security model in Section 3. In Section 4, we describe
our new convertible undeniable signature scheme. And
then we prove its security in the random oracle model in
Section 5. At last, we give the conclusion.

II. PRELIMINARY

A. Bilinear Map

Recently, bilinear pairings have found various applica-
tions in cryptography and have allowed us to construct
many new cryptographic schemes [25]–[28]. Our con-
vertible undeniable signature scheme are also based on
such generally applied cryptographic primitive — bilinear
map. We now recall some definition relative to the bilinear
group systems.

Definition 1. (Bilinear group system). A bilinear group
system is a tuple (q, P1, P2, gT ,G1,G2,GT , e, ψ) where q
is a prime number, G1,G2,GT are groups of order q with
efficiently computable inner laws, G1 = 〈P1〉, G2 = 〈P2〉,
GT = 〈gT 〉, the bilinear map e : G1 × G2 → GT is an
efficiently computable map such that for all x, y ∈ Z

∗
q ,

e(xP1, yP2) = e(P1, P2)
xy holds and e(P1, P2) �= 1 and

ψ : G2 → G1 is an efficiently computable isomorphism
with ψ(P2) = P1.

Definition 2. (Bilinear group system generator).
A bilinear group system generator is a probabilis-
tic algorithm BGSG that takes as input a security
parameter 1k and outputs a bilinear group system
(q, P1, P2, gT ,G1,G2,GT , e, ψ)

R←− BGSG(1k) such
that q is a k-bit prime number.

B. Computational Problems in Bilinear Group Systems
We now give the description of some complexity as-

sumptions.
Computational Co-Diffie-Hellman (Co-CDH) Given a
tuple of (xP2, V ) ∈ G2 ×G1, compute xV ∈ G1.
Computational Co-Tripartite-Diffie-Hellman (CCTD-
H) Given group elements (xP2, yP2, V ) ∈ G

2
2 × G1,

compute xyV ∈ G1.
Decisional Co-Tripartite-Diffie-Hellman (DCTDH)
Given a tuple of group elements (xP2, yP2, V, V

′) ∈
G

2
2 ×G

2
1, decide whether V ′ = xyV .

The designing of our new undeniable signature is main-
ly based upon the observation on the above pair of prob-
lems (CCTDH and DCTDH) which just correspond to the
authenticity and the privacy of our scheme. However, for
provable security of our scheme, we need more formal
and stronger assumption than the above “naked” ones. In
[12], the so-called xyz-Diffie-Hellman (computational and
decisional) problems similar to the above problems are
proposed. They discussed the corresponding assumptions
and proposed a new protocol of undeniable signature
according to the similar idea to us. However, in this
paper, we propose a seemingly more common extension
of DCTDH and hence get more efficient, more compact
and shorter undeniable signature.

For provable security of some cryptographic primitives
and more efficiency, we often turn to some stronger
assumption. The “one-more” variants of some standard
assumption have been applied to prove the security of
many cryptographic primitives which have only heuristic
security before. For example, these one-more variants,
including one-more RSA, one-more discrete logarithm,
one-more Diffie-Hellman, have been used to prove the
security of a series of transitive signature schemes [29]
and identification schemes [30]. So we can see that one-
more variants of some standard assumption are becoming
very natural extension and forceful cryptographic tools
in the field of provable security. Similarly, to attain
the provable security (here the invisibility) instead of
heuristic security and more efficiency, we naturally extend
the above DCTDH assumption to the one-more variant
formally defined as follows.
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Definition 3 (One-more Decisional Co-Tripartite-D-
iffie-Hellman (1m-DCTDH)). Let the bilinear group
system (q, P1, P2, gT ,G1,G2,GT , e, ψ)

R←− BGSG(1k)
be public parameters. Let x, y be two random element of
Z
∗
q and let X = xP2, Y = yP2. In addition to X,Y , the

adversary A has access to two oracles:
• Target oracle T G T G first gets a random bit b

by tossing a coin. If b = 0, T G selects and returns
two random and independent points (V, V ′) ∈R G

2
1

; otherwise, it first selects a random point V ∈ G1

and then return (V, V ′) with V ′ = xyV .
• Helper oracle HO On a query of V ∈ G1, HO

return (xyV, yV ) ∈ G
2
1.

Let qT , (resp. qH ) be the number of queries A made to
the target (resp. helper) oracles. The advantage of the
adversary attacking 1m-DCTDH is defined as

Adv1m−DCTDH
BGSG,A = |Adv0 − 1/2|

where Adv0 is defined as the probability of A to output a
set W of, say, l tuples ((V1, V

′
1 , b1), · · · , (Vl, V

′
l , bl)) such

that for all 1 ≤ i ≤ l, (Vi, V
′
i ) is the output of the target

oracle T G, bi = 1 if V ′
i = xyVi and bi = 0 otherwise,

all Vi are distinct and (l − 1) = qH < qT .
The 1m-DCTDH assumption states that there is

no polynomial-time adversary A with non-negligible
Adv1m−DCTDH

BGSG,A .

Informally, the above assumption states that it is com-
putationally infeasible for an adversary without the secret
keys to present all right answers to even 1 more ran-
dom challenges (whether a target output (V, V ′) satisfies
V ′ = xyV ) than the times of the accesses to the helper
oracle.

C. Proof of equality or inequality of two discrete loga-
rithms

Let (G,+) and (H, ·) be two groups of the same prime
order q and let P and g be generators of G and H

(respectively). What we need in this paper are the non-
interactive proof of equality (resp. inequality) of the dis-
crete logarithm of Y ∈ G in base P and the one of y ∈ H

in base g denoted by NIPK(a : y = ga
∧

Y = aP )
(resp. NIPK(a : y �= ga

∧
Y = aP )). In [33], two

efficient non-interactive zero-knowledge (in the random
oracle model) proof systems of equality and inequality
of two discrete logarithms are presented where G = H.
However, it is trivial to extend both protocols to the more
general case of G �= H.

In general, a 3-move honest-verifier zero-knowledge
(HVZK) protocol can be transformed to a more efficient
noninteractive protocol by using the Fiat-Shamir trans-
formation [4]. Such noninteractive protocols for proof of
equality or inequality of two discrete logarithms are as
follows [33] (H ′ is abused to denote some random oracle
corresponding to the context and note that if the oracle
H ′ can be controlled, the valid transcript can be simulated
for any pair (y, Y )):

NIPK(a : y = ga
∧

Y = aP )

P : r R←− Zq ,
z = gr,
Z = rP ,
c = H ′(z, Z),
d = r + ca mod q

V : Given z, Z, d, checks whether
gd = zyc,
dP = Z + cY .

NIPK(a : y �= ga
∧

Y = aP ) [31]

P : s, r, r′ R←− Zq ,
w = (ga/y)s,
Z = rP − r′Y ,
z = gr/(yr

′
)

c = H ′(w, z, Z),
d = r + cas mod q,
d′ = r′ + cs mod q

V : Given w, z, Z, d, d′, checks whether
w �= 1,
gd/(yd

′
) = zwc,

dP − d′Y = Z.

To overcome universal verifiability of the above proto-
cols, designated-verifier technique was introduced in [32]
by Jakobsson et al. In a designated-verifier confirmation
proof, the signer proves that “NIPK(a : y = ga

∧
Y =

aP )” or “he knows the verifier’s secret key”. In other
words, the verifier is able to produce such a valid proof
himself using his secret key. By using the designated-
verifier technique, one can thereby prevent illegal copies
of the proof. Using the technique shown in [34], a
designated-verifier proof can be constructed for a public-
secret key pair of any well-known public key system. The
obtained NIPK proof is zero-knowledge in the random
oracle model. And we denote such designated-verifier
variants of the above two protocols as DV PK(a : y =
ga

∧
Y = aP ) and DV PK(a : y �= ga

∧
Y = aP )

respectively.
We do not give the concrete NIZK designated-verifier

confirmation and disavowal protocols since different pro-
tocols are associated with different public key systems
used by the verifier.

III. FORMAL DEFINITION AND SECURITY MODEL

In this section, we follow [12] to present the formal
definition and security model for convertible undeniable
signature schemes.

A. Definition

Definition 4 (Convertible Undeniable Signature [12]).
Given an integer k, a convertible undeniable signature
scheme CUS with security parameter k is defined by the
following:

1) common parameter generation algorithm
CUS.Setup: it is a probabilistic algorithm
which takes as input 1k and outputs the public
parameters;

2) key generation algorithm CUS.KeyGen: it is
a probabilistic algorithm which takes as inputs
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the public parameters and outputs a pair of keys
(pk, sk);

3) signing algorithm CUS.Sign: it is a probabilistic
algorithm which takes as inputs a message m, a
secret key sk, and the public parameters. The output
σ is a convertible undeniable signature on m ;

4) confirming/denying protocols CUS.{Confirm,
Deny}: they are protocols which take as inputs a
message m, a bit string σ, a pair of keys (pk, sk)
and the public parameters. The output is a (possi-
bly non-interactive) non-transferable proof that σ
is actually a valid/invalid convertible undeniable
signature on m with respect to the key pk. Note that
we will use designated verifier NIZK proof system
in our scheme;

5) individual receipt generation algorithm CUS.
IReceipt: it is an algorithm which takes as inputs,
a message m, a bit string σ, a secret key sk and the
public parameters. It outputs an individual receipt
σ̃ which makes it possible to universally verify
whether σ is valid or not;

6) verifying algorithm for individually converted
signature CUS.IV erify: it is a deterministic al-
gorithm which takes as inputs, a message m, a
bit string σ, a bit string σ̃, the signer’s public
key pk, and the public parameters. It tests whether
σ̃ is a valid individual receipt with respect to σ
and the public key pk. If it does, the algorithm
states whether σ is a valid convertible undeniable
signature on m with respect to the key pk or not,
else it outputs Error;

7) universal receipt generation algorithm
CUS.UReceipt: it is a deterministic algorithm
which takes as inputs, a secret key sk, and the
public parameters and outputs a universal receipt
I which makes it possible to universally verify all
convertible undeniable signature σ with respect to
pk;

8) verifying algorithm for universally converted
signature CUS.UV erify: it is a deterministic
algorithm which takes as inputs, a message m, a
bit string σ, a public key pk, a bit string I and
the public parameters. It tests whether I is a valid
universal receipt with respect to the key pk. If it
does, it states whether σ is a valid convertible
undeniable signature on m with respect to the key
pk or not, else it outputs Error;

and must satisfy the following properties :

1) completeness and soundness: the confirming
and denying protocols and the verifying algorithms
are complete and sound, where completeness means
that valid (invalid) signatures can always be proved
valid (invalid), and soundness means that no valid
(invalid) signature can be proved invalid (valid);

2) unforgeability: given a public key pk, it is compu-
tationally infeasible, without the knowledge of the
corresponding secret key to produce a convertible
undeniable signature which is accepted by the ver-

ification algorithms or by the confirming protocols;
3) Invisibility: It is computationally infeasible to de-

termine whether a given message-signature pair is
valid for a given user without the help of the signer.

4) non-transferability: a verifier participating in an
execution of the confirming/denying protocols does
not obtain information that could be used to con-
vince a third party about the validity/invalidity of a
signature.

B. Security model

In the following definition, we assume that the adver-
sary (A or D) is allowed to query a receipt generating
oracle Υ and a confirming/denying oracle Ξ on any
couple message/ signature of his choice, in addition to the
classical access to the signing oracle Σ and to the random
oracle H . For more description, we refer reader to [12].
For one standard signature scheme, the adaptive chosen-
message attack is the most powerful attack possible for
an enemy who is restricted to using the signature scheme
in a natural manner. The following definition 5 for CUS
signatures is one variant of the chosen message attack for
the standard signatures.

Definition 5 (Unforgability [12]). Let CUS be a convert-
ible undeniable signature scheme and let A be an EF-
CMA-adversary against CUS. We consider the following
random experiment, where k is a security parameter:

params
R←− CUS.Setup(k),

(pk, sk)
R←− CUS.KeyGen(params)

(m∗, σ∗) ← AH,Σ,Υ,Ξ(params, pk),
Return b ← CUS.UV erify(params, pk,m∗, σ∗, I)

We define the success of the adversary A, via
Succef−cma

CUS,A (k) = Pr[b = “valid”]. (Note that it is
trivial to require that Σ is not queried on m∗).

Given k ∈ N and ε ∈ [0, 1], the scheme CUS is said to
be ε-EF-CMA secure, if no EF-CMA-adversary A has a
success probability Succef−cma

CUS,A (k) ≥ ε(k).

Definition 6 (Invisibility [12]). Let CUS be a convert-
ible undeniable signature scheme and let D be an Inv-
CMA-adversary against CUS. We consider the following
random experiment, where k is a security parameter:

params
R←− CUS.Setup(k),

(pk, sk)
R←− CUS.KeyGen(params)

m∗ R←− DH,Σ,Υ,Ξ(params, pk),
b

R←− {0, 1}
If b = 1, σ∗ ← CUS.Sign(sk,m∗),
else σ∗ R←− S where S is the signature space
return b′ ← DH,Σ,Υ,Ξ(params, pk,m∗, σ∗)
where no query of m∗ to Σ or (m∗, σ∗) to Υ or Ξ
is allowed.

The distinguisher D wins the game if b′ = b. D’s ad-
vantage in this game is defined to be AdvInv−cma

CUS,D (k) =

|Pr[b′ = b]− 1
2 |
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Given k ∈ N and ε ∈ [0, 1], the scheme CUS is said to
be ε-Inv-CMA secure, if no Inv-CMA-adversary D has a
success AdvInv−cma

CUS,D (k) ≥ ε(k)

IV. NEW CONVERTIBLE UNDENIABLE SIGNATURE
SCHEME

In this section, we present a new convertible undeniable
signature scheme based on bilinear paring. This scheme
consists of the following polynomial time algorithms.

• Setup: Let k be a security parameter, BGSG be
a bilinear group system generator and param =
(q, P1, P2, gT ,G1,G2,GT , e, ψ) be some output of
BGSG(k). Let H : {0, 1}∗ → G1 be a crypto-
graphic hash function. And let H ′ be another cryp-
tographic hash function which will be used in Fiat-
Shamir transformation for constructing designated-
verifier noninteractive zero knowledge protocols of
Confirming/denying in the later.

• KeyGen: Alice picks randomly two integers x, y ∈
Z
∗
q and computes the points X = xP2 and Y = yP2.

Alice’s public key is the pair (X,Y ) and her secret
key is (x, y).

• Sign: Given a message m ∈ {0, 1}∗, Alice computes
the undeniable signature σ = xyH(m).

• Confirm / Deny: Given a message m and a
signature σ, Alice can confirm or deny σ with
the following designated-verifier noninteractive zero-
knowledge proof of knowledge:
DV PK(y : e(σ, P2) = e(H(m), X)y

∧
Y = yP2)

or
DV PK(y : e(σ, P ) �= e(H(m), X)y

∧
Y = yP2)

• IReceipt: Given a message m ∈ {0, 1}∗ and a
putative signature σ on m, Alice computes the point
σ2 = yH(m) ∈ G1. The individual receipt with
respect to σ is σ2.

• IVerify: Given a message m ∈ {0, 1}∗, a putative
signature σ on m and a putative individual receipt
σ2 on σ, the validity of the receipt is decided by
checking whether e(σ2, P2) = e(H(m), Y ) or not.
If σ2 is valid, then the validity of σ is decided by
checking whether e(σ, P2) = e(σ2, X) or not.

• UReceipt: Alice publishes the point I = xyP2.
• UVerify: The validity of the universal receipt I is de-

cided by verifying that e(ψ(X), Y ) = e(ψ(I), P2).
If it is valid, given a signature σ on a message m ∈
{0, 1}∗ and I , everyone checks the validity of this
signature by verifying that e(σ, P2) = e(H(m), I).

Efficiency considerations. Compared with other con-
vertible undeniable signature schemes, our scheme has
a number of advantages. As a natural extension of the
shortest signature scheme BLS signature [23], our signa-
ture scheme inherited the shortest length and only consists
in an element of G1. Therefore, the size of the signature
is only 160 bits. Furthermore, a receipt (individual and
universal) is also an element of G2 or G1. From an
efficiency point of view, the signature generation and the
individual and universal receipts generation algorithms

require only one exponentiation as the most expensive
operation. Unfortunately, it turns out that the signature
verification is slightly more time consuming, as it requires
some pairing evaluations.

V. SECURITY PROOF

Since the protocols of confirmation and denying are
designated-verifier noninteractive zero-knowledge, it is
obvious that our convertible undeniable signature satisfies
the completeness, soundness and non-transferability. Now,
it remains to prove the security of unforgeability and
invisibility.

On one hand our convertible undeniable signature
scheme is more efficient, shorter than the state-of-the-
art convertible undeniable signature in [12]. On the other
hand, our proving technique is also different from that
of them. With respect to the proving of unforgeability,
the different technique makes us to avoid the random salt
in the scheme at the price of a slightly less reduction
efficiency. When it comes to the proving of invisibility,
our reduction between invisibility and the 1m-DCTCD is
perfect and our method to extend the standard assumption
are more commonly used in literature.

Theorem 1 (Unforgeability). The new convertible unde-
niable scheme is EF-CMA-secure in the random oracle
model if the Co-CDH problem is hard.

Proof. In this proof, we will follow the security proof
[33] which deals with the security of the FDH variant of
Chaum’s undeniable signature scheme, since our scheme
also use the full domain hash function (FDH) as the
random oracle.

We assume implicitly that all parties have
access to the public parameter param =
(q, P1, P2, gT ,G1,G2,GT , e, ψ). Assume H : {0, 1}∗ →
G1 to be a cryptographic hash function. Assume H ′ to
be another cryptographic hash function which are used in
designated-verifier NIZK protocols of confirming/denying
and not explicitly mentioned in above description of our
scheme for simplicity. And note that by manipulating the
random oracle H ′, a valid transcript of the NIZK proof
can be easily simulated.

First, if there exists a forger F who can forge a
signature with advantage εF , then we will construct an
algorithm M which can solve the Co-CDH problem with
advantage εM , with F as a subroutine. Assueme the input
to M is (X,R) where X = xP2, R = rP1. M then runs
F by giving F with the public key (X,Y (= yP2)) and
(H,H ′) where H and H ′ are random oracles that will
be simulated by M and y ∈R Zq is chosen and held by
M . M simulates the signing oracle Σ, receipt generating
oracle Υ and the confirmation/disavowal Ξ oracle itself.
Let qS and qH denote the number of signing queries and
H queries that F issues respectively. Assume that when
F requests a signature on a message mi, it has already
made the corresponding H query on mi.

When F request H(mi), M answers Ri = H(mi) =
αiP1 with probability δ and Ri = H(mi) = αiR with
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probability 1 − δ, where αi is random in Zq and δ is a
fixed probability to be determined later.

When F makes a Υ-query for some pair of (mi, σi),
M can successfully return the universal receipt xyP2 or
the individual receipt yH(mi) since M holds the partial
secret key y.

Suppose that F makes a signing query for a message
mi. If M has responded with Ri = αiP1 to the H query
for a message mi, then M returns σi = (y · αi)ψ(X) as
the valid signature. Otherwise, M aborts and it fails to
solve the Co-CDH problem.

When F makes a H ′-query for a new str, where str
is the string that F would like to know its H ′ value,
M always responds with a random number. In fact, M
assigns some values to H ′(str) for some str such that he
can simulate the confirmation/disavowal oracle Ξ. When
F makes a H ′-query for such str, M returns H ′(str) to
F .

Next, we consider the case when F makes a confima-
tion/disavowal query. Let qv be the number of queries
that F issues to the confirmation/disavowal oracle. For
convenience, we consider that the final output of F is the
(qv +1)-th query (i.e. the forged signature pair (m∗, σ∗).
We say that (mi, σi) is special if it is a valid message-
signature pair queried by F to the confirmation/disavowal
oracle such that mi has never been queried to the signing
oracle. M guesses the first special query. More precisely,
M guesses the first i such that the i-th query (mi, σi)
is special. So, at the beginning, M chooses Guess ∈
{1, 2, · · · , qv + 1} randomly. There are two cases to be
considered here, namely, i < Guess and i = Guess. First
suppose that i < Guess.

• If F has never made a signing query for mi, then
M returns “no” and the transcript of the disavowal
protocol.

• Otherwise, F has already made a signing query for
mi, and M answered with a valid signature σ′

i with
probability δ (with probability (1 − δ), M aborts).
If σi = σ′

i then M returns “yes” and the transcript
of the confirmation protocol. Otherwise, M returns
“no” and the transcript of the disavowal protocol.

As mentioned before, M can manipulate the H ′-oracle
and thus it can generate a transcript of the confirmation
or disavowal protocol.

Now suppose that i = Guess. Let (m∗, σ∗) be the
i-th query. If F has queried m∗ to the signing oracle,
then M aborts. Otherwise, we assume that F has queried
the H oracle on m∗ and so m∗ = mj for some j. If
Vj = H(m∗) = αjR, then we have σ∗ = xyVj =
(xyαj)R. Consequently, M outputs xR since he knows
αj , y, where y is the partial secret key held by M and
y is the parameter chosen and stored by M during the
simulation of the random oracle H . Hence, M can solve
the Co-CDH problem. Otherwise, M aborts and it fails
to solve the Co-CDH problem.

Now it remains to compute the probability that M does
not abort. M guesses the first special query with proba-
bility 1/(qv + 1). M answers to all the signing queries

with property δqS and M outputs xR with probability
1−δ. Hence, the probability that M does not abort during
the simulation is δqS (1 − δ)/(qv + 1). It is less than
δopt = 1−1/(qS+1) . Hence, M ’s advantage εM is more
than 1

e(1+qS) · 1
(qv+1)εF . Here, e is the natural logarithm

base. In fact, the value (1−1/(qS+1))qS approaches 1/e
for large qS . �

Theorem 2 (Invisibility ). The invisibility of the above
convertible undeniable signature scheme holds if one-
more DCTDH problem is hard

Proof. For simplicity, we assume implicitly that all
parties can access to the public parameter param =
(q, P1, P2, gT ,G1,G2,GT , e, ψ). Let H : {0, 1}∗ → G1

be a cryptographic hash function. And let H ′ be another
cryptographic hash function which will be used in the
protocols of confirming/denying. And note that by ma-
nipulating the the random oracle H ′, a valid transcript of
the designated NIZK proof can be easily simulated.

We show that if there exists a distinguisher D with ad-
vantage εD for the convertible deniable signature scheme,
then one can construct a 1m-DCTDH distinguisher D′

with advantage εD′ , by running D as a subroutine. Sup-
pose the input to D′ is the public key (X,Y ) ∈ G

2
2

and D′ has the access to the target oracle and helper
oracle. D′ then starts running D by feeding D with the
public key (X = xP2, Y = yP2) and H,H ′ which are
random oracles that will be simulated by D′. D′ also
simulates the signing oracle, receipt generating oracle and
the confirmation/disavowal oracle itself. Let qS and qH be
the number of signing queries and H queries that D issues
respectively. We assume that when D requests a signature
on a message mi, it has already made the corresponding
H query on mi.

Let mi be some message. When D makes a H query
for mi, D′ responds with H(mi) = Vi where (Vi, V

′
i ) is

the answer that D′ gets from its own target oracle T G.
If D makes a signing query for mi, D′ responds with
Ri where (Ri, R

′
i) = (xyH(mi), yH(mi)) is the answer

that D′ gets from its own the helper oracle HO on query
H(mi). If Ri = V ′

i , D′ set bi = 1 else bi = 0. When
D makes a query of (mi, σi) on the individual receipt
generating oracle Υ, D′ responds with R′

i = yH(mi).
When D makes a H ′-query for a new str, where str

is the string that D would like to know its H ′ value,
D′ always responds with a random number. In fact, D′

assigns some values to H ′(str) for some str such that
he can simulate the confirmation/disavowal oracle. When
D makes a H ′-query for such str, D′ returns H ′(str) to
F .

At some time, D outputs a challenge query m∗. As as-
sumed, H(m∗) has been queried by D. Let V ∗ = H(m∗)
where (V ∗, V ∗′) is the answer that D′ gets from the target
oracle T G when he simulates the H-oracle query on m∗.
Now, D′ presents the challenge with V ∗′ for D with
respect to the query m∗.

In the next step, D adaptively performs some H-
queries, H ′-queries, signing queries, receipt generating
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queries and confirmation /disavowal queries again with
the restriction that no signing queries on m∗ should be
allowed, and no confirmation/disavowal query or receipt
generating query on the challenge message-signature pair
(m∗, V ∗′) is allowed.

Eventually, D outputs b∗ = 1, if it thinks that
(m∗, V ∗′) is a valid message-signature pair, i.e.

V ∗′ = xyH(m∗) = xyV ∗.

And it outputs b∗′ = 0 if it thinks that V ∗′ is chosen
uniformly at random from the signature space S. Let
mj1 ,mj2 , · · · ,mjqs be all the messages which D has got
the corresponding signatures Rj1 , Rj2 , · · · , Rjqs

simulat-
ed by D′. Now, D′ output qs + 1 triples

(Vj1 , V
′
j1
, bj1), (Vj2 , V

′
j2
, bj2), · · · ,

(Vjqs
, V ′

jqs
, bjqs ), (V

∗, V ∗′, b∗).

From previous description of D′’s behavior on
Vi, V

′
i , Ri, bi, it is obvious that for any i ∈ {j1, · · · , jqs},

bi just denote whether V ′
i = xyVi. Note that the times of

D′’s signing queries qs is just the times of D’s accesses
to its helper oracle. So it is obvious that the advantage
of D′ attacking 1m-DCTDH is just the advantage of
D attacking the invisibility of our convertible deniable
signature scheme, i.e. εD′ = εD.

At last, we show how to simulate the confirma-
tion/disavowal oracle. Suppose that 1m-DCTDH problem
is hard. Then D cannot forge with non-negligible proba-
bility because forgery is equivalent to Co-CDH problem
from above theorem. Now assume that D queries (mi, σi)
to the confirmation/disavowal oracle.

• If D has never made a signing query for mi, then
D′ returns “no” and a transcript of the disavowal
protocol. This is justified because D cannot forge as
mentioned above.

• Otherwise, D has already made a signing query for
mi, and D′ has answered with a valid signature σi.
If σi = σ′

i then D′ returns “yes” and a transcript
of the confirmation protocol. Otherwise, D′ returns
“no” and a transcript of the disavowal protocol.

D′ can generate a transcript of the confirmation/disavowal
protocol as shown in since he can control the random
oracle of H ′ which is used in the NIZK proof systems—
confirmation/denial protocol. �

VI. CONCLUSION

In this paper, we first propose computational and
decisional Co-tripartite-Diffie-Hellman assumptions and
extend the decisional tripartite-Diffie-Hellman assumption
to the one-more variant based on the bilinear group sys-
tem. Then we designed a new short convertible undeniable
signature scheme which is proven to be secure under
the assumption of computational Diffie-Hellman (unforge-
able) and one-more decisional tripartite-Diffie-Hellman
(invisible). This new convertible undeniable signature is
based on the most popular short signature from pairing,
and specially suitable some resource restricted settings
such as smartcard.
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