JOURNAL OF SOFTWARE, VOL. §, NO. 11, NOVEMBER 2013

2815

Evolution of Open Source Software Projects: A
Systematic Literature Review

M.M. Mahbubul Syeed, Imed Hammouda, Tarja Systa
Department of Pervasive Computing, Tampere University esfhihology, Tampere, Finland
Email: {mm.syeed, imed.hammouda, tarja.sy&baut.fi

Abstract— Open Source Software (OSS) is continuously
gaining acceptance in commercial organizations. It is in
this regard that those organizations strive for a better
understanding of evolutionary aspects of OSS projects.
The study of evolutionary patterns of OSS projects and
communities has received substantial attention from the
research community over the last decade. These efforts
have resulted in an ample set of research results for which
there is a need for up-to-date comprehensive overviews and
literature surveys.

This paper reports on a systematic literature survey aimed
at the identification and structuring of research on evoluton
of OSS projects. In this review we systematically selected

systematic selection and characterization of existing lit
erature. SLR is a recommended methodology for aggre-
gating knowledge about a specific software engineering
topic or research question [7] [8], through the systematic
analysis of relevant empirical studies [6]. For example,
SLRs were popularly utilized to acquire, conceptualize
and structure knowledge in various fields of software
engineering including, dynamic analysis [9], fault predic
tion [10], global software engineering [11], and business
process adoption [12].

To carry out this review we adopted a review protocol

and reviewed 101 articles published in relevant venues. The
study outcome provides insight in what constitutes the main
contributions of the field, identifies gaps and opportunities,
and distills several important future research directions

following the guidelines suggested in [13] and the survey
process used in [9]. Keeping the research motivation in
mind, we posted 11 research questions in four categories,
e.g., target, approach, target group and outcome. Target
refers to the different facets and dimensions of OSS
projects explored; approach refers to the method, met-
| INTRODUCTION rics, and too_ls used for th(_e study; tgrget group ref_ers
' to the domain of OSS projects studied with selection
Research on Open Source Software (OSS) has gaingfotives, and finally the outcome refers to the findings
momentum over the last decade as commercial use of OSg\q validation of the results reported in the articles. We
components continues to expand [1]. Much of the researchiso discuss the implications of the findings and provide
has focused on evolutionary aspects of open source devekcommendations for future research. The data extracted
opment in answer to long-term sustainability and viability from the articles are documented under the attribute set
concerns of community-based software projects [2]. geveloped for answering the research questions. This data
Examples of such research include collecting experisg provided in the review website [14] and can be used

ences and building theories of OSS adoption in terms ofy the research community to get a holistic view on 0SS
planning, process improvement, community involvementyolution studies.

and s_oftware maintenancg [3] [4]. Often well-established Tpe paper is organized as follows: In Section Il we
theories of software evolution, such as Lehman's law [S]qiscuss the review protocol and the research questions.
are studied in the context of OSS to assess evolutionaXnswers to the research questions, and a discussion on
and quality characteristics such as survivability, growthypen areas in the field of 0SS and evolution are presented
potential, maintainability, and ease of adoption. in Section Il and IV respectively. Section V discusses

To keep track of the latest research findings in the5)igity issues related to the review process. Finally,
area of OSS evolution, there is a need for comprehenswgonduding remarks are presented in Section VI.

literature studies that summarize and structure the agisti
body of knowledge. In this article, we present a study for
systematic selection, characterization and structurieg |
ature that concerns evolution of open source projects. Our Eyjdence-based Software Engineering (EBSE) relies
objective, and thus contribution is to produce a systematign aggregating the best available evidence to address
reporting of what constitutes the key contributions, theangineering questions posed by researchers. A recom-
main research gaps, and potential future directions in thgyended methodology for such studies is Systematic Lit-
field. erature Review (SLR) [6]. Performing an SLR involves
In order to perform the study, we have adopted &seyeral discrete tasks, which are defined and described by
systematic literature review (SLR) approach [6] for thekjtchenham in [13]. As a starting point, SLR recommends
to pre-define a review protocol to reduce the possibility of
researcher bias [13]. Along those guidelines and following

Index Terms— Open Source; Evolution; Systematic Litera-
ture Review.

Il. REVIEW METHODOLOGY

This work was supported in part by the Nokia Foundation Geanat
TiSE graduate school funding, Finland.

©2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.11.2815-2829

2816 JOURNAL OF SOFTWARE, VOL. §, NO. 11, NOVEMBER 2013

(a) Review Objective

Define review motivation Set of research questions

(b) Article Selection

Articles from I
other venue

Reference
checking
Earlier articles II

Search articles from

relevant venues
(Broad automated
keyword search)

Manual selection
(Title, keyword and
Abstract review)

Initial set of I Refined set II Final set of II
articles of articles articles

(c) Attribute framework

y

Pilot study

Final attribute i _
framework Attribute generalization Initial attribute set I Attribute identification
/—

Y
Characterization Answering Discussion on
Attribute assignment of the articles research questions > open areas
\/_

(d) Article Assessment

Figure 1. Overview of systematic literature review

the review process described in [9], Figure 1 shows the « Articles must exhibit a profound relation to OSS

tasks involved in the review protocol of this study. The projects and take into consideration those aspects that

tasks are discussed in the subsequent subsections. are particularly attributed to the OSS community and
projects. Articles using OSS as a case study are taken

A. Research Questions into account only if they satisfy the above criterion.

The research questions we have defined fall within the ¢ Atrticles published in referred journals and confer-
context of OSS projects and their evolution strategies. In ~ €nces are included for the review. Similar to most
total we have formulated 11 questions, as presented in Ta- SLRs, books are not considered for the review.

ble I. These questions are proposed to portray the holistic The suitability of the articles was determined against
view of OSS evolution studies. This covers aspects likehe above mentioned selection criteria through a manual
the focus of the study, methodological detail, case studynalysis (discussed later in this section) of title, keyaor

projects, data sources, and validation mechanisms. abstract. In case of doubt conclusions are checked [15].

B. Article Selection Automated keyword search Automatic keyword

This section describes the article selection processearch is a widely used strategy in literature surveys [16]

(phase (b) in Figure 1) that includes defining the[17]. Thus we performed a broad automated keyword
inclusion criteria for article selection, an automatedsearch to get the initial set of articles. First author of
keyword search process to search digital libraries, &his article was responsible for the search process. Seven
manual selection from the initial set of articles, and thedigital libraries were searched: IEEE Computer Society
reference checking of the listed articles. Digital Library; ACM; ScienceDirect; SpringerLink;

Google Scholar; FLOSShub and Mendeley. These
Inclusion criteria. Along the research questions libraries are the popular sources for open source related
shown in Table |, we have defined the following research articles. All searches were based on the title,
selection criteria in advance that should be satisfied bkeywords and abstract. The time period for this search
the reviewed articles: was from January, 2000 to January, 2013.

« Subject area of the articles must unveil strong focus Knowing the fact that construction of search strings
on evolution of OSS projects. Authors must explic-varies among libraries, we first defined search terms
itly state the target of the study (e.g., software evolu-according to our inclusion criteria. Then to form the
tion, community evolution, co-evolution, prediction) search strings, we combined these search terms following
and provide detail evidence of research methodologythe guidelines of the digital library searched. The list of
data sets, and statistical detail of case study projectsearch terms that were used is as follows.

©2013 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. §, NO. 11, NOVEMBER 2013 2817

TABLE I.
RESEARCHQUESTIONS

Category Research Questions Main Motivation

Target Which facets of OSS projects were explored and whafo decompose the articles according to their study focusrgedsity
statistical distribution the articles have in those faeets of studies in each focus area.

What are the dimensions of OSS projects explored urjddio determine the specific aspect(s) of OSS projects explared

each study facet? evolution studies within each facet.
Approach What are the research approaches followed in the sfud@e identify the general research approach followed in diaiu
ies? studies (e.g., empirical studies with quantitative or gGatwe data
analysis).
What are the datasets or data sources of OSS projedts identify the data sources of an OSS project that are usethéo
mostly exploited in evolution studies? evolution studies.
What metric suits are evaluated and what tools are ysé&a explore the metric suits used for evolution study and teufarly
for metric data collection? used tools for data extraction.
Target What is the portfolio of projects analyzed for evolutignTo determine the mode of evolution studies (e.g., horizoora
group studies and what are their domains? vertical) by statistically measuring the studied OSS mtsj@nd their
domains.
Outcome Does the concern on “OSS evolution study” follow anTo identify the beginning and growth of research interesthim field
increasing trend? OSS project evolution.

What contributions are made in literature to analyze the
evolution of software?
What contributions are made in Titerature to analyze th&o explore what results are presented to enhance the uadeirsy of
evolution of organization or community? OSS projects evolution. (e.g., do evolution of OSS projeoctsforms
to the theory of software evolution?)

What contributions are made in literature to analyze the

interdependency in the evolution of the software and

organization?
How are the research approaches and results of|tA® identify the approaches employed to evaluate the rdseape
articles typically validated? proaches and study results (e.g., internal validity, estervalidity,
construct validity).

Reference checking To ensure the inclusion of
Terms representing OSS: “Open source” or OSS opther relevant but missing articles (as mentioned above),
“Open Source Software” or “Open Source Softwarethe first author performed a non-recursive search through
projects” or FLOSS or “Libre Software” or “F/OSS”". the references of the 97 selected articles. This process
identified 4 additional conference articles.
Terms representing evolution study: “evolution” or
“structural evolution” or “evolution of software” or Final set of articles The article selection process
“project evolution” or “project history” or “software finally ended up with 101 articles (21 journal and 80
evolution” or “community evolution” or “co-evolution”. conference articles). A complete list of these articles
along with year and venue wise distribution can be found
Automated keyword search ended up with 181 articlesn our review website [14].
consisting of 46 journal articles and 135 conference
articles. C. Attribute Framework

, .) The next step in the review protocol was the
Manual selection Recent studies [15] [9] pointed out .,ngtriction of an attribute framework (phase (c) in

that (a) current digital libraries on software engineering,;igure 1). This framework was used to characterize the

do not provide good support for automated keywordsgiected articles and to answer the research questions.

search due to lack of consistent set of keywords, an%ollowing is a brief description of this process.

(b) the abstracts of software engineering articles are

relatively poor in comparison to other disciplines. ThusAttribute identification . The attribute set was derived
it is possible that the 181 articles identified throughbased on two criteria: (a) The domain of the review

automated search process mi_ght_ contain irrele_vant on%e” evolution of OSS projects) and (b) the research
and some relevant might be missing. Due to this fact th%uestions. A pilot study was run for this step, as shown

first author performed a manual selection on these articleg phase (c) of Figure 1. This phase consists of a number
by reviewing the title, keywords and abstract (and inof activities.

case of doubt, checking the conclusion [15]). To reduce_ First, we performed an exploratory study on the struc-

the researcher bias in t_h's selection Process, the domajo o 19 randomly selected articles (from the pool of 101
experts (second and third author) examined the selectegicies) This study led to a set of eight general attrisute
articles against the selection criterion. Any disagreemen, o+ can be used to describe the articles and to answer

was resolved through discussion. This process ended Ype research questions. This attribute list is shown in the
with 97 articles consisting of 21 journal articles and 76 pyribute column of Table 1.

conference articles. Second, this list of attributes was refined further

into a number of specific sub-attributes to get precise

©2013 ACADEMY PUBLISHER

2818 JOURNAL OF SOFTWARE, VOL. §, NO. 11, NOVEMBER 2013

TABLE II.
ATTRIBUTE FRAMEWORK
Attribute Sub Attribute Brief Description
General Publication Type, Year of Publication
Study Type Empirical, comparative, case study, tool implementation.
Study Target Software evolution Code, architecture, bug/feature
Community evolution Developer and user community
Co-evolution Combined evolution of software and community
Prediction Studies on predicting evolution of OSS projects
Case Study OSS projects studied List of OSS projects studied
Programming language Target programming languages of OSS projects
Project size Size measure of OSS projects (in KLOC for latest releasg)
Project domain Application domain of the OSS projects covered
Data Source Source code Code base, CVS/SVN
Contributions Change log, bug tracking systems
Communication Mailing list archive, chat history
External sources Sourceforge, github, ohloh.
Methodology Methods Concrete methods applied
Metrics Type of metrics used
Tool implementation Tools implemented for the study
Tools used Existing tools, algorithms used for study
Results Growth rate Defines the growth rate of an OSS project during its evolutipn
Measure of evolution Qualitative, Quantitative
Prediction classification
Summary Other findings
Evaluation / Validation Validation process for a study

description of each of the general attributes and fineén the articles. For example, to validate the claim on
tune the findings on the research questions. To do thishe target of the study (e.g., software or community
we made a thorough study of the same set of articlesvolution), we assessed what relevant data sources are
and wrote down words of interest that could be relevanexplored, what metrics and methods are used, and the
for a particular attribute (e.g., “software evolution”, duration and process of data collection. Also, we did not
or “community evolution” or “co-evolution” forStudy draw any conclusions from what was presented in an
target attribute). The result after reading all articles wasatrticle if it was not explicitly mentioned. For example,

a (large) set of initial sub attributes. This data extrattio we left the attribute fieldstudy typeempty if it was not

task was performed by the first author of this survey. mentioned in the article.

Attribute generalization and final attribute Characterization of the reviewed articles Since
framework. We further generalized the attributes the attribute assignment process is subject to different
and sub-attributes to increase their reusability [9]. Foiinterpretations, different reviewers may predict differe
example, sub-attributes “mailing list archive” or “chat attribute subsets for the same article [9]. As the attribute
history” are intuitively generalized t€Communication assignment process is carried out by the first author of
This final attribute list was then examined and validatedhis paper, the quality of the assignment needed to be
by the domain experts (second and third authors). Thigerified to avoid reviewer bias [9]. This verification task
reduces the change of researcher bias, as neither of tkas carried out by the domain experts who assessed the
domain experts had any connection with this processdata collection table against the reviewed articles. Any

The final attribute framework is shown in Table II. disagreements were resolved through discussion. This
characterization of articles is presented in our review
D. Article Assessment website [14].

The article assessment step consists of four distinct Next we discuss the results of this review by answering
activities as shown in phase (d) of Figure 1. In thisthe research questions and discussing open areas in this

section we focus on the first two steps. field

Attribute Assignment. Using the attribute framework n

from the previous section, we processed all articles and

assigned the appropriate attribute sets to each of the Given the article selection and attribute assignment

articles. These attributes effectively capture the essendas presented in review website [14]), the next step is to

of the articles in terms of the research questions angresent and interpret the study findings. We start with

allow for a clear distinction between (and comparisondiscussing answers to the research questions based on

of) the articles under study. the study outcome. List of OSS projects that are studied
The assignment process was performed by the firdh the review articles are provided in the website [14].

author of this survey. During this process, authors’ claim

of contribution is assessed against the results present&f)1. Which facets of OSS projects are explored

. REVIEW RESULTS

©2013 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. §, NO. 11, NOVEMBER 2013

2819

and what statistical distribution the articles have in teos in the last ten to thirteen years. During this period, a
ts? growth in interest for better understand the patterns of

An in-depth study on the selected articles led us tdOSS evolution has been noticed. The increasing trend in
decompose the OSS evolution articles into four facets: number of publications between the year 2000 and 2012

« Software evolution: articles under this facet explore(@S shown in Figure 3) assist this claim.

face

evolutionary behavior of OSS systems and derive
patterns of evolution to evaluate them against the
laws of software evolution. Such studies also mea-
sure the issues that concern the commercial world
This includes for instance, study the evolutionary
patterns of code complexity, maintainability, sustain-
ability, and quality in an OSS project.

Community evolution: articles under this facet stud-
ies how the social networks of developers and users
evolve over time while building the product.
Co-evolution: articles under this facet examine the

16
14
12
10

=

Concern on "0SS evolution study”

AN

[\/

\

A~/

\ /
V

/

/

2000{2001

2002

2003

2004

2005|2006

2007

2008|2009 (2010

2011

2012

|—Artic|e Count

2 1

2

6

7

9

8

14

10 13 | 13

6

10

evolution of OSS systems with the associated com-
munities, and explore relationship between the two
through different collaboration models.

Prediction: articles under this facet deal with definin

Figure 3. Concern on "OSS evolution study” over the decade

and examining prediction models to simulate the
evolution of OSS projects. For instance, developing

Research on OSS evolution follows an increasing

trend.

J

methods to support error prediction for the purpose

of preventive maintenance and building quality SOft'RQS What

ware.

the studies?

research approaches are followed in

Figure 2 shows the distribution of articles (published Research methodologies followed in the reviewed

in both journal and conferences) under each facet.

Publication distribution under four facets of OSS Projects

articles can be categorized into four distinct approaches:
empirical study, case study, comparative study and
tool implementation. Each of these studies use OSS

70 project data for either quantitative analysis or qualiti
60 analysis. Figure 4 shows the count of published articles
. according to this classification. As can be seen from

40

30

20

No. of Publications

10

. .- = -

Software Community

Evolution Evolution Co-Evolution Prediction
M Conference 61 8 5 5
@ Journal 15 3 1 5

Figure 2. Article distribution under each facet of evolatistudy

From this figure it is evident that the facebftware

Quantitative
data analysis

Qualitative
data analysis

Empirical Study

72

4

Case Study

Tool implementation

6

4

0

6

Comparative Study

evolutiongot maximum attention over others. The reasorfPProaches followed in the studies
of such bias distribution of articles can be defended by

the fact that the development history of OSS projects i
relatively new compared to its proprietary counterpar

[18].

1

2

the Figure, 75% of the studies (76 articles out of 101)
followed empirical approach with either quantitative or
qualitative data analysis.

Figure 4. Distribution of articles under the classificatiohresearch

U,

Empirical research is the most frequent researc

methodology used to study OSS evolution.

Software evolution is the most studied facet.

follow an increasing trend?

RQ4. What are the dimensions of OSS projects explored
under each study facet?

This research question gives a fine grained view on the
RQ2. Does the interest on*OSS evolution study”’dimensions of OSS projects explored by the evolution

articles. Figure 5 provides a two dimensional view of

OSS development has appeared and diffuse@SS projects, e.g., code and community dimensions with
throughout the world of software technology, mostlytheir constituent parts. As can be seen from this figure,

© 201

3 ACADEMY PUBLISHER

2820 JOURNAL OF SOFTWARE, VOL. §, NO. 11, NOVEMBER 2013

software evolution and prediction facets mostly utilizeRQ6. What are the datasets or data sources of
the code dimension. Whereas the community evolutiof©SS projects mostly exploited in evolution studies?
facet puts more emphasis on developer community To analyze the evolutionary behavior of OSS projects,
than user community or their combination. The studyinformation contained in project data sources need
on co-evolution of the code and community mostlyto be explored. These data sources are termed as
explores the code base, bug reports, developer and usepositories which contain a plethora of information on
community. the underlying software and its development processes
[20] [18]. Studies based on such data sources offer
Facets Code dimension Community dimension several benefits: this approach is cost effective, requires
o e lachtectu|ocument peveioper U7 | dermtoner no additional instrumentation, and does not depend on
Fucion | ¢ aon B8 | community xmmumc‘f;dmuuﬁy or influence the software process under consideration
o [20]. Evolution studies on the OSS projects effectively
Evolution 61 ’ ! ! # # # explored these repositories produced by the projects
Communiy # # # # 1 1 1 as well as the external sources. Figure 6 presents the
Prediction 6 0 0 0 0 0 0 OSS repositories in both categories and the count
of articles that utilizes those repositories. According
Code GRVEIOREr | (o hug develaper | (U8 developerand to this figure, repositories maintaining the code base
(e.g., CVS/SVN, change log) are the most explored
sources. This is obvious because most of the articles
Figure 5. Dimensions of OSS projects that are explored wysafacet, (@S discussed in RQ1) studied either the evolutionary
means not applicable patterns or the prediction models for the evolution of the
system. Among the external sources, SourceForge.net is
the most popular repository hosting thousands of OSS

Code dimension (e.g., source code) is mostly studied projects and having the maximum number of downloads.
in the articles as compared to community dimensionh or

their combination.

Code-developer,

Co-Evolution 3 1 0 2

Data sources of OSS Projects

java-source.net |1

RQ5. What is the portfolio of projects analyzed for ¢ Launchpad |1

evolution studies and what are their domains? E FreshMeat 1

In general, the study of evolutionary behavior and ?E Flossmole |1

patterns of OSS projects requires access to historical 2 FLOSSMQ”‘““‘:T; i
wi onlol

data representing their development, growth and success
story. These studies thus delimited to flagship OSS
projects that are large in size with a large user and
developer community and belong to popular application
domains. In this regard, our findings reported that most
of the OSS projects studied are from the domain of
Operating Systems (OS), Application Software, Integrated
Development Environments (IDE), Application Servers,
Libraries, Desktop Environments and Frameworks.
Example projects under these domains include Linux,
Eclipse, Apache, Ant, Mozilla, GNOME, KDE, and
ArgoUML. These projects have more than 5 years of
development and evolution history. Figure 9 in thel
appendix presents the domain wise classification of the
studied OSS projects with the count representing theiRQ7. What metric suits are evaluated, and what
frequency of use in the evolution studies. This findingtools are used for data collection and analysis?
gives support to the fact that OSS evolution studies are The reviewed articles used metrics mostly to measure
mostly vertical and thus unable to put light on the wholethe evolutionary patterns and antecedents of certain as-
population of OSS projects, as vast majority of projectgpects of the studied projects, such as, code complexity,
are failures [19]. Only a few articles, according to ourstructural complexity, architectural patterns, predigti
study, report horizontal studies with a large and randongrror proneness and maintainability, and collaboratian pa
sample of OSS projects (ranging between 200 to 400€rns within the community. Mostly empirically validated
OSS projects). metrics are selected for these studies. Widely used metric
i suites are listed in Table Il
Large and successful OSS projects are often seleted o metric data collection, synthesis and interpretation,
as case study projects. a number of existing tools are used. Figure 8 in the
appendix provides a list of such tools used along with

Source forge

Change log

Bug tracking system for bug reports
SVN/CVS for code base

Mailing list ‘ ‘

Project
sources

0 10 20 30 40 50 60

Figure 6. Data sources of OSS Projects

Repository maintaining the source code of the projects
are mostly explored in the studies.

©2013 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. §, NO. 11, NOVEMBER 2013 2821

TABLE IIl. . . i L
METRICS articles which took quantifiable measure to minimize
a validity threat are counted undaddressedield and
g::ggory Example Metrics the articles which admited the threats as a delinquent
Source code source line of code, line of code, number pf to the StUdy are counted undeeed to be addressdield.
metrics functions _
Code interface _complexity, Halstead suie of com- | Almost all the studies (30 out of 34) suffers from
complexity pIexit)l/ metric, cyclometic complexity, structural external validity threats and thus suffers from
metrics complexity : o :
Object oriented | Chidamber and Kemerer, L&K (Lorenz and gen,erallzablhty of the results to the populatlon of SS
metrics Kidd's eleven metrics, Li's metric suite for O projects.
programming, modularity metrics
Product level product size, releases, application domain, ver-
metrics sion frequency RQ9. What contributions are made in literature to
Project metrics | metrics related to the OSS community struc- analyze the evolution of software?
ture and communication, application domain, Analvsis of th lected articl identifi d
number of developers, users, project popularity, nalysis 0 €se ?C e a_'r Icles iaentmes a goo Sajm'
success, application domain, no of commits, ho ple of empirical studies which were conducted to verify
of messages sent the fitness of the Lehman’s law of software evolution

in the domain of OSS projects. These results have both

conformance (either complete or partial) and contradic-
their usage area and popularity count. As most of thesgon with the laws of software evolution. In Table IV
tools are third party applications, the accuracy of the dat@e provide a comprehensive summary of these studies.
collection and analysis is constrained by the performancgve believe this would provide a holistic view on the
of these tools. This also puts impact on the validity ofsuitability of these laws in OSS domain, and will create

the results. the future pathway in deriving evolutionary patterns and
— . — laws for OSS evolution.
Empirically validated metric suites to evaluate the Other empirical analysis on OSS projects reveal several
source code are mostly used in the articles. stimulating properties/characteristics of the systenitevo

tion. In Table V we summarizes these findings according

RQS8. How are the research approaches and result$0 their primary focus of study.
of the articles typically validated?

Threats to Va||d|ty in experimenta| studies can bhe Ca‘[RQlO What contributions are made in literature to ana-
egorized into three types: external, internal and construdyze the evolution of organization or community?
validities [21]. External validity means to what extent the OSS projects typically come with a highly distributed
results can be generalized to the whole population (ofommunity of developers and users. Members of such
outside the study settings). Internal validity means thacommunity share a common interest in the project. They
changes in the dependent variables can be safely attribut@ffen interact with one another to share knowledge, and
to changes in the independent variables. Construct valicollaborate in contributing and developing the project

ity means that the independent and dependent variablé¢g0]. Communities are the core of OSS projects, and
accurately model the abstract hypotheses. for the successful evolution of a project, it should have

a large number of developers (authors and contributors)

Validation Process [51]. Other studies to date, report distinct properties of
35 OSS communities. Such as, necessity of a critical mass
30 of the core developer team [52], motivation of joining a
g 25 project [50], change of roles of the community members
g through contributions [53], social dynamics and pattern of
é 15 the community [54] [55]. These results are summarized
< 1;’ l according to the study focus in Table VI.
1~V :‘htjlft';a' Z-VET:;ES[3. S;?jit;d RQ11. What contributions are made in literature to ana-
= Addressed 33 A 1 lyze the interdependency of the software and organization
[2 Need to be addressed 2 30 1 evolution?

The successful evolution of OSS projects depends on
Figure 7. Validation Process of the research approaches the co-evolution of the community (both developer and
user) and the software [5]. Related research in this track
Our survey results concerning these validity issuesdentifies that the number of contributors grows with the
reveal that 41% (42 out of 101) of the articles measuredjrowth in product size [30]. This observation is replicated
and reported the validity threats of the underlyingin [65], with evidence that the increase of introduced
research methodology and the research result. Figurgackages and reported bugs are highly coherent with the
7 plots the number of articles that perfoms validityincrease of contributors and active users, respectively.
measure under each category. In this figure, thélso, the increase in documentation and modularization

©2013 ACADEMY PUBLISHER

2822 JOURNAL OF SOFTWARE, VOL. §, NO. 11, NOVEMBER 2013

TABLE IV.
FITNESS OFLEHMAN’S LAW IN OSSPROJECTS

Ref Growth Rate Brief Description

[3] Super-linear growth. Super-linear growth pattern in system level is due to acdated linear growth of the|
large set of driver subsystems. Contradict with Lehmarts|aiv.

[22] Super-linear growth. The project has doubled in size in terms of SLOC and numberokames in every 2
years.

[23] Super-linear growth. Contradicts Lehman’s 1st and 3rd law.

[24] Linear or Super-linear growth. | Majority of the large projects grow linearly with few havimgsuper linear growth. Botl
contradict with Lehman’s law.

[25] Average growth in size is 17%)] Contradicts Lehman’s second law.

while decreasing in structural
complexity on average 13%.

[26] Super-linear growth. The growth is due to increase in time interval between subm®greleases in recerjt
past.
[27] Super-linear growth (for large Large projects are large in size (in LOC), more active in nemdf revisions, and have

project). Linear or Sub-lineaf more programmers than those are not.
growth (for small project).

[28] Linear and Super-linear growth.| Linear pattern was noted for NOF, NOC, LOC and size meas@@ger-linear growth
for plug-ins and downloadable source code.

[29] [30] [2] Linear growth. Conformance to all six laws of Lehman considering the groimtisize, coupling and

[31] complexity.

[4] Linear growth.

e Conformance to Lehman’s 6th and 2nd law (growth pattern ovedsin source
code level, file level, module level and complexity).

« Conformance to Lehman’s 1st and 5th law holds (accordinghémging rate and
growing rate of handled uncommented line of code).

« Contradicts with Lehman’s 6th law (for file level growth).

[3] Linear or Sub-linear growth. 16 out of 18 studied systems follow a growth pattern lineaclose to linear.
[32] [33] Not mentioned. Conformance to Lehman’s 1st, 2nd, 3rd and 6th law.
[32] [33] Not mentioned. Contradicts with 4th,5th,7th and 8th law.
[34] Linear growth. A declining at linear rate was noticed at module level.
[35] Linear growth. Follows a pattern of stagnated growth with decrease in diz@me points.
[36] Linear growth.
« The evolution pattern do not consistently conform to Lehsnknvs.
« Decrease in structural complexity (e.g., McCabe cyclometimplexity).
« Increase in calculation logic (e.g., Halstead complexitgréased).
o Increase in modularity.

levels are obliged to rising number of developers andample of analytical results which are available for
their contribution in a project [59]. In this regard, more further examination, assessment and comparison [5].
presence of users in the community drives more changé3ur review on this direction suggests following research
in the code base. directions,

IV. AVENUE TO FUTURE RESEARCH Law's of evolution for Open Source Software.
The most common study topic under this facet is to
. . . 2valuate the fitness of Lehman’s law of evolution to
of formalizing the tacit knowledge acquired through theopen source software. These results are summarized in

study O; tdh_e r;e_wew _Ifilrnclesdlntotrﬁer tto distill furtrller Table IV. A closer scrutinize to the table data reveals
research directions. 10 conduct this step, we anayze%at the results have both facsimile and contradicting

the resul'clgt_ reporc'ited Itn §_e<t:.t|on i dt(I) |iefnt|fy g?ps, o the Lehman’s law. For instance, the growth rate of
commonaiities and contradictions, and look Tor most angy gq presented in column 2 of Table IV varies between

least frequently used research approach in each facet. super-linear (i.e., greater than linear) and sub-linear

(i.e., less than linear). This has both conformance and

ON SOFTWARE EVOLUTION contradiction with the second and sixth law of evolution.

Understanding the most common study facets (as Comprehension of these results suggest that the laws
displayed in Figure 2) gives the impression tliggen and theory appear to be breaking down through non-
source software evolutiois the most widely investigated conforming data and findings (Table 1V). Thus Lehman’s
field. Research under this facet has produced goothws of software evolution which is primarily based on the

©2013 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. §, NO. 11, NOVEMBER 2013 2823

TABLE V.
EVOLUTION OF THE SOFTWARE

Focus of | Results Reference
Study
Code Project size increases with an improvement on some quakigsores, e.g. decrease in complexity |of[37]
Complexity the system.
Evolution

The procedure and file Tevel complexity remains unchanged. [38]

[39]

« Decline trend in structure complexity (e.g., McCabe cyciio complexity).
« Increase in calculation logic (e.g., Halstead complexity)
o Increasing trend in system’s modularity.

Increase in coupling, interface complexity and cyclomabenplexity. 2]
System level decay in terms of the underlying structure du¢he addition of new folders and [40]
functionalities.

Increase in complexity for Targe files as they undergo freguhanges. [41]

Decrease in modularity due to major architectural and impletation changes. [42]

There exists positive correlation between error probighdcross classes and the code bad smells| [43]
Code Modularity of the software system increase due to periodfaatoring and cleanup activities after [42]
Quality Im- major changes.
provement

Periodical refactoring is needed to prevent system decdystagnation, and to improve architecturl [41] [43]

quality.

The development strategies and practices of OSS projegf®oHLio maintain the reliability and quality [44]

of the software.

OSS is less entropic than proprietary applications having dnit maintenance costs. [45]
Code Code cloning (or code duplication) does not have a large @inpa post-release defects (quality). [46]
cloning

Presence of duplicate code in the software does not maker# difficult to maintain. [47]

Documentation The documentation process often start with an initial ugfimaintenance effort (to create the initial [45]
documentation or writing a book), which is then updated ediog to the changes in the project.

Sub-project - . _ [28]
Evolution « Existing sub-projects might be merged or removed.

(projects o New sub-projects might be introduced.

under a « Sub-projects might follow different trend models in the \gtlo, complexity and changes. E.g.,
project) Eclipse.

0SS [48]
Dynamics e SOC (Self Organized Criticality) occurs during the evalntiof OSS.

e« SOC can be used as a conceptual framework for understandi®e®olution dynamics.

[49]
« The evolution dynamics of OSS may not follow SOC.
« The past of an OSS project does not determine its future exoepelatively short periods of

time.

study of the large close source systems, is not sufficiemequired to complement the existing metric set.
to justify or account for the evolutionary pattern and
behavior of the open source software. As none-the-lesBredicting the future. Prediction of OSS projects
these laws did not consider the community dimension ofs one area that is least popular among the study facets
the OSS projects which is an integral part of sustainablé¢Figure 2). Yet future research should focus on developing
evolution of the open source software. reliable prediction models and methods supporting error

To deal with this problem, a viable route would be to prediction, measuring maintenance effort and cost of
examine the underlying ontologies for software evolutionOSS projects. Because, the commercial organizations,
[5] considering the OSS specific characteristics, and thefor instance, requires such prediction models to assess
re-assess the laws of software evolution to fit in OSSN open source component for adoption [66].
domain.

Study the existence of SOC.Another direction of

Metric set for software evolution. Software evolution research would be to study the notion of SOC (Self
studies mostly utilize metrics that are empirically Organized Criticality) in OSS projects. SOC dynamics
validated in prior studies (as presented in Table lil).articulate that the current state of a project is determined
These metrics are derived for closed source projects, arf@r at least, heavily influenced) by events that took place
are primarily used to verify the Lehman’s law of softwarelong time ago. Existential exploration of SOC in the
evolution. Though these metrics provide valuable insighlomain of OSS projects reveals contradictory results
to OSS evolution, they do not consider the community(Table V). Thus future research can take further step in
dynamics. Thus an empirically validated set of metricsvalidating the existence of SOC and its implication on
in favor of explicit representation of the community is the evolution of open source software.

©2013 ACADEMY PUBLISHER

2824

JOURNAL OF SOFTWARE, VOL. §, NO. 11, NOVEMBER 2013

TABLE VI.
ORGANIZATIONAL (OR COMMUNITY) EVOLUTION

Focus of Study

Contribution Reference

Community A group of core developers quickly emerges at the center mcttimmunity at the early stage of the [54]
Formation project and becomes the key contributors.
The OSS community evolution follows small world propertytiwa strong community structure and [56]
modularity. Initially it has fairly dynamic nature which aptually settles down into fixed groups.
During the evolution, the communication between core antperal developer’s decreases, and slib-[57]
community of developers forms.
The growth of OSS community follows “rich gets richer™ phemenon. This means a healthy size¢d [58]
community often attracts new developers.
Community [51]
Structure and o 57% of the studied projects has only one or two developers.
Activity e Only 15% has more than 10 developers. This category cotestitonly flagship projects.
[59]
« About 83% projects have only one or two stable developers.
e 16% of the projects attains the size of the core team.
Developers play different role ranging from core develeper passive users. These roles are impli¢it, [53]
and are mainly defined and determined according to the ldvebmtributions made to the project.
Developer's role changes through accumulated contribstiover a period of time. Changes |n [53] [57]
developer roles and community structure are significarggoaiated with the quality of contributions,
but not with contribution quantity.
A Pareto distribution on the size of the developer commumwias identified. That is a vast majority [60] [54]
of the OSS projects fail to take off and soon become abanddhesbable reasons for such failute
include projects inability to attract developers to attaicritical mass of developers, and insufficient
communication and collaboration.
Community [32]
Migration « The migration of old developers from previous release tova aee is very high.

« Developer's code maintenance activity increases withei@®e in experience.
e The community has a natural ‘regeneration’ process foratsntary contributors. This process
increases the probability of code adoption that are leftHeydutgoing developers.

Core developers should promote community regeneratiortepeo by creating an organizationgl [61]
ecosystem. The ecosystem will provide the openness of teray process and communication whigh
will attract others to join.

Sustainability

. . . [62] [50]
e OSS development is prominently a community-based model.
e The community must be a sustainable community for the long ®urvivability of the project.

[2]

o A stable and healthy core team in the community is essemialtife sustainability of OSS
projects.

« Core developers introduce less structural complexity amlore existing structural complexit
from the code.

Sustainability can be credited to the following motivatifactors: (a) people are benefited from [63]
participating in a thriving OSS community, (b) improve taifal competence as a developer, and
(c) projects have well-defined modular design and cheap sneBnommunication.

It is important to maintain a balance composition of all thfedent roles in a community forl [64]
sustainability. For example, to an extreme, if most of thencwnity members are passive users
then the system will not evolve.

Evolution of
Sub-communities
(Communities of
sub-projects)

50
Ecology of the sub-communities are formed around the sofegts. 501
Sub-projects are often governed by a common governanceApaghe.
Members in sub-communities often collaborate due to muask dependencies.
Sub-communities also compete for the project resources.

join a community has been studied (e.g., [62] [50]), and

ON COMMUNITY EVOLUTION several phenomena are proposed. For instance, rich gets

richer phenomenon. Yet it is not identified what exclusive

Study on the community evolution identifies severalproperties initiate the community building process at the
key properties (reported in Table VI), which lay the nebula stage of the project. Following research questions
foundation for further research in this direction. We can be considered relevant,

propose the followings to be investigated. « Why some projects are able to attract contributors

during the nebula stage of the project, while most of

Community building . Studies reported that the majority them can not?
of OSS projects failed to attract members to attain the | \yhat formation of the community refers to a bal-

critical mass. Only few flagship p.rojects are_ablle to ance one, and how the community structure changes
attract developers. Factors influencing the motivation to ;\vards a balance structure during its evolution?

©2013 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. §, NO. 11, NOVEMBER 2013 2825

« Can a visible pattern be identified within the domaingiven much attention among open source researchers.
of OSS projects for the above two cases? Although it is identified and reported as a desired

Migration of responsibility and sustainability. It has ~ Property for collaborative development activities like
been reported that migration of developers from one reOSS projects [69]. Considering the lack of focus in this
lease to the next is high and that the developers take mofirection, we propose the following to investigate.
responsibility as they gain experience. Yet it is a common « Does the essence of socio-technical congruence as
phenomenon in open source domain that developers freely — a conceptualization of Conway’s law holds for OSS
join or leave the project. And when a developer leaves, project? Can it be stated as an implicit characteristics
his responsibilities must be assigned to someone else. or property of successful OSS project?

For instance, the codebase maintained by a outgoing « What quantitative approach/method can be utilized
developer should be taken care of by others. Else it will be to verify the existence of socio-technical congruence
abandoned and discarded from subsequent releases. Thus in OSS projects? What repositories can be used for

it will be beneficial to explore the followings, this purpose?
« How responsibility migrates among the developers? * What correlation can be derived between socio-
Does this migration follow preferential-attachment?, ~ technical congruence and the quality/sustainability of
i.e., is the responsibility handed over to the devel- ~ OSS projects?
opers who are in close connection to the outgoing
developer. Sub-project evolution with their community. Large
« What impact such migration has on the projectopen source projects often encompass many sub-projects.
evolution? Such as, sub-projects in Eclipse, GNU, Linux, and
Apache. Often ecology of sub-communities formed
ON CO-EVOLUTION around these sub-projects, which are governed by a com-

mon governance [50]. Study on the formation and evolu-
It is turned out from our review that the understandingtion of sub-projects and their communities have revealed
of co-evolution of the code and the community in 0ssmany key characteristics, which are listed in Table V
projects has received little attention in literature (Figu and Table VI, respectively. Yet the interdependency in
2). As a consequence, the community dimension angvolution between the two and their impact on the overall

corresponding communication channels (e.g. mai”ni‘reoject evolution remain untouched. The following would

archives, bug tracking systems) are explored seldom, &% Worth to investigate.

can be seen from Figure 5 and Figure 6 respectively. » Does there exist a correlation between the evolution
Study on co-evolution in OSS projects, however, is (growth, complexity, change) of the sub-projects and
becoming increasingly popular. Because, in such projects their associated sub-communities? Does the commu-
the code evolution is dependent on the contribution of nity change with the change in the sub-project?
community members, and that a successful evolution of « How does a community form around a newly added
the code is required for the survival of the community. ~ Sub-project?

The following research directions can be considered « What attributes of a sub-project attract new develop-

relevant. ers to join?
« What happens to the sub-community when a sub-
Exploring socio-technical congruence In the OSS project is deleted or merged to other sub-project?

projects contributions made by the community members « What dependencies lead to inter project communica-
not only drive the system evolution but also redefine tion?

the role of these contributing members and thus e What kind and level of communication and collabo-
change the social dynamics of the OSS community ration takes place between sub-communities?

[53]. In this connection, it will be very interesting to Does there exist a correlation between the project
investigate the phenomenaocio-technical congruence evolution and the sub-project evolution?

in OSS projects. Socio-technical congruence which is

a conceptualization of Conway's law [67] states thatON RESEARCH METHOD

there should exists a match between the coordination

needs established by the technical domain (i.e., thé number of issues related to the research approach can
architectural dependency in the software) and the actudde improved to increase the acceptability of the reported
coordination activities carried out by project membersresults. We pointed out the followings,

(i.e., within the members of the development team) [67].

This concept was already explored in closed sourc&xternal validity of the results. Empirical study
projects, and reported a high correlation with softwards the most popular research approach employed in
build success, quality, and faster rate of modificationevolution studies (Figure 4). These studies, however, are
[68]. Thus socio-technical congruence plays a pivotahorizontal in nature (as reported in RQ5) considering
role in conceptualizing the co-evolution in a project.only flagship OSS projects. Due to this approach of
Surprisingly, this notion as a research area has not beestudying OSS projects, the reported results suffer from

©2013 ACADEMY PUBLISHER

2826 JOURNAL OF SOFTWARE, VOL. §, NO. 11, NOVEMBER 2013

generalizability threat, as reported in Figure 7. Yet toselection bias and reviewer bias, domain experts (second
make these finding applicable and hold for the extendednd third author) verified the relevance of the selected
region of OSS projects, explicit measure should bearticles against the selection criteria.
taken. An interesting route to deal with this is to
categorize the findings (current or future) according to
the project domain, or similar organizational structure
and practices, or similar product size and complexity. The construction of the attribute framework may be
This will reveal the broader picture which can then bethe most subjective step [9]. Thus we take the following
compared and possibly merged for proposing a moréteps to acknowledge this fact: the attribute set is derived
general evolutionary pattern and behavior for OSS. based on the research questions and domain of study.
Then a pilot study is carried out to further refine the
Framework for the data collection and representation ~ attribute framework. Furthermore, the representativenes
As discussed in RQ6, OSS projects often produce largef the framework is examined by domain experts (second
volume of data representing their development andnd third author).
evolution history. Research to date, explores the
repositories that maintain these data, a list of Whicl"b_ Article Assessment

is provided in Figure 6. However, data collection and))
representation in these repositories vary significantly Similar to the construction of the attribute framework,
from project to project. Furthermore, data from theth® process of assigning the attributes to the research
same source may have different formatting (e.g., emaijlarticles is subjective and may be difficult to reproduce [9].
are often free of format even in listing the sendersWe address this validation threat through an evaluation
credentials). Due to these facts, it is a challenging tasRrocess where domain experts assess the collected data
to collect relevant data following a standard format2dainst reviewed articles.
from OSS repositories. In this context, researchers
often employ their own means to collect and represent VI. DISCUSSION
data for research. This reduces the compatibility and
comparability of the reported results even if they USE . iew (SLR) on the evolution studies of Open Source
same data sources. Taking these issues in considerationst(a)lftware projects. To carry out this study we adopted
framework for uniform data collection and representation . ' . -)
can be developed to make the results cohesive a review protocol following thg gmdelmgs presented in
comparable to each other 3] and [9]. A set of 101 articles (21 jourr_1al and 80
' conference articles) were selected for the review. Through
a detailed reading of a subset of the selected articles,
V. THREATS TOVALIDITY we derived an attribute framework that was consequently

Carrying out a survey is mostly a manual task. Thusused to characterize the articles in a structured fashion.
most threats to validity relate to the possibility of re- We also posed a set of research questions in advance
searcher bias [9]. To minimize this, we adopted guidelinehat are investigated and answered throughout the study.
on conducting SLR suggested by Kitchenham [13]. InThe attribute framework was sufficiently specific to char-
particular, we documented and reviewed all steps wécterize the articles in answering the research questions.

made in advance, inc]uding selection criteria and attﬂbutThe set of articles and collected data under this attribute
definitions. framework is presented in our review website [14]. None-

In what follows, the description related to validity the-less, an elaborated discussion on the validity of the

threats pertaining to the article selection, the attributé€view process is also presented.

framework, and the article characterization is discussed. The characterization of the reviewed articles will help
researchers to investigate previous studies from the per-

spective of metrics, methods, datasets, tool sets, and
performance evaluation and validation techniques in an
Following the advice of Kitchenham [13], the inclusion effective and efficient manner. We also put an elaborated
criteria is set at the time of defining the review protocol,discussion on the most significant research results. In
and the criteria are based on the research questions. Tliemmary, this article provides a single point reference
reduces the likelihood of bias. Articles satisfying thison the state-of-the-art of OSS evolution studies which
selection criterion are considered. For collecting red¢va could benefit the research community to establish future
articles we first performed automated keyword search antesearch in the field.
then performed manual selection. The first step condensesRelated works in this track carried out a literature
the selection bias whereas the latter ensures the releeview on open source software evolution [70]. This study
vance of the selected articles. Finally, a non recursivexplores the software evolution, mostly emphasizing on
search through the references of the selected articlegsearch methods, metrics, and data analysis. Contrast to
is performed. This increases the representativeness atius, our review provides a holistic view of the evolution
completeness of our selection. To further minimize theof OSS projects, concerning all the facets studied to date.

. Attribute Framework

In this paper we have reported a systematic literature

A. Article Selection

©2013 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. §, NO. 11, NOVEMBER 2013 2827

Yet our reported result pertaining to the conflicting re-[18] D. Atkins, T. Ball, T. Graves, and A. Mockus, “Using
porting of Lehman’s law of software evolution confirmed version control data to evaluate the impact of software
the findings in [70]. This suggests that future work in tools,” in ICSE 1999, p. 324333.

. [19] C. B. K. Beecher, A. Capiluppi, “Identifying exogenous
the area of OSS evolution should explore more to unlf);] drivers and evolutionarypstapgpes in flofsys ?)rojecg["s'l’ie

the findings through comprehensive study on the the open j5yral of Systems and Softwael. 82, no. 5, pp. 739—

areas discussed in this paper. 750, 2009.

[20] J. Cook, L. Votta, and A. Wolf, “Cost-effective analgsi
of in-place software processesTSE vol. 24, no. 8, p.
REFERENCES 650663, 1998.

[21] D. Perry, A. Porter, and L. \Votta, “Empirical studies

of software engineering: A roadmap,” ifhe Future of

Software Engineering, Finkelstein A (ed.). ACM Press:

New York NY2000.

[22] J. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. Amor
and D. German, “Macro-level software evolution: a case
study of a large software compilationfournal Empirical
Software Engineeringvol. 14, no. 3, pp. 262-285, 2009.

[23] M. Godfrey and Q. Tu, “Evolution in open source software
A case study,” innCSM, 2000, pp. 131-142.

[24] A. Capiluppi, J. Gonzlez-Barahona, I. Herraiz, and @bR
les, “Adapting the staged model for software evolution to

pp. 123-136. free/libre/open source software,” IlVPSE '07 2007, pp.

[5] W. Scacchi, “Understanding open source software evo- 79-82. .) .

lution: Applying, breaking, and rethinking the laws of [25] D. Darcy, S. Daniel, and K. Stewart, "Exploring com-

A . . o lexity in open source software: Evolutionary patterns,
software evolution,” iPApplying, Breaking, and Rethinking P HICSS
the Laws of Software EvolutionJohn Wiley and Sons Inc, antecedents, and outcomes, HICSS "1Q 2010.’ pp. 1-11.
2003 [26] G. Robles, J. M. Gonzalez-Barahona, M. Michimayr, and

[6] B.A. Kitchenham, R. Pretorius, D. Budgen, O. P. Brereton J. Amor, “Mining .Iarge software compillatiorls over’ time:
M. Turner, M. Niazi, and S. Linkman, “Systematic litera- Another perspective of software evolution,” MSR 06

- ! . : ' 2006, pp. 3-9.
t ft - atert tudi, . .
V%T_e;wﬁ\gjsén SS \;vggiggsglr;eoelrg.]g atertiary stuSr, [27] K. Stefan, “Software evolution in open source pro-

[7] B. Kitchenham and S. Charters, “Guidelines for perform- jeptsa large-scale in\{estigatiodﬁurnal of Softwgre Main-
ing systematic literature reviews in software,’Emgineer- tainance and Evolution: Research and Pracficel. 19,

[1] R. Grewal, G. Lilien, and G. Mallapragada, “Location,
location, location: How network embeddedness affects
project success in open source systemsManagement
Sciencevol. 52, no. 7, 2006, pp. 1043-1056.

[2] S. Suh and I. Neamtiu, “Studying software evolution
for taming software complexity,” imAustralian Software
Engineering Conferen¢ce010, pp. 3-12.

[3] G. Robles, J. Amor, J. Gonzalez-Barahona, and |. Herraiz
“Evolution and growth in large libre software projects,” in
IWPSE’05 2005, pp. 165-174.

[4] C. Roy and J. Cordy, “Evaluating the evolution of small
scale open source software systems,CitC 2006 2006,

ing Technical Report EBSE-2007-04007. Pp. 361-382, 2007. _ .

[8] M. Petticrew and H. Roberts, “Systematic reviews in the[28] T- Mens, J. Fernndez-Ramil, and S. Degrandsart, “The ev
social sciences: A practical guide,” Blackwell Publish- lution of eclipse,” ininternational Conference on Software
ing, 2005. Maintenance (ICSM)2008, pp. 386—395.

[9] B. Cornelissen, A. Zaidman, A. Deursen, L. Moonen, and[29] A. Bauer and M. Pizka, “The contribution of free softear
R. Koschke, “A systematic survey of program comprehen- to software evolution,” irSixth International Workshop on
sion through dynamic analysisTSE vol. 35, no. 5, pp. Principles of Software Evolutior2003, pp. 170-179.
684—702, 2009. [30] A. Capiluppi, “Models for the evolution of os project#

[10] C. Catal and B. Diri, “A systematic review of software ICSM "03 2003, pp. 65-74. .
fault prediction studies Expert Systems with Applicatigns [31] S. Mcintosh, B. Adams, and A. Hassan, “The evolution of
vol. 36, no. 4, pp. 73467354, 2009. ant build systems,” ilMSR’1Q 2010, pp. 42-51.

[11] D.tmite, C. Wohlin, T. Gorschek, and R. Feldt, “Empaic [32] Y. Lee, J. Yang, and K. Chang, "Metrics and evolution in
evidence in global software engineering: a systematic _ Open source software,” iIQSIC'07 2007, pp. 191-197.
review,” ESE vol. 15, no. 1, pp. 91-118, 2010. [33] G. Xie, J. Chen, and I. Neamtiu, “Towards a better

[12] A. Pourshahid, D. Amyot, A. Shamsaei, G. Mussbacher, understanding of software .evolution: An empirical study
and M. Weiss, “A systematic review and assessment of On open source software,” i€CSM'09, 2009, pp. 51-60.
aspect-oriented methods applied to business process add@4] S. Ali and O. Magbool, “Monitoring software evolution
tation,” JSW vol. 7, no. 8, pp. 1816-1826, 2012. using multiple types of changes,” I CET'09, 2009, pp.

[13] B. A. Kitchenham, “Procedures for performing systeimat 410-415.
reviews,” in Technical Report TR/SE-0401, Keele Uni- [35] A. Capiluppi and J. Ramil, “Studying the evolution ofeap
versity, and Technical Report 0400011T.1, National ICT source systems at different levels of granularity: Two case

Australia, 2004. studies,” inIWPSE 2004, pp. 113-118.
[14] M. M. Syeed, “http://reviewossevolution.weebly.cgm [36] M. M. Simmons, P. Vercellone-Smith, and P. Laplante,
2013. “Understanding open source software through software
[15] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and archeology: The case of nethack,” 39th SEW 2006, pp.
M. Khalil, “Lessons from applying the systematic literaur 47-58.
review process within the software engineering domain,’[37] K. Stewart, D. Darcy, and S. Daniel, “Observations on
JSS vol. 80, no. 4, pp. 571-583, 2007. patterns of development in open source software projects,”

[16] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and in 5th WOSSE2005, pp. 1-5.
H. Sharp, “Motivation in software engineering: A system- [38] A. Capiluppi and J. Ramil, “Studying the evolution ofep

atic literature review,1ST, vol. 50, no. 9-10, pp. 860-878, source systems at different levels of granularity: Two case
2008. studies,” inIWPSE’04 2004, pp. 113-118.

[17] T. Dyba and T. Dingsyr, “Empirical studies of agile soft [39] M. Simmons, P. Vercellone-Smith, and P. Laplante, “Un-
ware development: A systematic reviewST, vol. 50, no. derstanding open source software through software arche-
9-10, pp. 833-859, 2008. ology: The case of nethack,” BEW '06 2006, pp. 47-58.

©2013 ACADEMY PUBLISHER

2828

JOURNAL OF SOFTWARE, VOL. §, NO. 11, NOVEMBER 2013

[40] A. Capiluppi and T. Knowles, “Software engineering in [61] Y. Yunwen and K. Kishida, “Toward an understanding of

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

practice: Design and architectures of floss systems,” in
Open Source Ecosystems: Diverse Communities Interact-

ing, IFIP Advances in Information and Communication [62]

Technology vol. 299/2009, 2009, pp. 34—46.

A. Capiluppi and J. Ramil, “Change rate and complexity
in software evolutions,” INWESS’04 2004.

R. Milev, S. Muegge, and M. Weiss, “Design evolution
of an open source project using an improved modularity
metric,” in OSS’09 2009, pp. 20-33.

W. Li and R. Shatnawi, “An empirical study of the bad
smells and class error probability in the post-releaseabbje
oriented system evolutionJournal of Systems and Soft-
ware, vol. 80, no. 7, pp. 1120-1128, 2007.

K. Hayashi, K. Kishida, K. Nakakoji, Y. Nishinaka,
B. Reeves, A. Takasbima, and Y. Yamamoto, “A case study
of the evolution of jun: an object-oriented open-source 3d
multimedia library,” inICSE’01, 2001, pp. 524-533.

B. Dagenais and M. Robillard, “Creating and evolving
developer documentation: understanding the decisions of
open source contributors,” IRSE’'1Q 2010, pp. 127-136.
N. Bettenburg, W. Shang, W. lbrahim, B. Adams, Y. Zou,
and A. Hassan, “An empirical study on inconsistent

(63]

(64]

(65]

(66]

(67]

the motivation open source software developers,GSE
'03, 2003, pp. 419-429.

S. Shah, “Motivation, governance, and the viability of
hybrid forms in open source software development,” in
Management Scienggol. 52, pp. 1000-1014.

J. Gutsche, “The evolution of open source communtities,
Topics in Economic Analysis and Poljcyol. 5, no. 1,
2005.

G. Robles, J. M. Gonzalez-Barahona, and M. Michimayr,
“Evolution of volunteer participation in libre software
projects: Evidence from debian,” iist OSS 2005, pp.
100-107.

Y. Wang, D. Guo, and H. Shi, “Measuring the evolution
of open source software with their communitie$\CM
SIGSOFT Software Engineering Natesl. 32, no. 6, pp.
1-7, 2007.

M. Syeed, T. Kilamo, I. Hammouda, and T. Systa, “Open
source prediction methods: a systematic literature reView
in Proceedings of 8th. OSS, Spring@012.

S. Bendifallah and W. Scacchi, “Work structures andtshi
An empirical analysis of software specification teamwork,”
in 11th ICSE 1989, p. 260270.

changes to code clones at the release leveM/{DRE '09
2009, pp. 85-94.

K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto, “Is duplieat
code more frequently modified than non-duplicate code in[69]
software evolution?: An empirical study on open source
software,” inIWPSE-EVOL '102010, pp. 73-82.

W. Jingwei, R. Holt, and A. Hassan, “Empirical evidence
for soc dynamics in software evolution,” IEEE Interna-

[68] N. Nagappan, B. Murphy, and V. Basili, “The influence of
organizational structure on software quality: an empirica
case study,” inCSE 2008, p. 521530.

T. Browning, “Applying the design structure matrix to
system decomposition and integration problems: a review
and new directions,” inEEE Transactions on Engineering
Managementvol. 43, no. 3, 2001, p. 292306.

H. Breivold, M. Chauhan, and M. Babar, “A systematic
tional Conference on Software Maintenance (ICSM 2007) review of studies of open source software evolution,” in
2007, pp. 244-254. APSEC 2010, pp. 356-365.

I. Herraiz, J. Barahona, and G. Robles, “Determinisid an M.M. Mahbubul Syeed received his B.Sc degree in Computer
evolution,” in Proceedings of the 2008 international work- Science and Information Technology from Islamic Universit
ing conference on Mining software repositories (MSR/08) of Technology, Bangladesh in September, 2002 and his M.Sc
2008, pp. 1-10. degree in Information Technology from Tampere University o
M. Weiss, G. Moroiu, and P. Zhao, “Evolution of open Technology, Finland in April, 2010. He is currently working
source communities, 0SS vol. 203, pp. 21-32, 2006. towards his Ph.D. degree and working as a researcher in the
A. Capiluppi, P.Lago, and M. Morisio, “Evidences in the same university. His current research interest includegysof

evolution of os projects through changelog analysis,” inOpen Source Software ecosystem.
Proceedings of the 3rd Workshop on Open Source Software

Engineering (ICSE03)2003, pp. 19-24.

A. mockus, R. Fielding, and J. herbsleb, “Two case stud-

ies of open source software development: Apache andmed Hammouda is currently an associate professor at Tam-
mozilla,” ACM Trans. Software Engineering and Method- pere University of Technology (TUT) where he is heading the
ology, vol. 11, no. 3, pp. 309-346, 2002. international masters programme at the Department of Bigeva
K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Computing. He got his Ph.D. in software engineering from TUT
Y. Ye, “Evolution patterns of open-source software systemgn 2005. Dr. Hammouda’s research interests include opercgou
and communities,” ifWPSE 2002, pp. 76-85. software, software architecture, software developmerthous

K. Ngamkajornwiwat, D. Zhang, A. Koru, L. Zhou, and and tools, and variability management. He is leading TUTOpe
R. Nolker, “An exploratory study on the evolution of oss - TUT research group on open source software. He has been
developer communities,” itlICSS 2008, p. 305. the principal investigator of several research projectyanous

Q. Hong, S. Kim, S. Cheung, and C. Bird, “Understanding Open initiatives. Dr. Hammouda'’s publication record intda

a developer social network and its evolution,” &vth over fifty journal and conference papers.

ICSM 2011, pp. 323-332.

Q. Hong, S. Kim, S. Cheung, and C.Bird, “Understanding a

developer social network and its evolution,”2@th ICSM . s . .

2011, pp. 323-332. Tarja Systa is a professor_ at Tampere University of Technol-
R Cfllang S. Yang, J. Moon, W. Oh, and A Pinsonneault °9Y: of Pervasive Computing Department. Her current resear
“A social capital perspective of participant contribution Interests include softw_are maintenance and analysiswait
open source communities: The case of linux,"HICSS architectures, model-driven software development, aneldp-

2011, pp. 1-10 ment and management of service-oriented systems.

M. Weiss, G. Moroiu, and P. Zhao, “Evolution of open
source communities,0SS vol. 203, pp. 21-32, 2006.

A. Capiluppi, P. Lago, and M. Morisio, “Characterigtiof
open source projects,” iI@SMR '03 2003, p. 317.

F. Hunt and P. Johnson, “On the pareto distribution of
sourceforge projects,” inProceedings of Open Source
Software Development workshad@002, pp. 122-129.

[70]

APPENDIX

©2013 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. §, NO. 11, NOVEMBER 2013

Application domain and usage of the Tools

Tools

(Content analysis software

Parse the source code and extract the dependencies between program entities

- Measure the abstractness and instability of a system’s packages

- Recover changes from the CVS repository

- Code clone detection

- Measuring code complexity

- Test coverage measurement

- File comparison

- Inheritance and attribute data analysis

- Source code analysis, such as, measuring total size, LOC, no of uncommented
LOC, number of global functions, variables and macros.

Word count (LIWC), SLOCCount, Numlines, Ctags,
(CVSchangelog, D-CCFinder, Diff, SVNKit library,

DEpend4Eclipse plugin, Jdepend, PBS tools, cvs2cl,
SimScan, CloneDR, Scientific Toolworks”
Understand, Emma, JarJarDiff, Jhawk, codeSurfer,
RSM, Analizo, analizo-utils package, softChange, CIL
imerger tool, Linguistic Inquiry

Data detectiontool

- Token-based, line-based, PDG-based

- Source code extraction (from source code repositories, mailing lists and bug
trackers)

ICCFinder, CCFinderX, Simian, Scorpio, exuberant
ctags

Stripcmt, JavaCC parser generator, Utilities, Kenyon,
Doxygen, LDX, CodeVizard, ASTdiff, CTSX,
(CVSAnaly2, Mlstats, Bicho, Weka

Metric extraction tool
- OO metrics, Complexiety metics, product and project metrics

hawk tool, STAN, Metrics, Borland Together tool
Understand for C

Simulation tool

NetLogo

Social network analysis
Statistical tool

Ucinet, Louvain algorithm, OSSNetwork
ISPSS, R (free statistical package)

\Visualization tool

Herdsman, Least-Squares Fitter (LSF), DOT

Figure 8. Tools (OSS and Proprietary) used for evolutionlietu

Domain wise .
0SS Domain Study Stgcsli :::;ict::((:y)
frequency
2D Java game engine 1 EasyWay (1)
2D graphics drawing 2 HotDraw (2)
3D modeling 1 ThreeCAM (1)
Mplayer(1), Gimp(3), gnumeric(1), Barcode Library (1), Zlib(1), Gnuparted(1), Weasel(1), Dailystrips
IApplication software 21 (1), Edna(1), Motion(1), Rblcheck (1), Xautolock(1), Bubblemon (1), Disc-Cover(1), FOP(1), Freenet(1),
Jetspeed2(1), Jmol(1), TV-Browser(1)
IApplication suite 1 Pentaho (1)
Bittorrent clinet 1 |IAzureus (1)
Bug Tracking System 1 Mantis (1)
Busine_ss intel!igent and > lasperReports (2)
reporting engine
ICode standard checker 1 Checkstyle (1)
ICompiler 3 IGCC (2), Jasmin (1)
Database engine 4 DatabaseToUML(1), QMailAdmin (1), SQLite (2)
Desktop Enviornment 9 IGNOME(4), KDE(4), mono (1)
Distributed File system 5 \Arla (5)
Document viewer 2 Evince (2)
File server (MP3) 1 Mutt (1)
FLOSS repositories 4 RubyForge(1), Savannah(1),SourceForge(2)
Framework 9 OsCache(1), Spring Framework(3), Hibernate(2), Shoes(1), VLC(1), Django(1)
FTP client 2 FileZilla (2)
IGame 5 [Tyrant(2), FreeCol (1), Nethack(1), GameScanner(1)
IGIS 1 Grass (1)
Http Client 1 jakarta-commons (1)
IDE 14 Kdevelop(1), Squeal(1), Eclipse(9), Swig(1), JDT core(2)
Instant Masseging (IM) 7 Gaim(1), OpenYMSG (1), aMSN(1), Miranda(2), Ayttm(1), Pidgin(1)
Internet and networking 5 Kdenetwork(1), NatMonitor(1), Tritonn(1), Newsstar(1), Hamachi-GUI (1)
IRC client 1 Konversation (1)
Java Application Generator 1 UAG (1)
Java's type safe nature 1 Guice (1)
Library 14 ICDK(1), kdelibs (1), Wine(2), DBI{1), SwingWT(1), JFreeChart(1), Ant(5), Jun(2)
Mail Client 6 Evolution(2), Calamaris(1), Ximian Evolution(1), Columba(2)
|Office suit 3 Koffice(2), OpenOffice(1)
oS 33 Linux(13), Ubuntu(1), BSD(4), kdebase(1), Debian(5), Fedora(1), FreeBSD(4), NetBSD(3), OpenBSD(1)
peer to peer data streaming sw 1 Ktorrent (1)
Platform (Blogging) 1 \WordPress (1)
Programming language 3 PHP(1), Ruby(2)
Protocol 2 OpenSSH (2)
Relational database 8 sQuirrel SQL Client(1), HSQLDB(2), PostgreSQL(4), Firebird (1)
management
ISCM software 2 ISubversion(1), CVS(1)
ISDK 1 KSDK (1)
server (Application) 24 Uboss(3), Bind(2), Vsftpd(2), SendMail(3), Apache(7), AdServerBeans(1), aolserver(1), cherokee(1),
fnord(1), lighttpd(1), monkeyd(1), weborf(1).
ISource code analyzer 1 PMD (1)
ISSL implementation 1 OpensSSL (1)
ISupport system 2 IGNUWingnu(1), SRA-PostgreSQ(1)
[Testing 1 EclEmma(l1)
[Text editor 6 WinMerge(1), Jedit(4), VIM text editor(1)
[Tool suit 4 [Samba(2), Quagga(2)
UML modeling tool 9 IArgoUML(9)
\Web browser 7 Mozilla(5), galeon(1), Mem’oria Virtual(1)

©2013 ACADEMY PUBLISHER

Figure 9. OSS Projects analyzed for evolution studies

2829

