
A Method for Disguising Malformed SIP
Messages to Evade SIP IDS

Yulong Wang, Lei Wang
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and

Telecommunications, Beijing, China
Email: wyl@bupt.edu.cn, xinghunwl@gmail.com

Abstract— Malformed SIP attacks are threatening the se-
curity of VoIP system, such as IP Multimedia Subsystem,
which uses SIP (Session Initiation Protocol) as its core proto-
col. Though IDSs (Intrusion Detection System) supporting
malformed SIP detection had been produced, it was not
clear to what extent they can detect disguised malformed
SIP messages. This paper analyzes the condition of SIP IDS
evasion and proposes a method for disguising malformed
SIP messages. Based on the disguising method, a testing
system is built for evaluation the capability of SIP IDS
on evasion defending. The result of the experiments show
that the proposed method can improve the evasion rate
of malformed SIP messages considerably, which means the
defending capability of SIP IDSs should be improved to
prevent them from evasion.

Index Terms— Malformed SIP, Intrusion Detection System,
IDS Evasion

I. INTRODUCTION

S IP(Session Initiation Protocol) is an application-layer
signaling protocol for creating, modifying, and ter-

minating multimedia sessions between one or more par-
ticipants [1]. As the core signaling protocol of IP mul-
timedia network, especially VoIP system such IMS (IP
Multimedia Subsystem), its security is becoming a focus
of attention.

Since SIP is a text-based protocol, it’s very easy to
construct malformed SIP messages, which are threatening
the security of IP Multimedia Network [2]. Nowadays a
variety of attacking counter measures are being researched
[3]–[5]. Especially, some IDSs(Intrusion Detection Sys-
tem) are designed for defending IP multimedia network
against malformed SIP attacks [6]–[10].

However, these IDSs can be evaded by some SIP
messages. According to our investigation, the reasons are:

1) Some IDSs support old version SIP protocol, while
SIP servers protected by them do not support that
version. So the differences between the SIP protocol
versions may result in malicious SIP messages

Manuscript received April 9, 2013; revised May 16, 2013; accepted
May 18, 2013. c© 2005 IEEE.

This work was supported in part by the Youth Scientific Research
and Innovation Plan of Beijing University of Posts and Telecommuni-
cations(2013RC1101), the Innovative Research Groups of the National
Natural Science Foundation of China (61121061), the Disciplinary
Joint Construction Project of the Beijing Municipal Commission of
Education, and the Important National Science & Technology Specific
Projects:Next-Generation Broadband Wireless Mobile Communications
Network (2010ZX03004-001-01).

reaching the servers without being filtered out by
the IDSs.

2) The SIP detection modules in different SIP IDSs
utilize different methods to parse and detect ma-
licious SIP messages. Some of them may have
flaws. For example, some implementations split a
SIP message using LF, which would cause servers
splitting SIP messages by CRLF to obtain an unex-
pected set of headers.

3) Some SIP detection modules in SIP IDSs ignore
some details of SIP protocols. For example, a head-
er field may contain several lines and the header
may have a short name besides its full name.

To evaluate the defending capability of the SIP IDSs,
we propose a disguising method for malformed SIP mes-
sages. Our contributions can be summarized as follows:

1) For the first time, we proposed a SIP disguising
method for IDS evasion.

2) We designed a testing system based on the method,
which is able to evaluate the defending capability
of SIP IDSs on evasion.

3) We carried out experiments using the testing system
to show the severe situation the existing SIP IDSs
stays.

The rest of the paper is organized as follows. Section
II shows the motivating example. Section III describes
related works and its relationship to our work. Section IV
analyzes current SIP attack detection methods, proposes
the SIP disguising method for evading the detection and
presents the design of a testing system based on the
proposed method. Section V shows the experiments for
verifying the effectiveness of the proposed method and
showing the defending capability of the SIP IDSs. Finally,
Section VI concludes our work.

II. MOTIVATING EXAMPLE

We implemented a testing system which can be used
to generate malformed SIP messages and evaluate the
security of an IMS network. When performing a test,
we observed that if we changed the sending messages
in some way, the messages, which would originally be
blocked by IDS, could pass through the IDS of the IMS
without triggering an alert (Figure 1). We are curious
about the reason and want to develop a systematic method
for generating such messages which would be helpful for
testing the defending capability of SIP IDS.

2830 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.11.2830-2838

SIP Client

MALFORMED SIP

SIP IDS

IMS Network

CHANGED MALFORMED SIP

Figure 1. Motivating Example

III. BACKGROUND AND RELATED WORK

IMS, the VoIP in the telecommunication field, is regard-
ed as the core technologies of the communication network
after 3G and it’s also a network architecture to achieve
the integration of fixed, mobile and Internet network [11].
Since it and other VoIP system heavily depends on SIP
protocol, it’s also very important to defend them against
malformed SIP messages.

University of Oulu has developed a test suit, which is
actually a malformed SIP message generator [12]. This
test suit defines twenty malformation types for evaluating
the effectiveness of IDSs.

Many IDSs have been designed adopting a variety
of detection methods. S. Niccolini et al. proposed an
intrusion detection and prevention architecture using snort
[13], a very popular open source IDS [6]. It adopts a rule-
based method and works very well when dealing with the
SIP messages whose malformation types is known. The
rule-based method has two stages for detecting malformed
SIP messages:

1) Syntax Checking Stage: to check whether the re-
ceived SIP message can be parsed correctly, usually
by feeding it to a SIP stack.

2) Rule Checking Stage: to check whether the re-
ceived SIP message conforms to the rules indicating
malformation(e.g. the rule checking whether some
mandatory header fields exist).

The main drawback of this method is that its effectiveness
depends on SIP protocol stacks, which can be evaded due
to implementation differences of the stacks. Moreover, it
is unable to detect unknown type of malformation in SIP
messages.

Dimitris Geneiatakis et al. adopted another method to
detect malformed SIP messages, which is based on Regex
Match [14] [7] [8]. The Regex-Match-based method
provides some regular expressions for checking whether
some parts of a received SIP message is benign. It checks
the syntax of the received SIP message before parsing it.
Usually the checking of this method is stricter than that of
the rule-based method because it may check the charset
of each field while SIP stacks utilized by rule-based
method just partition a message to a set of fields without
checking the charset. This method is able to handle
unknown type of SIP malformation. The main weakness
of this method is that the efficient of the detection would
decrease when a more accurate regular expression is set.
So the major challenge of this method is how to construct
appropriate regular expressions. A straightforward way

would be using the BNF(Backus-Naur Form) of header
fields defined in the RFC 3261(SIP: Session Initiation
Protocol) [15]. However, BNF is not strict enough. Fox
example, BNF of SIP defines that a port is composed of
several digit, but we know that the value of a port should
be in the range from 0 to 65535.

Sohail Aziz et al. and Konrad Rieck, et al. all proposed
a self learning model for detecting SIP malformed mes-
sage attacks [9] [10]. However, the self-learning-based
methods are not practical enough due to high rate of
false positive and false negative. And they are unable to
provide the accurate reasons why the found malformation
is indeed a malformation.

According to the three reasons described in section
I, these IDSs can be evaded using evasion technologies.
Evasion technologies mainly utilize parsing flaws of pro-
tocol stacks to disguise the attacking messages so that
the feature of the malicious content of the messages(e.g.
malformation) would not be identified by IDSs. Evasion
technology is usually applied to two protocol layers. The
network layer evasion technologies usually take advan-
tages of the differences between IDSs and destination host
on packets handling. Tsung-Huan Cheng et al. summa-
rized five common evasion technologies including denial
of service, packet splitting, duplicate insertion, payload
mutation and shellcode mutation [16]. The application
layer evasion technologies mostly applied to HTTP. For
example, Daniel J. Roelker reviewed two types of evasion
technologies for HTTP protocol: invalid protocol parsing
and invalid protocol field decoding [17]. Invalid protocol
parsing means that the results of parsing are not correc-
t(e.g. HTTP URL is not correct). Invalid protocol field
decoding aims to test an IDS’s capability for dealing
with various types of encoding and normalization that
should be supported in a specific protocol field. Recently,
advanced evasion technology is proposed [18], which
is a mix of known evasion technology [19]. The rapid
development of evasion technology require researchers
to find more effective methods for testing the defending
capability of the existing IDSs.

Though evasion technologies is developing quickly,
to our best knowledge, no work has been done on the
evasion technology for SIP protocol. According to our
investigation, the existing evasion technologies cannot be
applied to SIP directly. So, in this paper, we focus on the
application layer to research evasion technology for SIP
protocol.

IV. SIP IDS EVASION

A. SIP IDS flaws on evasion

In order to analyze how to evade a SIP IDS, we divides
the procedure of malformed SIP detection methods into
three stages.

1) Field Partition Stage. In this stage a SIP message
will be partitioned to many strings and each string
stands for a header field.

2) Field Parsing Stage. Based on previous results, in
this stage the SIP IDS will check whether the string

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2831

© 2013 ACADEMY PUBLISHER

REGISTER sip:ims.com SIP/2.0\r\n

Call-ID: b12057c9d426f2e82ff13cbfab5d056e@192.168.1.203\r\n

CSeq: 1 REGISTER\r\n

From: ”user1” <sip:user1@ims.com>;tag=1000\r\n

To: ”user1” <sip:user1@ims.com>\r\n

Expires: 3600\r\n

Authorization: Digest username=”user1@ims.

com”,realm=”ims.com”

,nonce=””,response=””,uri=”sip:ims.com”\r\n

Supported: path\r\n

Contact: <sip:192.168.1.203:5064>\r\n

P-Preferred-Identity: ”user1” <sip:user1@ims.com>\r\n

P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-

3gpp=00000000\r\n

Privacy: none\r\n

User-Agent: Fraunhofer FOKUS/NGNI Java IMS UserEndpoint

FoJIE 0.1 (jdk1.3)

Allow: INVITE,ACK,CANCEL,BYE,MESSAGE,NOTIFY\r\n

Content-Length: 0\r\n\r\n

Figure 2. A Normal SIP Message

representing the header field conforms to the syntax
defined by its BNF in the SIP RFC.

3) Field Verification Stage. This stage is same as the
rule-checking stage of the rule-based method.

For example, the normal SIP message in figure 2
consists of a Request Line, a From header field, a To
header field and some other header fields. Request Line
contains a Method element, a Request URI element and a
SIP Version element. These elements are separated by a
space element. The augmented BNF grammar of Request
Line is ”Request-Line = Method SP Request-URI SP SIP-
Version CRLF”. A Request Line can be further partitioned
into more elements.

To partition a SIP message, the following rules should
be paid attention according to RFC 3261:

1) RFC 3261 allows the value of a header field to be
put into more than one line and requires a new line
to start with a space or a tab.

2) RFC 3161 requires that a header field must be ended
with a CRLF.

As the previous version of RFC 3261, RFC 2543 [20]
allows a field header to end with a CR, a LF or a
CRLF. This may lead to different implementations of SIP
stacks. Moreover, different operating systems may define
different line feeds, which may also lead to different
handling to line feeds. We take three SIP stacks as
examples. oSIP [21] allows a CR, a LF or a CRLF to
be a header field delimiter. SER [22] regards a LF or
a CRLF as a header field delimiter. However, Open-SIP
[23] only allows CRLF to be the delimiter. This difference
may cause a SIP message be partitioned into different sets
of strings when it is parsed by different SIP stacks. If the
difference can result in a SIP IDS not parsing a SIP header
field(i.e. the SIP stack in the SIP IDS doesn’t recognize
the SIP header field), the malformation contained in the
field can be concealed and the SIP message can evade the
SIP IDS.

Another difference of these three SIP stacks lies in how
they deal with the more-than-one-line problem. oSIP will
replace all tabs, CRs and LFs with spaces except for line

feeds. This results in a changed message to be parsed,
which may be a malformed SIP message before. For
example, RFC 3261 requires that only one space should
exist between the method and the request-uri in a request
message. SER adopts two ways to deal with this problem.
One way is inspecting the next character of a CRLF or a
LF and it is used for handling complicated header fields.
If the next character is a tab or a space, then the CRLF
or LF indicates a new line for this header field. The other
way, designed for simple header fields, is finding out all
parts of a simple header field while ignoring all blank
characters before the end of the field.

Before processing header fields, a SIP stack needs
to parse the first line to determine whether the SIP
message is a request message or a response one because
different message types have different first line syntaxes
and contains different header fields. oSIP will compare
the top four characters of the first line with the string
”SIP/” and the comparison is case sensitive. SER will
compare the top seven characters of the first line with the
string ”SIP/2.0” but this comparison is case insensitive.
Open-SIP behaves in the same way as SER. According
to RFC 3261, this comparison must be case insensitive,
but it also requires that the implementation of SIP stacks
to adopt upper case ”SIP/2.0” . This definition may result
in different implementations and may lead to SIP IDS
evasion.

This stage can be further divided into two sub-stages:
header field name parsing and header field value parsing.
The importance of the header field name parsing must be
emphasized because the name of the header field defines
the syntax of the whole header field. Only if the name
is parsed properly, can it be ensured that the next step
could be right. Also noted that SIP is easy to expand,
thus nearly all SIP stacks allow unknown header fields
and may not deal with them. So malformed parts can be
concealed in the unknown headers to evade the IDS.

SIP evasion may occur by exploiting the header field
name because the name of a header field is not unique.
It has two types of transformation:

1) The header field name is case insensitive, so ”From”
is same with ”from”.

2) Many Header fields have shorthand forms. For
example, ”f” is short for ”from”.

oSIP, SER and Open-SIP all support shorthand forms
and case-insensitive checking for common header fields.
But for application specific header fields such as User-
Agent, Require and Subject, they will rendering them
directly to applications in SIP servers(e.g P-CSCF in IMS
networks).

The way to parse the value part of a header field
depends on the implementations of SIP stacks. Different
implementations may adopt different ways and some ways
may have drawbacks. oSIP and Open-SIP both adopt the
method of string partition, which partitions a header field
according to delimiters until all needed parts are obtained.
Generally, the method of string partition will not check
the charset of the header field and it usually assumes

2832 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

that delimiters will only come up in special parts(e.g.
The left angle bracket will only appear in the name-addr
part of the From header field). So if this assumption can
not be satisfied, it can not be guaranteed that the parsing
result is correct. For example, when oSIP starts to parse
From header field, it will firstly search for the left angle
bracket. If it is found, oSIP will believe that the from-spec
part is in the name-addr form. However, this may not be
the case since the left angle bracket can also appear in
other parts (e.g generic-params) and the from-spec part is
actually in the addr-spec form. SER adopts two methods
to parse the value part of a header field. One is based on
state machines and parse the value character by character.
The other is the method of string partition. The former
method is designed for complicated header fields since
it can avoid problems produced by the method of string
partition. The latter one is designed for simple header
fields which mostly are in the key-value form.

Usually the problems of partition are caused by quoted
strings in generic-param or display-name. According to
RFC 3261, the content of a quoted string can contain
many kinds of characters, especially delimiters, and it also
allows escape characters with backlashes. Meanwhile,
SIP allows the appearance of unknown parameters which
enables users to insert any parameter into a SIP message.

1) Escape quotes in quoted-string
Quoted-string mainly appears in three parts:
display-name, generic-param and comment. As
comments seldom used, we just take the other two
parts into consideration.

a) Quoted-string appears in display-name
When oSIP finds a quote sign in display-name,
it will check whether the quote is an escape
quote so as to make sure that no escape quote
will be adopted. SER will regard the second
quote as the end of display-name and doesn’t
carry out escape quote checking. Open-SIP
does nothing on display-name. It just extract-
s the part before the left angle bracket as
display-name.

b) Quoted-string appears in generic-param
oSIP will not carry out escape quote checking.
It just looks for semicolons and equal signs.
SER’s procedure is the same as the procedure
it handles display-name. Open-SIP will regard
all of semicolons in this part as delimiters of
parameters and then find the parameter name
and the parameter value using equal signs.

2) Delimiters in quoted-string
oSIP only carries out escape quote checking
in display-name and will guarantee that de-
limiters in display-name will not affect the
string partition. However, when delimiters ap-
pears in generic-param, oSIP may deal with it
in wrong ways. For example, if the From field
is ”From:SIP:abnormal@abnormal.com; tag=-1000;
param1=”user0”; param2=”<SIP:user0@ims.com>;
tag=1000;\r\n”, oSIP will firstly look for the

left angle bracket, then it would think that
the header content is ”<SIP:user0@ims.com>;
tag=1000;\r\n”. SER will guarantee that quotes
must appear in pairs. So if no escape quote appears,
delimiters in generic-param will be ignored. Open-
SIP just partitions parameters by delimiters and may
produce wrong results.

3) Others
There are other ways to evade SIP IDSs. For ex-
ample, illegal characters can be encoded into other
forms to delay its handling, NULL can be brought
in to affect string handling procedures. If SIP URI
contains incorrect transformation of characters, SIP
stacks usually doesn’t recognize them and let them
pass through SIP IDSs. But when applications de-
code the characters they may crash because these
are illegal characters.
In RFC 3261, there are four rules on transformation.

a) SIP URI supports the transformation
of percent signs. For example,
”SIP:%61lice@atlanta.com;transport=TCP” is
equal to ”SIP:alice@atlanta.com;transport=tcp”.

b) In quoted-string, escape characters can be
used. For example, ”\n” is regarded as a CR.

c) SIP adopts the UTF-8 encoding, so it can
represents wide characters.

d) Content-Encoding header field can specify the
encoding method of the body. For example,
the content can be encoded in UTF-16.

This stage’s duty is to check whether the semantics of
the received SIP message is correct. For example, whether
the required header fields are appeared or not, whether the
value of Content Length header field is equal to the length
of the body.

Previous evasion measures can be utilized to evade the
checking in this stage.

B. SIP IDS evasion rules

Based on the analysis on the flaws on SIP IDS, we
presented SIP IDS evasion rules, which can be classified
into two categories:

1) Target systems have some flaws, and normal SIP
messages will have some attack effects.

a) Insert some carriage returns, spaces, tabs, line
breaks or combination of them into white
spaces. This rule may cause the target systems
to regard a multi-line header as two or more
headers.

b) Change the case of SIP version in the status
line. This rule may cause the target systems to
recognize it as a request message.

c) Change the case of header field names. This
rule may cause the target systems unable to
recognize them.

d) Change some header field names into abbre-
viated forms. This rule may cause the target
systems unable to recognize them.

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2833

© 2013 ACADEMY PUBLISHER

e) Add some colons, semicolons or commas into
quoted-string parts. This rule may cause the
target systems to parse them in a wrong way.

f) Change the case of the scheme of SIP URIs.
This rule may cause the target systems unable
to recognize the scheme.

2) SIP IDSs have some flaws and some malformed SIP
messages can not be identified.

a) Replace a CRLF with a carriage return or a
line break.

b) Add some characters to the end of the
SIP version in the status line. For example,
”SIP/2.0ddd 200 OK” may be recognized as a
normal status line by IDSs.

c) Change the SIP version in the status line. For
example, ”SIP/3.0” indicates a wrong version.

d) Use the name-addr form in the request
URI where only the addr-spec form
should be used. For example,”REGISTER
bob<SIP:bob@ims.com> SIP/2.0”.

e) Insert some carriage returns, line breaks or
combination of them into the quoted-string.

C. SIP disguising algorithm

To apply the SIP IDS evasion rules, we designed an
algorithm SDA(SIP Disguising Algorithm), as showned
in figure 1.

Algorithm 1 SIP Disguising Algorithm - SDA.
Input: The rule set, rs;

A normal message, nm;
A selection strategy, s.

Output: A malformed SIP message, mm.
1: select a rule, r, from rs according to s.
2: partition nm into a collection of headers, hc.
3: for all h ∈ hc do
4: partition h into a collection of elements, ec.
5: for all e ∈ ec do
6: if e.type ∈ r.type set then
7: change e to a new element ne according to r.
8: else
9: copy e to a new element, ne.

10: end if
11: put ne into a new collection of elements, nec.
12: end for
13: assemble nec to a new header, nh.
14: put nh into a new collection of headers, nhc.
15: end for
16: assemble nhc to a malformed SIP message, mm.
17: return mm.

Firstly, partition a SIP message into a collection of
header fields. Secondly, for each header filed in the col-
lection, partition it into a collection of elements. Thirdly,
according to a selection strategy, select one or more rules
and change the related elements. Finally, assemble a new
SIP message.

Disguise the SIP message

Evasion
succeed

Select the next rule

Can current
rule be varied

Select the varied rule

Yes

Yes

No

No

Record the disguised SIP message

Send the SIP message

Are there
remaing rules

Yes

No

End

Start

Figure 3. Selection Strategy

Suppose there are m rules and a message can be divided
into n elements, the time complexity of the algorithm is
O(m+n). To improve the possibility of SIP IDS evasion,
we bring up a selection strategy, as shown in figure 3.

The number of rules is always limited. To improve the
possibility of evading signature-based SIP IDSs, some
variability should be added to these rules. This can be
achieved in two ways:

1) The combination of multiple rules. In other words,
more than one rules are applied to one SIP message.

2) The implementation of rules. A rule will change the
content of one SIP message using three methods:

a) Conversion Method. For example, case con-
version can be done to parts or all elements.

b) Insertion Method. Different characters or d-
ifferent number of characters can be inserted
into some elements.

c) Replacement Method. Based on some tem-
plates, the whole element can be replaced with
another one.

D. SIP IDS evasion testing system

To evaluate the defending capability of SIP IDS on
SIP evasion, we designed a system, ETS(Evasion Testing
Sytem), as shown in figure 4.

The generator will generate SIP messages which are
processed by the evasion rules. Then the sender will
decide where to send these messages. Target emulator
will wait for arrival of these SIP messages, then analyze
the content to decide whether they contain attacking
payload. In order to calculate the percentage of evasion,
the sender would send two SIP messages to the target
emulator, one is through the SIP IDS under test, one is
not. Recorder has the duty of recording successful evasion
SIP messages. Counter is responsible for performing some
statistics about evasion such as the number of effective
evasion rules. Based on the statistics we can find out that
for the SIP IDS under test which rules are effective. We

2834 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

Sender

SIP MESSAGE

SIP IDS

RESULT MESSAGE

Target Emulator

Generator RecorderCounter

Figure 4. Evasion Testing System - ETS

Partition Module Analysis Module

Assembly Module Ruleset Module

Normal SIP
Message

Malformed
SIP Message

Figure 5. Generator Components

also can adjust the selection strategy to generate more SIP
messages to obtain more effective rules.

The generator is the core of this system. It consists of
four components(Figure 5):

The duty of the partition module is to partition a
normal SIP message into a collection of header fields. For
example, a normal SIP message contains a from header
field, a to header field , one or more via header fields,
and so on. The analysis module will analyze all header
fields in the collection produced by previous module, and
divide a header field into a collection of elements. The
encoding of SIP is specified using an augmented BNF, so
a header field can be divided to many parts according to
these rules. For example, a call-id header field contains
a header field name that is case insensitive, a colon that
helps obtain the header field name and a number named
call id.The ruleset module is the core of the generator, and
any rule can be added into this part to change any element
of any header field, so most disguising technologies are
applied here. For example, if there is a user-agent header
field, a malformed from header field can be inserted into
it. The assembly module is responsible for constructing
the disguised malformed SIP message in the end.

V. EXPERIMENTS

To verify the effectiveness of the proposed method,
we have carried out two groups of experiments based on
Snort:

1) Snort version 2.9 has implemented a preprocessor
for SIP to detect malformed SIP messages. It also
provided a rule set. We use the version 2.8 rule set
in this experiment.
The preprocessor for SIP in Snort checks for the
existence of required header fields such as the Via
header field. ETS utilizes User-Agent header field
to generate a malformed SIP message and evades it
successfully.

REGISTER sip:ims.com SIP/2.0\r\n

Call-ID: b12057c9d426f2e82ff13cbfab5d056e@192.168.1.101\r\n

CSeq: 1 REGISTER\r\n

From: "user1" <sip:user1@ims.com>;tag=1000\r\n

To: "user1" <sip:user1@ims.com>\r\n

Expires: 3600\r\n

Authorization: Digest username="user1@ims.

com",realm="ims.com"

,nonce="",response="",uri="sip:ims.com"\r\n

Supported: path\r\n

Contact: <sip:192.168.1.101:5060>\r\n

P-Preferred-Identity: "user1" <sip:user1@ims.com>\r\n

P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-

3gpp=00000000\r\n

Privacy: none\r\n

User-Agent: Fraunhofer FOKUS/NGNI Java IMS UserEndpoint

FoJIE 0.1 (jdk1.3), "\nVia: SIP/2.0/UDP 192.168.1.101:5060;

branch=z9hG4bK6a34ee2e9bdd86c6

63abd2bb5ff0302c \n" \r\n

Allow: INVITE,ACK,CANCEL,BYE,MESSAGE,NOTIFY\r\n

Content-Length: 0\r\n\r\n

Figure 6. Example 1

Example 1:
User-Agent: Fraunhofer FOKUS/NGNI Java
IMS UserEndpoint FoJIE 0.1 (jdk1.3),
”\nVia: SIP/2.0/UDP 10.108.114.246:5064;
branch=z9hG4bK6a34ee2e9bdd86c6
63abd2bb5ff0302c \n” \r\n
Analysis:
The corresponding snort rule is ”alert udp any
any -> any any (msg:”VOIP-SIP Via header
missing SIP field”; content:”Via|3A|”; nocase;
pcre:”/ˆVia\x3A\s+(?!SIP\x2F2\x2E0)/smi”;
reference:url,www.ietf.org/rfc/rfc3261.txt;
sid:11975; rev:2;)”. The rule checks whether
a Via header field is existent using a simple regular
expression. We found that the preprocessor of snort
partitions a message by CRLF or LF and it has no
rules on the checking of User-Agent header field.
So we construct a Via header field string and put it
into the User-Agent header field. This message can
evade snort while SIP servers behind it would not
obtain a Via header field. The complete message is
shown in Figure 6.
Snort will check whether the From header field con-
tains format strings using the Regex Match method.
However, ETS can evade it using the shorthand
form of the From header field name.
Example 2:
F: ”user1%d” <SIP:user1@ims.com>;tag=1000\r\n
Analysis:
The corresponding snort rule is ”alert
udp any any -> any any (msg:”VOIP-SIP
From header format string attempt”; con-
tent:”From|3A|”; nocase; content:”%”; distance:0;
pcre:”/ˆFrom\x3A\s*[ˆ\r\n%]*%/smi”;
reference:url,www.ee.oulu.fi/research/ouspg/
protos/testing/c07/SIP/; refer-
ence:url,www.ietf.org/rfc/rfc3261.txt; sid:11988;
rev:2;)”. This rule tries to find a format string in

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2835

© 2013 ACADEMY PUBLISHER

REGISTER sip:ims.com SIP/2.0\r\n

Call-ID: b12057c9d426f2e82ff13cbfab5d056e@192.168.1.101\r\n

CSeq: 1 REGISTER\r\n

F: "user1%d" <sip:user1@ims.com>;tag=1000\r\n

To: "user1" <sip:user1@ims.com>\r\n

Via: SIP/2.0/UDP 192.168.1.101:5060;

branch=z9hG4bK6a34ee2e9bdd86c663abd2bb5ff0302c \r\n

Expires: 3600\r\n

Authorization: Digest username="user1@ims.

com",realm="ims.com"

,nonce="",response="",uri="sip:ims.com"\r\n

Supported: path\r\n

Contact: <sip:192.168.1.101:5060>\r\n

P-Preferred-Identity: "user1" <sip:user1@ims.com>\r\n

P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-

3gpp=00000000\r\n

Privacy: none\r\n

User-Agent: Fraunhofer FOKUS/NGNI Java IMS UserEndpoint

FoJIE 0.1 (jdk1.3)\r\n

Allow: INVITE,ACK,CANCEL,BYE,MESSAGE,NOTIFY\r\n

Content-Length: 0\r\n\r\n

Figure 7. Example 2

From header field. However it neglects that From
header field has a shorthand name f. So using
this shorthand form, some format strings can be
inserted into From header field and evade the
detection of snort. The complete message is shown
in Figure 7.
Snort will check whether overflow exists in the
From header field using the Regex Match method.
The checking can be evaded by ETS using CR and
LF.
Example 3:
From: ”user\r ...\r ...\r” <SIP:user1@ims.com>;
tag=1000\r\n
Analysis:
The corresponding snort rule is ”alert udp any
any -> any any (msg:”VOIP-SIP from header field
buffer overflow attempt”; content:”From|3A|”;
nocase; pcre:”/ˆFrom\x3A\s+[ˆ\r\n]256/smi”;
reference:url,www.cert.org/advisories/CA-2003-
06.html; reference:url,www.ietf.org/rfc/rfc3261.txt;
sid:11978; rev:3;)”. This rule checks whether
the From header field contains more than 256
characters. However we find out that when a CR
or LF is encountered, this check will stop. So we
insert some LFs to the SIP message to evade the
detection. If SIP servers partition a message with
CRLF, then the overflow payload can still work.
The complete message is shown in Figure 8.

2) Based on oSIP and Snort, we have implemented a
SIP IDS. This system will firstly put a SIP message
into oSIP to check whether the syntax of it is
correct, and then we will set a rule to check whether
the From header field exists.
Using the User-Agent header field ETS makes this
system to believe that the From header field does
exist.
Example 4:
User-Agent: Fraunhofer FOKUS/NGNI Java IMS

REGISTER sip:ims.com SIP/2.0\r\n

Call-ID: b12057c9d426f2e82ff13cbfab5d056e@192.168.1.101\r\n

CSeq: 1 REGISTER\r\n

From: "user\r ...\r ...\r" <sip:user1@ims.com>;

tag=1000\r\n

To: "user1" <sip:user1@ims.com>\r\n

Via: SIP/2.0/UDP 192.168.1.101:5060;

branch=z9hG4bK6a34ee2e9bdd86c663abd2bb5ff0302c \r\n

Expires: 3600\r\n

Authorization: Digest username="user1@ims.

com",realm="ims.com"

,nonce="",response="",uri="sip:ims.com"\r\n

Supported: path\r\n

Contact: <sip:192.168.1.101:5060>\r\n

P-Preferred-Identity: "user1" <sip:user1@ims.com>\r\n

P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-

3gpp=00000000\r\n

Privacy: none\r\n

User-Agent: Fraunhofer FOKUS/NGNI Java IMS UserEndpoint

FoJIE 0.1 (jdk1.3)\r\n

Allow: INVITE,ACK,CANCEL,BYE,MESSAGE,NOTIFY\r\n

Content-Length: 0\r\n\r\n

Figure 8. Example 3

REGISTER sip:ims.com SIP/2.0\r\n

Call-ID: b12057c9d426f2e82ff13cbfab5d056e@192.168.1.101\r\n

CSeq: 1 REGISTER\r\n

To: "user1" <sip:user1@ims.com>\r\n

Via: SIP/2.0/UDP 192.168.1.101:5060;

branch=z9hG4bK6a34ee2e9bdd86c663abd2bb5ff0302c \r\n

Expires: 3600\r\n

Authorization: Digest username="user1@ims.

com",realm="ims.com"

,nonce="",response="",uri="sip:ims.com"\r\n

Supported: path\r\n

Contact: <sip:192.168.1.101:5060>\r\n

P-Preferred-Identity: "user1" <sip:user1@ims.com>\r\n

P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-

3gpp=00000000\r\n

Privacy: none\r\n

User-Agent: Fraunhofer FOKUS/NGNI Java IMS UserEndpoint

FoJIE 0.1 (jdk1.3), "\rFrom: "user0" <sip:"user0"@ims.

com>; tag=1000\r"\r\n

Allow: INVITE,ACK,CANCEL,BYE,MESSAGE,NOTIFY\r\n

Content-Length: 0\r\n\r\n

Figure 9. Example 4

UserEndpoint FoJIE 0.1 (jdk1.3), ”\rFrom: ”user0”
<SIP:”user0”@ims.com>; tag=1000\r”\r\n
Analysis:
oSIP will partition a message using CR, LF
or CRLF into a collection of headers. So the
SIP IDS will obtain the From header field,
which is ”From: ”user0” <SIP:”user0”@ims.com>;
tag=1000”. However, SIP servers may not obtain it
because this message does not have one in fact. The
complete message is shown in Figure 9.
If the From header field is malformed, ETS will
insert a normal SIP uri in the generic-param part to
make oSIP think that SIP uri is SIP:user0@ims.com
not SIP:abnormal@abnorma.com.
Example 5:
From:SIP:abnormal@abnormal.com; tag=-1000;
param1=”user0”; param2=”<SIP:user0@ims.com>;
tag=1000;”\r\n

2836 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

REGISTER sip:ims.com SIP/2.0\r\n

Call-ID: b12057c9d426f2e82ff13cbfab5d056e@192.168.1.101\r\n

CSeq: 1 REGISTER\r\n

From:sip:abnormal@abnormal.com; tag=-1000;

param1="user0";

param2="<sip:user0@ims.com>; tag=1000;"\r\n

To: "user1" <sip:user1@ims.com>\r\n

Via: SIP/2.0/UDP 192.168.1.101:5060;

branch=z9hG4bK6a34ee2e9bdd86c663abd2bb5ff0302c \r\n

Expires: 3600\r\n

Authorization: Digest username="user1@ims.

com",realm="ims.com"

,nonce="",response="",uri="sip:ims.com"\r\n

Supported: path\r\n

Contact: <sip:192.168.1.101:5060>\r\n

P-Preferred-Identity: "user1" <sip:user1@ims.com>\r\n

P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-

3gpp=00000000\r\n

Privacy: none\r\n

User-Agent: Fraunhofer FOKUS/NGNI Java IMS UserEndpoint

FoJIE 0.1 (jdk1.3)

Allow: INVITE,ACK,CANCEL,BYE,MESSAGE,NOTIFY\r\n

Content-Length: 0\r\n\r\n

Figure 10. Example 5

TABLE I.
SIP MALFORMATION DETECTION OF SNORT

Message
Type

Header Malformation
Type

Detection
Rate

All All but User-
Agent

All 100%

All User-Agent All 0%

Analysis:
When oSIP parses the From header field, it will
firstly try to find a left angle bracket. If it is found,
oSIP will think that the from-spec part is in the
name-addr form without checking whether the left
angle bracket belongs to other parts(e.g. generic-
params)or not. So attackers can utilize this bug to
insert malicious elements in the From header field
to evade the detection. The complete message is
shown in Figure 10.

In the end, we carried out an experiment to calculate the
rate of successful evasion to Snort. Firstly, we generated
sixty normal SIP messages including ten ACK messages,
ten BYE messages, ten CANCEL messages, ten INVITE
messages, ten OPTIONS messages and ten REGISTER
messages. Secondly, we inserted three types of typical
malformation elements(Invalid Characters, Format String
and Overflow into six SIP headers including CSeq head-
er, From header, To header, Call-ID header, Via header
and User-Agent header which can appear in every SIP
message. Finally, we generated one thousand and eighty
malformed SIP messages. When these messages went
through Snort, nearly 83.33 percents of them are detected,
as shown in Table I.

In order to evade Snort, we adopted five evasion rules:
1) Adopt the shorthand form of the name of the header

containing malformation elements.
2) Randomly change the characters of the name of the

header to their upper or lower cases.
3) Rearrange the value of the header to multiply lines

TABLE II.
EVASION RELATION

hhhhhhhhhhhEvasion Rule
ElementInvalid
Characters

Format
String

Overflow

Rule 1 Evaded Evaded Evaded
Rule 2 Evaded Evaded Evaded
Rule 3 Evaded Evaded Evaded
Rule 4 Evaded Evaded Not Evaded
Rule 5 Evaded Evaded Not Evaded

TABLE III.
EVASION RATE

Rule Unused De-
tection Rate

Detection
Rate

Evasion
Rate

Rule 1 83.33% 0% 100%
Rule 2 83.33% 83.33% 0%
Rule 3 83.33% 0% 100%
Rule 4 83.33% 0% 100%
Rule 5 83.33% 83.33% 0%

but do not place the malformation elements on the
first line.

4) Use backlashes.
5) Utilize the UTF-8 encoding diversity.
The relations between evasion rules and the malforma-

tion elements is shown in table II.
Then we applied these evasion rules to disguise the

above one thousand and eighty malformed SIP messages
and obtain four thousand six hundred and eighty SIP
messages. When all these SIP messages were sending
to snort, only one thousand and five hundred malformed
SIP messages are detected. So the evasion rate is about
61.54% on average(table III).

The experiment shows that snort will not look for these
three types of malformation elements in the User-Agent
header. Therefore, snort should be enhance to defend the
evasion through this header field.

VI. CONCLUSION

In this paper, we analyzed the flaws of SIP IDSs on
their capability of evasion detection. Then we proposed
the SIP evasion rules as well as the related SIP disguising
algorithm. Also, we designed a evasion testing system
using the proposed evasion rules and disguising algorithm
to evaluate the evasion rate of SIP IDSs. We conducted
evasion experiments on snort and oSIP-based IDS. The
results show that the proposed method can improve the
evasion rate of SIP messages considerably, thus can help
enhance the defending capability of SIP IDS.

ACKNOWLEDGMENT

We thank professors and colleagues for numerous dis-
cussions concerning this work, State Key Laboratory of
Networking and Switching Technology for assistance, and
the reviewers for their detailed comments.

REFERENCES

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, and R. Sparks, “Sip: Session initiation pro-
tocol,” RFC 3261, Internet Engineering Task Force, June
2002.

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2837

© 2013 ACADEMY PUBLISHER

[2] D. Geneiatakis, T. Dagiuklas, G. Kambourakis, C. Lambri-
noudakis, S. Gritzalis, S. Ehlert, and D. Sisalem, “Survey
of security vulnerabilities in session initiation protocol,”
IEEE Communications Surveys and Tutorials - COMSUR,
vol. 8, no. 3, pp. 68 – 81, Dec. 2006.

[3] L. Xie, F. Yu, and C. Xu, “Distributed
firewall with intrusion detection system,” Journal
of Computers, vol. 7, no. 12, 2012. [Online].
Available: http://ojs.academypublisher.com/index.php/jcp/
article/view/jcp071231103115

[4] B. Meng, W. Wang, and W. Chen, “Verification
of resistance of denial of service attacks in
extended applied pi calculus with proverif,” Journal
of Computers, vol. 7, no. 4, 2012. [Online].
Available: http://ojs.academypublisher.com/index.php/jcp/
article/view/jcp0704890899

[5] W. Jiang, X. Fan, D. Duanmu, and Y. Deng, “A
new security risk assessment method of website
based on generalized fuzzy numbers,” Journal
of Computers, vol. 8, no. 1, 2013. [Online].
Available: http://ojs.academypublisher.com/index.php/jcp/
article/view/jcp0801136145

[6] S. Niccolini, R. G. Garroppo, S. Giordano, G. Risi,
and S. Ventura, “Sip intrusion detection and preven-
tion:recommendations and prototype implementation,” in
1st IEEE Workshop on VoIP Management and Security,
Apr. 2006, pp. 47 – 52.

[7] D. Geneiatakis, G. Kambourakis, C. Lambrinoudakis,
T. Dagiuklas, and S. Gritzalis, “A framework for protecting
a sip-based infrastructure against malformed message at-
tacks,” Computer Networks: The International Journal of
Computer and Telecommunications Networking, vol. 51,
no. 11, pp. 2580 – 2593, July 2007.

[8] D. Geneiatakis, G. Kambourakis, T. Dagiuklas, C. Lam-
brinoudakis, and S. Gritzalis, “A framework for detecting
malformed messages in sip networks,” in IEEE Workshop
on Local and Metropolitan Area Networks - LANMAN ,
2005, Sept. 2005, p. 5.

[9] S. Aziz and M. Gul, “A self learning model for detecting
sip malformed message attacks,” in 2010 3rd IEEE Inter-
national Conference on Broadband Network and Multime-
dia Technology (IC-BNMT), Oct. 2010, pp. 744– 749.

[10] K. Rieck, S. Wahl, P. Laskov, P. Domschitz, and K. robert
Mller, “A self-learning system for detection of anomalous
sip messages,” in Principles, Systems and Applications of
IP Telecommunications, Services and Security for Next
Generation Networks: Second International Conference,
IPTComm 2008, Heidelberg, Germany, Oct. 2008, pp. 90
– 106.

[11] L. Meilian, W. Lei, and Z. Xing, “Research and im-
plementation of ims simulation system based on ns2,”
in International Conference on Wireless Communications,
Networking and Mobile Computing - WiCom , 2008, Oct.
2008, pp. 1 – 5.

[12] University of Oulu, “Protos test-suite: c07-sip,” https://
www.ee.oulu.fi/research/ouspg/PROTOS_Test-Suite_
c07-sip. Accessed on October 5th, 2012.

[13] “Snort home page,” http://www.snort.org. Accessed on
October 5th, 2012.

[14] “Perl compatible regular expressions,”
http://www.pcre.org. Accessed on October 5th, 2012.

[15] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler, “Sip:
Session initiation protocol,” RFC 2543, Internet Engineer-
ing Task Force, June 2002.

[16] T. Cheng, Y. Lin, Y. Lai, and P. Lin, “Evasion techniques:
Sneaking through your intrusion detection/prevention sys-
tems,” Communications Surveys & Tutorials, IEEE, vol. 14,
no. 4, pp. 1011– 1020, Oct. 2011.

[17] Daniel J. Roelker, “HTTP IDS Evasions Revisited,”
http://www.idsresearch.org/. Accessed on October 5th,
2012.

[18] M. Boltz, M. Jalava, and J. Walsh, “New methods and
combinatorics for bypassing intrusion prevention technolo-
gies,” Stonesoft, Tech. Rep., 2010.

[19] S. Gold, “Advanced evasion techniques,” Network Security,
vol. 2011, no. 1, pp. 16 – 19, Jan. 2011.

[20] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosen-
berg, “Sip: Session initiation protocol,” RFC 2543, Internet
Engineering Task Force, Mar. 1999.

[21] “oSIP library home page,” http://www.gnu.org/software/
osip/osip.html. Accessed on October 5th, 2012.

[22] “SER - SIP Express Router home page,” http://www.iptel.
org/ser?from=0&comments_per_page=10. Accessed on
October 5th, 2012.

[23] “Opensipstack library home page,”
http://www.opensipstack.org. Accessed on October
5th, 2012.

2838 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

