
SingleJava: A Distributed Java Virtual Machine
Based on Thread Migration

Jian Su

School of Computer & Computing Science, Zhejiang University City College, Hangzhou, China
Email: suj@zucc.edu.cn

Chong Zhou

School of Computer Science and Technology, Zhejiang University, Hangzhou, China
Email: zhouchonghz@gmail.com

Wenyong Weng

School of Computer & Computing Science, Zhejiang University City College, Hangzhou, China
Email: wengwy@zucc.edu.cn

Abstract—A distributed Java virtual machine called
SingleJava based on thread migration is proposed in this
paper. SingleJava can be used to build a distributed
computing framework while keeping itself completely
transparent to Java programmers. The main idea
underlying is to improve the inevitable Java virtual machine
in a Java based software system, i.e., adding a build-in
distributed infrastructure to the virtual machine and
integrating it into a distributed computing framework.
Meanwhile, traditional distributed program are usually
difficult to test or debug. SingleJava supports testing and
debugging applications on a single node Java virtual
machine, such as Oracle Hopspot or IBM J9, and the
applications or compiled classes can be deployed directly to
the distributed SingleJava infrastructures.

Index Terms—Distributed Computing, Parallel Computing,
Java Virtual Machine

I. INTRODUCTION

Distributed computing is an important mean to deal
with complex problems which require huge computing
power. Java is one of the most popular programming
languages since Java applications run not directly on the
underlying operation system, but on a Java virtual
machine. Obviously, it is meaningful to find ways to
extends traditional Java technologies into distributed
versions[1-3].

In this paper, we will discuss a distributed Java virtual
machine called SingleJava, which is based on thread
migration. SingleJava aims to build a distributed
computing framework and environment on the basis of
Java virtual machine. An interesting feature of SingleJava
is the distributed Java virtual machine will be transparent
to Java programmers. That means the programmers could
code, test, and debug their applications just like on a
traditional single node JVM, and finally deploy the
applications to a distributed computing environment
consisting of a set of SingleJava machines. For well

parallelized algorithms, performance will be promoted
vastly [4-7].

SingleJava exploits the low coupling feature among
thread management structures, distributes tasks by
migrating Java threads. When a new Java Thread is
started to be scheduled by invoking the Thread.start()
method, SingleJava will schedule and distribute the
thread to a proper WORKER node.

SingleJava use a distributed Java heap to encapsulate
global object accessing operations. Execute engines on
different nodes can read or write object fields through a
unified interface regardless of whether the object is
owned by the node or residents on any other node.

SingleJava also offers a garbage collecting mechanism,
as a completion of automate memory management [8-11].
Within a distributed environment, SingleJava uses a
garbage collecting scheme with two granularities, Local
Collecting and Global Collecting. Local Collecting is
caused by a local heap allocating failure and happened to
a single node only. While global collecting is caused by
user requirement or heap allocating failure again after
Local Collecting, and it affects every node in the
distributed computing system.

Java language supports multi-thread programming
natively. All Java program will run in a thread context, no
matter whether the user specifies it explicitly or not. Java
language offers synchronization mechanisms for Java
programming in multi-thread paradigm. However, threads
distributed on multiple machines can not be easily
synchronized since these threads are not in a single
address space. SingleJava uses a proxy service to
synchronize Java threads [13-16].

II. ARCHITECTURE

SingleJava is a distributed Java Virtual Machine,
which tries to build distributed computing system based
on the Java Virtual Machine. The distributed virtual
machine will be transparent to Java programmers who
will just code like on a traditional, single node JVM. And
even more, they can test and debug their programme on a

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2917

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.11.2917-2924

Hotspot JVM, after everything is settled, deploy their
programme classes directly onto SingleJava. The
programme will just get run, and come into being a
distributed computing system. For well parallelized
algorithms, performance will get promoted vastly.

The design gist of SingleJava is to provide a fully
transparent distributed infrastructure for the upper level
programmers, designed as a generic Java-based
distributed computing platform. On the one hand, from
writing multithreaded applications, and publishing
applications, to the final start of the execution of the
application can be completely the same as in the single-
node Java virtual machine completely transparent to the
upper level. On the other hand, SingleJava seek to
support zero-modifying legacy code to be executed
directly, write once, compile, directly executed directly.
To this end, SingleJava design dynamic code deployment
mechanism to manage shared data and use distributed
Java heap.

In order to allow the execution of applications on
SingleJava completely the same with single-node JVM,
SingleJava design dynamic code deployment mechanism.
User code simply deploy on the Master node, but does
not include other Java class files, all Worker nodes in
addition to the Java Foundation Class Library using Java
fully dynamic link mechanism, user code migration from
the Master node to the Worker nodes automatically in
runtime.

SingleJava strive to keep the Java programming model,
so to design a distributed Java heap, all nodes like access
local Java heap access global objects in a distributed
environment. Protect the consistency of the read and
write global data synchronization mutex to ensure global
consistency and integrity of the object. Syntax, semantics,
programming model of Java programs do not need to
make any changes, the old Java legacy code can perform
direct migration to SingleJava .

SingleJava management mechanism is designed to be
concise. A single MASTER node architecture is
conducive to the implementation of the system and is
responsible for balancing strategy, synchronized global
Java heap data, as well as the realization of inter-node
thread synchronization mutex. To remission the
performance impact to the system to avoid a single
MASTER node, SingleJava management separation of
management and code execution. The MASTER node
only responsible for the management of the cluster, not
participate in the execution of the Java code.

SingleJava are tightly coupled distributed computing
systems. Analysis showed that communication between
the nodes within the system, a communication between
the nodes is more frequent, to improve the inter-node
request processing throughput, have a critical impact on
the overall system performance. To do this SingleJava
request processing thread pool technology to improve
multi-the Request concurrent node response efficiency,
not immediately respond to a request, the introduction of
asynchronous response mechanism to further improve
performance.

SingleJava uses a single MASTER node to manage the
cluster, and multiple WORKER nodes to execute the Java
byte codes in a parallelized way. MASTER node is in
charge of maintaining the runtime information of
WORKER nodes. When the system is initialized, all the
nodes of WORKER will register themselves to the
MASTER node. MASTER node records their information
at runtime, and manages the topology dynamically. The
architecture of SingleJava can be described as Figure1.

Figure 1. Architecture of SingleJava

III DISTRIBUTE TASKS

At the very beginning of the Java program, MASTER
node will read in the main class (the class which contains
the main method and is issued through the command line,
such as HelloWorld.class, or something like that) from
file system, select one WORKER node from the worker
list, and send a REQ_MAIN_TASK request wrapping the
main class file bytes together with the command line
parameters to the WORKER node selected. As soon as
the WORKER node receives the request, it will parse the
class file bytes, generate a data structure for the class, and
invoke the executing engine to execute the main method.
The program here by begin to run, anytime latter, when
the WORKER node tries to create a new Java thread,
which is achieved by invoke the start() method of a class
extends Thread. The WORKER node will send a
REQ_NEW_THREAD request to MASTER node, which
wraps the 32-bit identifier of the new thread object.
MASTER node selects a WORKER node from the
worker list, and sends a REQ_THREAD_TASK request
to the selected WORKER node wrapping the 32-bit id of
the new thread object. As the new selected WORKER
node receives the request, it will load the class
corresponding to the object first, and execute the run()
method. Above process can be illustrated as the following
Figure 2.

2918 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

Figure 2. Thread Migration

IV. WORK LOAD BALANCING

SingleJava use the threads running on one single node
as the basic metric of work load. When selecting
WORKER node to migrate a new thread, the threads
running on the node will be listed as the first
consideration, the node with less thread running will be
more preferred.

Beside this, MASTER will prefer a WORKER that has
finished task more recently. The request processing
function of WORKER node will work as a wrapper of
Java method Thread.run(), and when the thread is
finished, the wrapper will report to the MASTER.
MASTER records the last thread finish time of every
node, and decrease the running thread number of the
corresponding node.

V. GLOBAL HEAP ACCESSING

There are two kinds of variables in Java programs,
they are local variables and instance/class fields. Local
variable is private to Java threads, and their life cycle is
limited within the memory of one single node. In contrary,
instance/class fields should be able to get accessed
globally, that means any node of SingleJava may access
the object/class which residents on and owned by some
other node.

SingleJava use a 32-bit global reference to identify a
Class/Object uniquely, which is allocated by MASTER
node. Any node can access to the class/object fields and
class method/field definitions with the global reference
across different nodes. Class reference is allocated by
MASTER node when the class is loaded, while an object
reference is allocated by MASTER node when the object
is instanced.

The so called distributed Java heap is created to let any
node to access any object/class freely. The architecture of
the distributed Java Heap can be described as Figure 3.

Figure 3. Distributed Java Heap

The distributed Java heap use a write-invalidate
protocol to keep the consistency of object or class data
[6][7]. At any time, on any WORKER node, an object
must be one and only one of the following states:

 Accessed in read-only mode by one or more
nodes

 Read and written by a single node (object owner)
 Not existed

The three states can transfer to each other in the
specified event:

Figure 4. The Three States of Objects and their Duplicates

VI. THREADS SYNCHRONIZATION

Threads distributed on multiple machines can not be
synchronized like in a single address space. SingleJava
uses a proxy service to synchronize Java threads. Let us
take wait/notify mechanism which is offered by Java
Programming Language for example to illustrate the
details.

First of all, the WORKER node on which there is a
thread want to wait on some object will send a
REQ_WAIT_ON request to MASTER node, which
contains the 32-bit id of the object on which the thread
would like to wait. MASTER node will look into it’s
object table to find out which WORKER node owns this
object. Then MATER will send a REQ_WAIT_ON
request to the object owner which contains the 32-bit
object id and information about the waiting Java thread
and node. As soon as the owner receives the request, it

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2919

© 2013 ACADEMY PUBLISHER

will add a structure contain the information about the
waiting Java thread and node into the wait set
corresponding to the object specified by the 32-bit id.
Until now, the wait process is finished. Lately another
thread will issue a notify process, it must send a
REQ_NOTIFY_THREAD request to MASTER first,
again, the MASTER will look into it’s object table to find
out the owner, then send a REQ_NOTIFY_THREAD
request to the owner. As soon as the owner receives the
request, it will select one Thread structure from it’s wait
set, according to the information in there, send a
REQ_NOTIFY request back to the first WORKER node,
then the request listening thread on there will act as a
proxy to notify the waiting thread to resume running.

VII. GARBAGE COLLECTING

Any Java Virtual Machine must offer a garbage
collecting mechanism to the upper level programmer [8]
[9], as a completion of automate memory management.
There are two class opportunities for garbage collecting,
the user issued, which happens when the Java Program
invokes the System.gc() method and the heap allocate
failure caused, which is happened when the Virtual
Machine is trying to allocate memory on the main
memory, but failed. The Garbage Collecting mechanism
of SingleJava is based on reference counting [10] [11],
and divided into two granularities: Local Collecting and
Global Collecting.

Local Collecting is caused by a local heap allocating
failure and happen to a single WORKER node only.
Local Collecting collects object read-only duplicates in
local heap. While global collecting is caused by user
requirement or heap allocating failure again after Local
Collecting, and will cause a garbage collecting
participated by all nodes.

In Global Collecting, MASTER node will request all
WORKER nodes to suspend all their running Java
threads, bringing the VM into a WORLD STOP state first.
After that, WORKER nodes begin to do a reference
counting, and reply all the marked objects back to
MASTER. Collected every WORKER’s reply, MASTER
will make out a union from all the marked object sets
reported by WORKER nodes. According the global
marked object list, MASTER will authorize the owner of
unmarked object to do finalize and garbage collecting.
The last step of Global Collecting is to resume all threads
suspended by garbage collecting and unfreeze the world.

VIII. PERFORMANCE EVOLUTION

We use Virtual Box Version 4.2.4 r81684 to set up our
experiment nodes. Eight experiment nodes with the same
configuration is constructed to build experiment systems.
Configuration of experiment node can be denoted as
Figure 5.

Figure 5. Configuration of Experiment Nodes

We constructed two systems for experiment, Sys-I is
our target for performance evolution of single Java, and
Sys-Ⅱ is used as a reference.

TABLE I.

CONFIGURATION OF EXPERIMENT SYSTEMS

Sofware
Layer

Experiment Systems
Sys-I Sys-Ⅱ

Legend in
Diagram

Java Library GNU Classpath JRE 5 System Library

Java Virtual
Machine

SingleJava：1 MASTER
and 7 WORKERs

JRE 5 Standard Edition
HopSpot

Operating
System Ubuntu Lucid Lynx Ubuntu Lucid Lynx

Hardware
Platform 8 Experiment nodes 8 Experiment nodes

We use Multi-threaded Benchmarks of Java Grande

Forum Benchmark Suite [12] [13] to evaluate the
performance of SingleJava.

The test is divided into two parts, part one is the testing
of core algorithms. The first item is called Series, which
is designed to calculate the first N Fourrier Coefficients
of function with in interval from 0 to 2. Performance is
evaluated by average time costing of case resolving
(Figure 6) and coefficients output per second (Figure 7).

2920 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

Figure 6. Series test, evaluated in seconds

Figure 7. Series test, evaluated in coefficients per second

As observed, Sys-I is 20 times faster in both case
solving and coefficients output.

The second test in part 2 is called LUFact. This test
solves an N×N linear system using LU factorization
followed by a triangular solve. This is a Java version of
the well known Linpack benchmark. Performance is
evaluated by average time costing of case
resolving(Figure 8) and float-point calculating times per
second(Figure 9).

Figure 8. LUFact test, evaluated in seconds

Figure 9. LUFact test, evaluated in Mflops per second

As observed, the performance of Sys-I is preferred
when thread number is less than 40, when thread number
beyond, too much thread synchronize caused
performance loss is also significant.

The third test of part 1 is called SOR which performs
100 iterations of successive over-relaxation on an N×N
grid. Performance is evaluated by average time costing of
case resolving(Figure 10) and iteration times per
second(Figure 11).

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2921

© 2013 ACADEMY PUBLISHER

Figure 10. SOR test, evaluated in seconds

Figure 11. SOR test, evaluated in iterations per second

As observed, Sys-I is performed better in this test. As
limited parallel ability the average time costing of case
resolving of Sys-Ⅱ is grown almost in a linear way while
Sys-I kept steady.

Part 2 is a direct emulation of Grande Applications, for
compatibility consideration, the I/O and UI is omitted as
a highlight on the performance of Java Executing
Environment.

The first test is called MolDyn, which is an N-body
code modeling particles interacting under a Lennard-
Jones potential in a cubic spatial volume with periodic
boundary conditions. Performance is evaluated by
average time costing of case resolving(Figure 12) and
force calculation times per second(Figure 13).

Figure 12. MolDyn test, evaluated in seconds

Figure 13. MolDyn test evaluated in interactions per second

As observed, Sys-I is performing excellent in this well
parallelized computing intensive task. With carefully
selected thread number, Sys-I can perform two times
better than Sys-Ⅱ.

The second test of Part 2 is called MonteCarlo, which
is a financial simulation, using Monte Carlo techniques to
price products derived from the price of an underlying
asset. Performance is evaluated by average time costing
of case resolving(Figure 10 Left) and sample output per
second(Figure 10 Right).

2922 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

Figure 14. Monte Carlo test, evaluated in seconds

Figure 15. Monte Carlo test, evaluated in samples per second

As observed, in a best situation as tested, Sys-Ican
produce 7 times more samples than Sys-Ⅱ.

The last test of part 2 is called RayTracer, which
measures the performance of a 3D raytracer. Performance
is evaluated by average time costing of case resolving
(Figure 16) and pixels rendered per second(Figure 17).

Figure 16. RayTracer test, evaluated in seconds

Figure 17. RayTracer test, evaluated in samples per second

As observed, the speed of scene rendering and
throughput of pixels of Sys-Iare both two times better
than Sys-Ⅱ.

IX. CONCLUSION

This paper proposes a thread migration approach to
build distributed Java virtual machine. It is an interesting
attempt to make use of the inevitable Java Virtual
Machine in Java based software systems to build a
transparent distributed computing framework.

This paper uses a Thread Migration approach to
distribute tasks among different nodes, which is achieved
by hijack internal native implement of Thread.start()
method of Java Virtual Machine. Making use of the low
coupling among different thread thread management

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2923

© 2013 ACADEMY PUBLISHER

structures of in Java Virtual Machine, this paper also
implemented a Distributed Java Heap for global object
fields’ accessing, and a distributed Garbage Collecting
mechanism. Another consideration needs to be taken is
how to synchronize Java Threads on different nodes, we
implemented a local proxy based service to achieve that.

Finally, we evaluated the performance of our system
prototype SingleJava using the Multi-threaded
Benchmarks of Java Grande Forum Benchmark Suite. A
 performance analysis is also provided.

ACKNOWLEDGMENT

The work of this paper is supported by the Science and
Technology Program of Zhejiang Province
(No.2012C33078).

REFERENCES

[1] Tim Lindholm, and Frank Yellin, The Java Virtual
Machine Specification Second Edition, Addison-Wesley,
USA, 1999.

[2] T. D. Brauna, H. J. Siegelb, N. Beckc, L. L. Bölönid, M.
Maheswarane, A. I. Reutherf, J. P. Robertsong, M. D.
Theysh, B. Yaoi, D. Hensgenj, and R. F. Freundk, "A
Comparison of Eleven Static Heuristics for Mapping a
Class of Independent Tasks onto Heterogeneous
Distributed Computing Systems", Journal of Parallel and
Distributed Computing, vol. 61, no.6, pp.810-837, 2001.

[3] Yu-Kwong Kwok, and Ishfaq Ahmad, "Efficient
Scheduling of Arbitrary Task Graphs to Multiprocessors
Using a Parallel Genetic Algorithm", Journal of Parallel
and Distributed Computing, vol.47, no.1, pp.58-77, 1997.

[4] K. Thitikamol, "Thread Migration and Communication
Minimization in DSM Systems", In Proceedings of the
IEEE, vol.87, no.3, pp.487-497, 1999.

[5] Ayal Itzkovitz, Assaf Schuster, and Lea Shalev, "Thread
Migration and its Applications in Distributed Shared
Memory Systems", Journal of Systems and Software, vol.
42, no.1, pp.71-87,1998.

[6] J. Archibald, and B. Jean-Loup, "Cache Coherence
Protocols: Evaluation Using a Multiprocessor Simulation
Model", ACM Transactions on Computer Systems, vol.4,
no.4, pp.273-298, 1986.

[7] N. P. Jouppi, "Cache Write Policies and Performance",
ACM SIGARCH Computer Architecture News, vol. 21, no.
2, pp. 191-201, 1993.

[8] Bernard Lang, Christian Queinnec, and Jose Piquer,
"Garbage Collecting the World", In Proceeding of ACM

SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp.39-50, 1992.

[9] Saleh E. Abdullahi, and Graem A. Ringwood, "Garbage
Collecting the Internet: A Survey of Distributed Garbage
Collection", ACM Computing Surveys, vol. 30, no. 3, pp.
330-373, 1998.

[10] Hans-J Boehm, "The Space Cost of Lazy Reference
Counting", In Proceeding of the ACM SIGPLAN-SIGACT
Symposium, pp.210-219, 2004.

[11] Y. Levanoni, and E. Petrank, "An On-the-fly Reference-
counting Garbage Collector for Java", ACM Transactions
on Programming Languages and Systems, vol. 28, no. 1,
pp. 1-69, 2006.

[12] Preeti Paranjape-Voditel, and Umesh Deshpande, "A DIC-
based Distributed Algorithm for Frequent Itemset
Generation", Journal of Software, vol 6, no 2, pp.306-313,
Feb 2011.

[13] Brad Long, "A Framework for Model Checking
Concurrent Java Components", Journal of Software, vol 4,
no 8, pp.867-874, Oct 2009.

[14] Lidong Zhai, Li Guo, Xiang Cui, and Shuhao Li,
"Research on Real-time Publish/Subscribe System
supported by Data-Integration", Journal of Software, vol 6,
no 6, pp.1133-1139, Jun 2011

[15] Xin Chen, Xubin He, He Guo, and Yuxin Wang, "Design
and Evaluation of an Online Anomaly Detector for
Distributed Storage Systems", Journal of Software, vol 6,
no 12, pp. 2379-2390, Dec 2011.

[16] Bing Gao, and Jianpei Zhang, "Density Based Distribute
Data Stream Clustering Algorithm", Journal of Software,
vol 8, no 2, pp. 435-442, Feb 2013.

Jian Su received the doctor degree in computer science &
technology from Zhejiang University in 2003. Currently, he is
an Associate Professor at Zhejiang University City College. His
research interests include Cloud Computing and Data Mining.

Chong Zhou is a master student of Department of Computer
Science at Zhejiang University. His research interests include
Cloud Computing and Software Engineering.

Wengyong Weng received the master degree in computer
science & technology from Zhejiang University in 2004.
Currently, he is an Associate Professor at Zhejiang University
City College. His research interests include Software
Engineering and Cloud Computing.

2924 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

