
Evolution of Open Source Software Projects: A
Systematic Literature Review

M.M. Mahbubul Syeed, Imed Hammouda, Tarja Systä
Department of Pervasive Computing, Tampere University of Technology, Tampere, Finland

Email: {mm.syeed, imed.hammouda, tarja.systa}@tut.fi

Abstract— Open Source Software (OSS) is continuously
gaining acceptance in commercial organizations. It is in
this regard that those organizations strive for a better
understanding of evolutionary aspects of OSS projects.
The study of evolutionary patterns of OSS projects and
communities has received substantial attention from the
research community over the last decade. These efforts
have resulted in an ample set of research results for which
there is a need for up-to-date comprehensive overviews and
literature surveys.

This paper reports on a systematic literature survey aimed
at the identification and structuring of research on evolution
of OSS projects. In this review we systematically selected
and reviewed 101 articles published in relevant venues. The
study outcome provides insight in what constitutes the main
contributions of the field, identifies gaps and opportunities,
and distills several important future research directions.

Index Terms— Open Source; Evolution; Systematic Litera-
ture Review.

I. I NTRODUCTION

Research on Open Source Software (OSS) has gained
momentum over the last decade as commercial use of OSS
components continues to expand [1]. Much of the research
has focused on evolutionary aspects of open source devel-
opment in answer to long-term sustainability and viability
concerns of community-based software projects [2].

Examples of such research include collecting experi-
ences and building theories of OSS adoption in terms of
planning, process improvement, community involvement
and software maintenance [3] [4]. Often well-established
theories of software evolution, such as Lehman’s law [5],
are studied in the context of OSS to assess evolutionary
and quality characteristics such as survivability, growth
potential, maintainability, and ease of adoption.

To keep track of the latest research findings in the
area of OSS evolution, there is a need for comprehensive
literature studies that summarize and structure the existing
body of knowledge. In this article, we present a study for
systematic selection, characterization and structuring liter-
ature that concerns evolution of open source projects. Our
objective, and thus contribution is to produce a systematic
reporting of what constitutes the key contributions, the
main research gaps, and potential future directions in the
field.

In order to perform the study, we have adopted a
systematic literature review (SLR) approach [6] for the

This work was supported in part by the Nokia Foundation Grantand
TiSE graduate school funding, Finland.

systematic selection and characterization of existing lit-
erature. SLR is a recommended methodology for aggre-
gating knowledge about a specific software engineering
topic or research question [7] [8], through the systematic
analysis of relevant empirical studies [6]. For example,
SLRs were popularly utilized to acquire, conceptualize
and structure knowledge in various fields of software
engineering including, dynamic analysis [9], fault predic-
tion [10], global software engineering [11], and business
process adoption [12].

To carry out this review we adopted a review protocol
following the guidelines suggested in [13] and the survey
process used in [9]. Keeping the research motivation in
mind, we posted 11 research questions in four categories,
e.g., target, approach, target group and outcome. Target
refers to the different facets and dimensions of OSS
projects explored; approach refers to the method, met-
rics, and tools used for the study; target group refers
to the domain of OSS projects studied with selection
motives, and finally the outcome refers to the findings
and validation of the results reported in the articles. We
also discuss the implications of the findings and provide
recommendations for future research. The data extracted
from the articles are documented under the attribute set
developed for answering the research questions. This data
is provided in the review website [14] and can be used
by the research community to get a holistic view on OSS
evolution studies.

The paper is organized as follows: In Section II we
discuss the review protocol and the research questions.
Answers to the research questions, and a discussion on
open areas in the field of OSS and evolution are presented
in Section III and IV respectively. Section V discusses
validity issues related to the review process. Finally,
concluding remarks are presented in Section VI.

II. REVIEW METHODOLOGY

Evidence-based Software Engineering (EBSE) relies
on aggregating the best available evidence to address
engineering questions posed by researchers. A recom-
mended methodology for such studies is Systematic Lit-
erature Review (SLR) [6]. Performing an SLR involves
several discrete tasks, which are defined and described by
Kitchenham in [13]. As a starting point, SLR recommends
to pre-define a review protocol to reduce the possibility of
researcher bias [13]. Along those guidelines and following

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2815

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.11.2815-2829

Figure 1. Overview of systematic literature review

the review process described in [9], Figure 1 shows the
tasks involved in the review protocol of this study. The
tasks are discussed in the subsequent subsections.

A. Research Questions

The research questions we have defined fall within the
context of OSS projects and their evolution strategies. In
total we have formulated 11 questions, as presented in Ta-
ble I. These questions are proposed to portray the holistic
view of OSS evolution studies. This covers aspects like
the focus of the study, methodological detail, case study
projects, data sources, and validation mechanisms.

B. Article Selection

This section describes the article selection process
(phase (b) in Figure 1) that includes defining the
inclusion criteria for article selection, an automated
keyword search process to search digital libraries, a
manual selection from the initial set of articles, and the
reference checking of the listed articles.

Inclusion criteria . Along the research questions
shown in Table I, we have defined the following
selection criteria in advance that should be satisfied by
the reviewed articles:

• Subject area of the articles must unveil strong focus
on evolution of OSS projects. Authors must explic-
itly state the target of the study (e.g., software evolu-
tion, community evolution, co-evolution, prediction)
and provide detail evidence of research methodology,
data sets, and statistical detail of case study projects.

• Articles must exhibit a profound relation to OSS
projects and take into consideration those aspects that
are particularly attributed to the OSS community and
projects. Articles using OSS as a case study are taken
into account only if they satisfy the above criterion.

• Articles published in referred journals and confer-
ences are included for the review. Similar to most
SLRs, books are not considered for the review.

The suitability of the articles was determined against
the above mentioned selection criteria through a manual
analysis (discussed later in this section) of title, keywords,
abstract. In case of doubt conclusions are checked [15].

Automated keyword search. Automatic keyword
search is a widely used strategy in literature surveys [16]
[17]. Thus we performed a broad automated keyword
search to get the initial set of articles. First author of
this article was responsible for the search process. Seven
digital libraries were searched: IEEE Computer Society
Digital Library; ACM; ScienceDirect; SpringerLink;
Google Scholar; FLOSShub and Mendeley. These
libraries are the popular sources for open source related
research articles. All searches were based on the title,
keywords and abstract. The time period for this search
was from January, 2000 to January, 2013.

Knowing the fact that construction of search strings
varies among libraries, we first defined search terms
according to our inclusion criteria. Then to form the
search strings, we combined these search terms following
the guidelines of the digital library searched. The list of
search terms that were used is as follows.

2816 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

TABLE I.
RESEARCHQUESTIONS

Category Research Questions Main Motivation
Target Which facets of OSS projects were explored and what

statistical distribution the articles have in those facets?
To decompose the articles according to their study focus andintensity
of studies in each focus area.

What are the dimensions of OSS projects explored under
each study facet?

To determine the specific aspect(s) of OSS projects exploredin
evolution studies within each facet.

Approach What are the research approaches followed in the stud-
ies?

To identify the general research approach followed in evolution
studies (e.g., empirical studies with quantitative or qualitative data
analysis).

What are the datasets or data sources of OSS projects
mostly exploited in evolution studies?

To identify the data sources of an OSS project that are used for the
evolution studies.

What metric suits are evaluated and what tools are used
for metric data collection?

To explore the metric suits used for evolution study and the popularly
used tools for data extraction.

Target
group

What is the portfolio of projects analyzed for evolution
studies and what are their domains?

To determine the mode of evolution studies (e.g., horizontal or
vertical) by statistically measuring the studied OSS projects and their
domains.

Outcome Does the concern on “OSS evolution study” follow an
increasing trend?

To identify the beginning and growth of research interest inthe field
OSS project evolution.

What contributions are made in literature to analyze the
evolution of software?
What contributions are made in literature to analyze the
evolution of organization or community?

To explore what results are presented to enhance the understanding of
OSS projects evolution. (e.g., do evolution of OSS projectsconforms
to the theory of software evolution?)

What contributions are made in literature to analyze the
interdependency in the evolution of the software and
organization?
How are the research approaches and results of the
articles typically validated?

To identify the approaches employed to evaluate the research ap-
proaches and study results (e.g., internal validity, external validity,
construct validity).

Terms representing OSS: “Open source” or OSS or
“Open Source Software” or “Open Source Software
projects” or FLOSS or “Libre Software” or “F/OSS”.

Terms representing evolution study: “evolution” or
“structural evolution” or “evolution of software” or
“project evolution” or “project history” or “software
evolution” or “community evolution” or “co-evolution”.

Automated keyword search ended up with 181 articles
consisting of 46 journal articles and 135 conference
articles.

Manual selection. Recent studies [15] [9] pointed out
that (a) current digital libraries on software engineering
do not provide good support for automated keyword
search due to lack of consistent set of keywords, and
(b) the abstracts of software engineering articles are
relatively poor in comparison to other disciplines. Thus
it is possible that the 181 articles identified through
automated search process might contain irrelevant ones
and some relevant might be missing. Due to this fact the
first author performed a manual selection on these articles
by reviewing the title, keywords and abstract (and in
case of doubt, checking the conclusion [15]). To reduce
the researcher bias in this selection process, the domain
experts (second and third author) examined the selected
articles against the selection criterion. Any disagreement
was resolved through discussion. This process ended up
with 97 articles consisting of 21 journal articles and 76
conference articles.

Reference checking. To ensure the inclusion of
other relevant but missing articles (as mentioned above),
the first author performed a non-recursive search through
the references of the 97 selected articles. This process
identified 4 additional conference articles.

Final set of articles. The article selection process
finally ended up with 101 articles (21 journal and 80
conference articles). A complete list of these articles
along with year and venue wise distribution can be found
in our review website [14].

C. Attribute Framework

The next step in the review protocol was the
construction of an attribute framework (phase (c) in
Figure 1). This framework was used to characterize the
selected articles and to answer the research questions.
Following is a brief description of this process.

Attribute identification . The attribute set was derived
based on two criteria: (a) The domain of the review
(i.e., evolution of OSS projects) and (b) the research
questions. A pilot study was run for this step, as shown
in phase (c) of Figure 1. This phase consists of a number
of activities.

First, we performed an exploratory study on the struc-
ture of 10 randomly selected articles (from the pool of 101
articles). This study led to a set of eight general attributes
that can be used to describe the articles and to answer
the research questions. This attribute list is shown in the
Attribute column of Table II.

Second, this list of attributes was refined further
into a number of specific sub-attributes to get precise

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2817

© 2013 ACADEMY PUBLISHER

TABLE II.
ATTRIBUTE FRAMEWORK

Attribute Sub Attribute Brief Description
General Publication Type, Year of Publication
Study Type Empirical, comparative, case study, tool implementation.
Study Target Software evolution Code, architecture, bug/feature

Community evolution Developer and user community
Co-evolution Combined evolution of software and community
Prediction Studies on predicting evolution of OSS projects

Case Study OSS projects studied List of OSS projects studied
Programming language Target programming languages of OSS projects
Project size Size measure of OSS projects (in KLOC for latest release)
Project domain Application domain of the OSS projects covered

Data Source Source code Code base, CVS/SVN
Contributions Change log, bug tracking systems
Communication Mailing list archive, chat history
External sources Sourceforge, github, ohloh.

Methodology Methods Concrete methods applied
Metrics Type of metrics used
Tool implementation Tools implemented for the study
Tools used Existing tools, algorithms used for study

Results Growth rate Defines the growth rate of an OSS project during its evolution.
Measure of evolution Qualitative, Quantitative
Prediction classification
Summary Other findings

Evaluation / Validation Validation process for a study

description of each of the general attributes and fine
tune the findings on the research questions. To do this,
we made a thorough study of the same set of articles
and wrote down words of interest that could be relevant
for a particular attribute (e.g., “software evolution”,
or “community evolution” or “co-evolution” forStudy
target attribute). The result after reading all articles was
a (large) set of initial sub attributes. This data extraction
task was performed by the first author of this survey.

Attribute generalization and final attribute
framework . We further generalized the attributes
and sub-attributes to increase their reusability [9]. For
example, sub-attributes “mailing list archive” or “chat
history” are intuitively generalized toCommunication.
This final attribute list was then examined and validated
by the domain experts (second and third authors). This
reduces the change of researcher bias, as neither of the
domain experts had any connection with this process.
The final attribute framework is shown in Table II.

D. Article Assessment

The article assessment step consists of four distinct
activities as shown in phase (d) of Figure 1. In this
section we focus on the first two steps.

Attribute Assignment. Using the attribute framework
from the previous section, we processed all articles and
assigned the appropriate attribute sets to each of the
articles. These attributes effectively capture the essence
of the articles in terms of the research questions and
allow for a clear distinction between (and comparison
of) the articles under study.

The assignment process was performed by the first
author of this survey. During this process, authors’ claim
of contribution is assessed against the results presented

in the articles. For example, to validate the claim on
the target of the study (e.g., software or community
evolution), we assessed what relevant data sources are
explored, what metrics and methods are used, and the
duration and process of data collection. Also, we did not
draw any conclusions from what was presented in an
article if it was not explicitly mentioned. For example,
we left the attribute fieldstudy typeempty if it was not
mentioned in the article.

Characterization of the reviewed articles. Since
the attribute assignment process is subject to different
interpretations, different reviewers may predict different
attribute subsets for the same article [9]. As the attribute
assignment process is carried out by the first author of
this paper, the quality of the assignment needed to be
verified to avoid reviewer bias [9]. This verification task
was carried out by the domain experts who assessed the
data collection table against the reviewed articles. Any
disagreements were resolved through discussion. This
characterization of articles is presented in our review
website [14].

Next we discuss the results of this review by answering
the research questions and discussing open areas in this
field.

III. R EVIEW RESULTS

Given the article selection and attribute assignment
(as presented in review website [14]), the next step is to
present and interpret the study findings. We start with
discussing answers to the research questions based on
the study outcome. List of OSS projects that are studied
in the review articles are provided in the website [14].

RQ1. Which facets of OSS projects are explored

2818 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

and what statistical distribution the articles have in those
facets?

An in-depth study on the selected articles led us to
decompose the OSS evolution articles into four facets:

• Software evolution: articles under this facet explore
evolutionary behavior of OSS systems and derive
patterns of evolution to evaluate them against the
laws of software evolution. Such studies also mea-
sure the issues that concern the commercial world.
This includes for instance, study the evolutionary
patterns of code complexity, maintainability, sustain-
ability, and quality in an OSS project.

• Community evolution: articles under this facet stud-
ies how the social networks of developers and users
evolve over time while building the product.

• Co-evolution: articles under this facet examine the
evolution of OSS systems with the associated com-
munities, and explore relationship between the two
through different collaboration models.

• Prediction: articles under this facet deal with defining
and examining prediction models to simulate the
evolution of OSS projects. For instance, developing
methods to support error prediction for the purpose
of preventive maintenance and building quality soft-
ware.

Figure 2 shows the distribution of articles (published
in both journal and conferences) under each facet.

Figure 2. Article distribution under each facet of evolution study

From this figure it is evident that the facetsoftware
evolutiongot maximum attention over others. The reason
of such bias distribution of articles can be defended by
the fact that the development history of OSS projects is
relatively new compared to its proprietary counterpart
[18].

Software evolution is the most studied facet.

RQ2. Does the interest on“OSS evolution study”
follow an increasing trend?

OSS development has appeared and diffused
throughout the world of software technology, mostly

in the last ten to thirteen years. During this period, a
growth in interest for better understand the patterns of
OSS evolution has been noticed. The increasing trend in
number of publications between the year 2000 and 2012
(as shown in Figure 3) assist this claim.

Figure 3. Concern on ”OSS evolution study” over the decade

Research on OSS evolution follows an increasing
trend.

RQ3. What research approaches are followed in
the studies?

Research methodologies followed in the reviewed
articles can be categorized into four distinct approaches:
empirical study, case study, comparative study and
tool implementation. Each of these studies use OSS
project data for either quantitative analysis or qualitative
analysis. Figure 4 shows the count of published articles
according to this classification. As can be seen from
the Figure, 75% of the studies (76 articles out of 101)
followed empirical approach with either quantitative or
qualitative data analysis.

Figure 4. Distribution of articles under the classificationof research
approaches followed in the studies

Empirical research is the most frequent research
methodology used to study OSS evolution.

RQ4. What are the dimensions of OSS projects explored
under each study facet?

This research question gives a fine grained view on the
dimensions of OSS projects explored by the evolution
articles. Figure 5 provides a two dimensional view of
OSS projects, e.g., code and community dimensions with
their constituent parts. As can be seen from this figure,

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2819

© 2013 ACADEMY PUBLISHER

software evolution and prediction facets mostly utilize
the code dimension. Whereas the community evolution
facet puts more emphasis on developer community
than user community or their combination. The study
on co-evolution of the code and community mostly
explores the code base, bug reports, developer and user
community.

Figure 5. Dimensions of OSS projects that are explored to study a facet,
means not applicable

Code dimension (e.g., source code) is mostly studied
in the articles as compared to community dimension or
their combination.

RQ5. What is the portfolio of projects analyzed for
evolution studies and what are their domains?

In general, the study of evolutionary behavior and
patterns of OSS projects requires access to historical
data representing their development, growth and success
story. These studies thus delimited to flagship OSS
projects that are large in size with a large user and
developer community and belong to popular application
domains. In this regard, our findings reported that most
of the OSS projects studied are from the domain of
Operating Systems (OS), Application Software, Integrated
Development Environments (IDE), Application Servers,
Libraries, Desktop Environments and Frameworks.
Example projects under these domains include Linux,
Eclipse, Apache, Ant, Mozilla, GNOME, KDE, and
ArgoUML. These projects have more than 5 years of
development and evolution history. Figure 9 in the
appendix presents the domain wise classification of the
studied OSS projects with the count representing their
frequency of use in the evolution studies. This finding
gives support to the fact that OSS evolution studies are
mostly vertical and thus unable to put light on the whole
population of OSS projects, as vast majority of projects
are failures [19]. Only a few articles, according to our
study, report horizontal studies with a large and random
sample of OSS projects (ranging between 200 to 4000
OSS projects).

Large and successful OSS projects are often selected
as case study projects.

RQ6. What are the datasets or data sources of
OSS projects mostly exploited in evolution studies?

To analyze the evolutionary behavior of OSS projects,
information contained in project data sources need
to be explored. These data sources are termed as
repositories which contain a plethora of information on
the underlying software and its development processes
[20] [18]. Studies based on such data sources offer
several benefits: this approach is cost effective, requires
no additional instrumentation, and does not depend on
or influence the software process under consideration
[20]. Evolution studies on the OSS projects effectively
explored these repositories produced by the projects
as well as the external sources. Figure 6 presents the
OSS repositories in both categories and the count
of articles that utilizes those repositories. According
to this figure, repositories maintaining the code base
(e.g., CVS/SVN, change log) are the most explored
sources. This is obvious because most of the articles
(as discussed in RQ1) studied either the evolutionary
patterns or the prediction models for the evolution of the
system. Among the external sources, SourceForge.net is
the most popular repository hosting thousands of OSS
projects and having the maximum number of downloads.

Figure 6. Data sources of OSS Projects

Repository maintaining the source code of the projects
are mostly explored in the studies.

RQ7. What metric suits are evaluated, and what
tools are used for data collection and analysis?

The reviewed articles used metrics mostly to measure
the evolutionary patterns and antecedents of certain as-
pects of the studied projects, such as, code complexity,
structural complexity, architectural patterns, predicting
error proneness and maintainability, and collaboration pat-
terns within the community. Mostly empirically validated
metrics are selected for these studies. Widely used metric
suites are listed in Table III.

For metric data collection, synthesis and interpretation,
a number of existing tools are used. Figure 8 in the
appendix provides a list of such tools used along with

2820 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

TABLE III.
METRICS

Metric
Category

Example Metrics

Source code
metrics

source line of code, line of code, number of
functions

Code
complexity
metrics

interface complexity, Halstead suite of com-
plexity metric, cyclometic complexity, structural
complexity

Object oriented
metrics

Chidamber and Kemerer, L&K (Lorenz and
Kidd’s eleven metrics, Li’s metric suite for OO
programming, modularity metrics

Product level
metrics

product size, releases, application domain, ver-
sion frequency

Project metrics metrics related to the OSS community struc-
ture and communication, application domain,
number of developers, users, project popularity,
success, application domain, no of commits, no
of messages sent

their usage area and popularity count. As most of these
tools are third party applications, the accuracy of the data
collection and analysis is constrained by the performance
of these tools. This also puts impact on the validity of
the results.

Empirically validated metric suites to evaluate the
source code are mostly used in the articles.

RQ8. How are the research approaches and results
of the articles typically validated?

Threats to validity in experimental studies can be cat-
egorized into three types: external, internal and construct
validities [21]. External validity means to what extent the
results can be generalized to the whole population (or
outside the study settings). Internal validity means that
changes in the dependent variables can be safely attributed
to changes in the independent variables. Construct valid-
ity means that the independent and dependent variables
accurately model the abstract hypotheses.

Figure 7. Validation Process of the research approaches

Our survey results concerning these validity issues
reveal that 41% (42 out of 101) of the articles measured
and reported the validity threats of the underlying
research methodology and the research result. Figure
7 plots the number of articles that perfoms validity
measure under each category. In this figure, the

articles which took quantifiable measure to minimize
a validity threat are counted underaddressedfield and
the articles which admited the threats as a delinquent
to the study are counted underNeed to be addressedfield.

Almost all the studies (30 out of 34) suffers from
external validity threats and thus suffers from
generalizability of the results to the population of OSS
projects.

RQ9. What contributions are made in literature to
analyze the evolution of software?

Analysis of the selected articles identifies a good sam-
ple of empirical studies which were conducted to verify
the fitness of the Lehman’s law of software evolution
in the domain of OSS projects. These results have both
conformance (either complete or partial) and contradic-
tion with the laws of software evolution. In Table IV
we provide a comprehensive summary of these studies.
We believe this would provide a holistic view on the
suitability of these laws in OSS domain, and will create
the future pathway in deriving evolutionary patterns and
laws for OSS evolution.

Other empirical analysis on OSS projects reveal several
stimulating properties/characteristics of the system evolu-
tion. In Table V we summarizes these findings according
to their primary focus of study.

RQ10. What contributions are made in literature to ana-
lyze the evolution of organization or community?

OSS projects typically come with a highly distributed
community of developers and users. Members of such
community share a common interest in the project. They
often interact with one another to share knowledge, and
collaborate in contributing and developing the project
[50]. Communities are the core of OSS projects, and
for the successful evolution of a project, it should have
a large number of developers (authors and contributors)
[51]. Other studies to date, report distinct properties of
OSS communities. Such as, necessity of a critical mass
of the core developer team [52], motivation of joining a
project [50], change of roles of the community members
through contributions [53], social dynamics and pattern of
the community [54] [55]. These results are summarized
according to the study focus in Table VI.

RQ11. What contributions are made in literature to ana-
lyze the interdependency of the software and organization
evolution?

The successful evolution of OSS projects depends on
the co-evolution of the community (both developer and
user) and the software [5]. Related research in this track
identifies that the number of contributors grows with the
growth in product size [30]. This observation is replicated
in [65], with evidence that the increase of introduced
packages and reported bugs are highly coherent with the
increase of contributors and active users, respectively.
Also, the increase in documentation and modularization

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2821

© 2013 ACADEMY PUBLISHER

TABLE IV.
FITNESS OFLEHMAN ’ S LAW IN OSSPROJECTS

Ref Growth Rate Brief Description
[3] Super-linear growth. Super-linear growth pattern in system level is due to accumulated linear growth of the

large set of driver subsystems. Contradict with Lehman’s 4th law.
[22] Super-linear growth. The project has doubled in size in terms of SLOC and number of packages in every 2

years.
[23] Super-linear growth. Contradicts Lehman’s 1st and 3rd law.

[24] Linear or Super-linear growth. Majority of the large projects grow linearly with few havinga super linear growth. Both
contradict with Lehman’s law.

[25] Average growth in size is 17%,
while decreasing in structural
complexity on average 13%.

Contradicts Lehman’s second law.

[26] Super-linear growth. The growth is due to increase in time interval between subsequent releases in recent
past.

[27] Super-linear growth (for large
project). Linear or Sub-linear
growth (for small project).

Large projects are large in size (in LOC), more active in number of revisions, and have
more programmers than those are not.

[28] Linear and Super-linear growth. Linear pattern was noted for NOF, NOC, LOC and size measures.Super-linear growth
for plug-ins and downloadable source code.

[29] [30] [2]
[31]

Linear growth. Conformance to all six laws of Lehman considering the growthin size, coupling and
complexity.

[4] Linear growth.
• Conformance to Lehman’s 6th and 2nd law (growth pattern measured in source

code level, file level, module level and complexity).
• Conformance to Lehman’s 1st and 5th law holds (according to changing rate and

growing rate of handled uncommented line of code).
• Contradicts with Lehman’s 6th law (for file level growth).

[3] Linear or Sub-linear growth. 16 out of 18 studied systems follow a growth pattern linear orclose to linear.

[32] [33] Not mentioned. Conformance to Lehman’s 1st, 2nd, 3rd and 6th law.

[32] [33] Not mentioned. Contradicts with 4th,5th,7th and 8th law.

[34] Linear growth. A declining at linear rate was noticed at module level.

[35] Linear growth. Follows a pattern of stagnated growth with decrease in size at some points.

[36] Linear growth.
• The evolution pattern do not consistently conform to Lehmans laws.
• Decrease in structural complexity (e.g., McCabe cyclomatic complexity).
• Increase in calculation logic (e.g., Halstead complexity increased).
• Increase in modularity.

levels are obliged to rising number of developers and
their contribution in a project [59]. In this regard, more
presence of users in the community drives more changes
in the code base.

IV. AVENUE TO FUTURE RESEARCH

The final step of the survey (see Figure 1) consists
of formalizing the tacit knowledge acquired through the
study of the review articles in order to distill further
research directions. To conduct this step, we analyzed
the results reported in section III to identify gaps,
commonalities and contradictions, and look for most and
least frequently used research approach in each facet.

ON SOFTWARE EVOLUTION

Understanding the most common study facets (as
displayed in Figure 2) gives the impression thatopen
source software evolutionis the most widely investigated
field. Research under this facet has produced good

sample of analytical results which are available for
further examination, assessment and comparison [5].
Our review on this direction suggests following research
directions,

Law’s of evolution for Open Source Software.
The most common study topic under this facet is to
evaluate the fitness of Lehman’s law of evolution to
open source software. These results are summarized in
Table IV. A closer scrutinize to the table data reveals
that the results have both facsimile and contradicting
to the Lehman’s law. For instance, the growth rate of
OSS, presented in column 2 of Table IV varies between
super-linear (i.e., greater than linear) and sub-linear
(i.e., less than linear). This has both conformance and
contradiction with the second and sixth law of evolution.

Comprehension of these results suggest that the laws
and theory appear to be breaking down through non-
conforming data and findings (Table IV). Thus Lehman’s
laws of software evolution which is primarily based on the

2822 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

TABLE V.
EVOLUTION OF THE SOFTWARE

Focus of
Study

Results Reference

Code
Complexity
Evolution

Project size increases with an improvement on some quality measures, e.g. decrease in complexity of
the system.

[37]

The procedure and file level complexity remains unchanged. [38]

• Decline trend in structure complexity (e.g., McCabe cyclomatic complexity).
• Increase in calculation logic (e.g., Halstead complexity).
• Increasing trend in system’s modularity.

[39]

Increase in coupling, interface complexity and cyclomaticcomplexity. [2]
System level decay in terms of the underlying structure due to the addition of new folders and
functionalities.

[40]

Increase in complexity for large files as they undergo frequent changes. [41]
Decrease in modularity due to major architectural and implementation changes. [42]
There exists positive correlation between error probability across classes and the code bad smells. [43]

Code
Quality Im-
provement

Modularity of the software system increase due to periodic refactoring and cleanup activities after
major changes.

[42]

Periodical refactoring is needed to prevent system decay and stagnation, and to improve architectural
quality.

[41] [43]

The development strategies and practices of OSS projects support to maintain the reliability and quality
of the software.

[44]

OSS is less entropic than proprietary applications having low unit maintenance costs. [45]
Code
cloning

Code cloning (or code duplication) does not have a large impact on post-release defects (quality). [46]

Presence of duplicate code in the software does not make it more difficult to maintain. [47]
Documentation The documentation process often start with an initial upfront maintenance effort (to create the initial

documentation or writing a book), which is then updated according to the changes in the project.
[45]

Sub-project
Evolution
(projects
under a
project)

• Existing sub-projects might be merged or removed.
• New sub-projects might be introduced.
• Sub-projects might follow different trend models in the growth, complexity and changes. E.g.,

Eclipse.

[28]

OSS
Dynamics • SOC (Self Organized Criticality) occurs during the evolution of OSS.

• SOC can be used as a conceptual framework for understanding OSS evolution dynamics.

[48]

• The evolution dynamics of OSS may not follow SOC.
• The past of an OSS project does not determine its future except for relatively short periods of

time.

[49]

study of the large close source systems, is not sufficient
to justify or account for the evolutionary pattern and
behavior of the open source software. As none-the-less
these laws did not consider the community dimension of
the OSS projects which is an integral part of sustainable
evolution of the open source software.

To deal with this problem, a viable route would be to
examine the underlying ontologies for software evolution
[5] considering the OSS specific characteristics, and then
re-assess the laws of software evolution to fit in OSS
domain.

Metric set for software evolution. Software evolution
studies mostly utilize metrics that are empirically
validated in prior studies (as presented in Table III).
These metrics are derived for closed source projects, and
are primarily used to verify the Lehman’s law of software
evolution. Though these metrics provide valuable insight
to OSS evolution, they do not consider the community
dynamics. Thus an empirically validated set of metrics
in favor of explicit representation of the community is

required to complement the existing metric set.

Predicting the future. Prediction of OSS projects
is one area that is least popular among the study facets
(Figure 2). Yet future research should focus on developing
reliable prediction models and methods supporting error
prediction, measuring maintenance effort and cost of
OSS projects. Because, the commercial organizations,
for instance, requires such prediction models to assess
an open source component for adoption [66].

Study the existence of SOC.Another direction of
research would be to study the notion of SOC (Self
Organized Criticality) in OSS projects. SOC dynamics
articulate that the current state of a project is determined
(or at least, heavily influenced) by events that took place
long time ago. Existential exploration of SOC in the
domain of OSS projects reveals contradictory results
(Table V). Thus future research can take further step in
validating the existence of SOC and its implication on
the evolution of open source software.

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2823

© 2013 ACADEMY PUBLISHER

TABLE VI.
ORGANIZATIONAL (OR COMMUNITY) EVOLUTION

Focus of Study Contribution Reference
Community
Formation

A group of core developers quickly emerges at the center of the community at the early stage of the
project and becomes the key contributors.

[54]

The OSS community evolution follows small world property with a strong community structure and
modularity. Initially it has fairly dynamic nature which gradually settles down into fixed groups.

[56]

During the evolution, the communication between core and peripheral developer’s decreases, and sub-
community of developers forms.

[57]

The growth of OSS community follows “rich gets richer” phenomenon. This means a healthy sized
community often attracts new developers.

[58]

Community
Structure and
Activity

• 57% of the studied projects has only one or two developers.
• Only 15% has more than 10 developers. This category constitutes only flagship projects.

[51]

• About 83% projects have only one or two stable developers.
• 16% of the projects attains the size of the core team.

[59]

Developers play different role ranging from core developers to passive users. These roles are implicit,
and are mainly defined and determined according to the level of contributions made to the project.

[53]

Developer’s role changes through accumulated contributions over a period of time. Changes in
developer roles and community structure are significantly associated with the quality of contributions,
but not with contribution quantity.

[53] [57]

A Pareto distribution on the size of the developer communitywas identified. That is a vast majority
of the OSS projects fail to take off and soon become abandoned. Probable reasons for such failure
include projects inability to attract developers to attaina critical mass of developers, and insufficient
communication and collaboration.

[60] [54]

Community
Migration • The migration of old developers from previous release to a new one is very high.

• Developer’s code maintenance activity increases with increase in experience.
• The community has a natural ‘regeneration’ process for its voluntary contributors. This process

increases the probability of code adoption that are left by the outgoing developers.

[32]

Core developers should promote community regeneration process by creating an organizational
ecosystem. The ecosystem will provide the openness of the system, process and communication which
will attract others to join.

[61]

Sustainability
• OSS development is prominently a community-based model.
• The community must be a sustainable community for the long term survivability of the project.

[62] [50]

• A stable and healthy core team in the community is essential for the sustainability of OSS
projects.

• Core developers introduce less structural complexity and remove existing structural complexity
from the code.

[2]

Sustainability can be credited to the following motivatingfactors: (a) people are benefited from
participating in a thriving OSS community, (b) improve technical competence as a developer, and
(c) projects have well-defined modular design and cheap means of communication.

[63]

It is important to maintain a balance composition of all the different roles in a community for
sustainability. For example, to an extreme, if most of the community members are passive users
then the system will not evolve.

[64]

Evolution of
Sub-communities
(Communities of
sub-projects)

• Ecology of the sub-communities are formed around the sub-projects.
• Sub-projects are often governed by a common governance, e.g. Apache.
• Members in sub-communities often collaborate due to mutualtask dependencies.
• Sub-communities also compete for the project resources.

[50]

ON COMMUNITY EVOLUTION

Study on the community evolution identifies several
key properties (reported in Table VI), which lay the
foundation for further research in this direction. We
propose the followings to be investigated.

Community building . Studies reported that the majority
of OSS projects failed to attract members to attain the
critical mass. Only few flagship projects are able to
attract developers. Factors influencing the motivation to

join a community has been studied (e.g., [62] [50]), and
several phenomena are proposed. For instance, rich gets
richer phenomenon. Yet it is not identified what exclusive
properties initiate the community building process at the
nebula stage of the project. Following research questions
can be considered relevant,

• Why some projects are able to attract contributors
during the nebula stage of the project, while most of
them can not?

• What formation of the community refers to a bal-
ance one, and how the community structure changes
towards a balance structure during its evolution?

2824 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

• Can a visible pattern be identified within the domain
of OSS projects for the above two cases?

Migration of responsibility and sustainability . It has
been reported that migration of developers from one re-
lease to the next is high and that the developers take more
responsibility as they gain experience. Yet it is a common
phenomenon in open source domain that developers freely
join or leave the project. And when a developer leaves,
his responsibilities must be assigned to someone else.
For instance, the codebase maintained by a outgoing
developer should be taken care of by others. Else it will be
abandoned and discarded from subsequent releases. Thus
it will be beneficial to explore the followings,

• How responsibility migrates among the developers?
Does this migration follow preferential-attachment?,
i.e., is the responsibility handed over to the devel-
opers who are in close connection to the outgoing
developer.

• What impact such migration has on the project
evolution?

ON CO-EVOLUTION

It is turned out from our review that the understanding
of co-evolution of the code and the community in OSS
projects has received little attention in literature (Figure
2). As a consequence, the community dimension and
corresponding communication channels (e.g., mailing
archives, bug tracking systems) are explored seldom, as
can be seen from Figure 5 and Figure 6 respectively.
Study on co-evolution in OSS projects, however, is
becoming increasingly popular. Because, in such projects
the code evolution is dependent on the contribution of
community members, and that a successful evolution of
the code is required for the survival of the community.
The following research directions can be considered
relevant.

Exploring socio-technical congruence. In the OSS
projects contributions made by the community members
not only drive the system evolution but also redefine
the role of these contributing members and thus
change the social dynamics of the OSS community
[53]. In this connection, it will be very interesting to
investigate the phenomenonsocio-technical congruence
in OSS projects. Socio-technical congruence which is
a conceptualization of Conway’s law [67] states that
there should exists a match between the coordination
needs established by the technical domain (i.e., the
architectural dependency in the software) and the actual
coordination activities carried out by project members
(i.e., within the members of the development team) [67].
This concept was already explored in closed source
projects, and reported a high correlation with software
build success, quality, and faster rate of modification
[68]. Thus socio-technical congruence plays a pivotal
role in conceptualizing the co-evolution in a project.
Surprisingly, this notion as a research area has not been

given much attention among open source researchers.
Although it is identified and reported as a desired
property for collaborative development activities like
OSS projects [69]. Considering the lack of focus in this
direction, we propose the following to investigate.

• Does the essence of socio-technical congruence as
a conceptualization of Conway’s law holds for OSS
project? Can it be stated as an implicit characteristics
or property of successful OSS project?

• What quantitative approach/method can be utilized
to verify the existence of socio-technical congruence
in OSS projects? What repositories can be used for
this purpose?

• What correlation can be derived between socio-
technical congruence and the quality/sustainability of
OSS projects?

Sub-project evolution with their community . Large
open source projects often encompass many sub-projects.
Such as, sub-projects in Eclipse, GNU, Linux, and
Apache. Often ecology of sub-communities formed
around these sub-projects, which are governed by a com-
mon governance [50]. Study on the formation and evolu-
tion of sub-projects and their communities have revealed
many key characteristics, which are listed in Table V
and Table VI, respectively. Yet the interdependency in
evolution between the two and their impact on the overall
project evolution remain untouched. The following would
be worth to investigate.

• Does there exist a correlation between the evolution
(growth, complexity, change) of the sub-projects and
their associated sub-communities? Does the commu-
nity change with the change in the sub-project?

• How does a community form around a newly added
sub-project?

• What attributes of a sub-project attract new develop-
ers to join?

• What happens to the sub-community when a sub-
project is deleted or merged to other sub-project?

• What dependencies lead to inter project communica-
tion?

• What kind and level of communication and collabo-
ration takes place between sub-communities?

• Does there exist a correlation between the project
evolution and the sub-project evolution?

ON RESEARCH METHOD

A number of issues related to the research approach can
be improved to increase the acceptability of the reported
results. We pointed out the followings,

External validity of the results. Empirical study
is the most popular research approach employed in
evolution studies (Figure 4). These studies, however, are
horizontal in nature (as reported in RQ5) considering
only flagship OSS projects. Due to this approach of
studying OSS projects, the reported results suffer from

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2825

© 2013 ACADEMY PUBLISHER

generalizability threat, as reported in Figure 7. Yet to
make these finding applicable and hold for the extended
region of OSS projects, explicit measure should be
taken. An interesting route to deal with this is to
categorize the findings (current or future) according to
the project domain, or similar organizational structure
and practices, or similar product size and complexity.
This will reveal the broader picture which can then be
compared and possibly merged for proposing a more
general evolutionary pattern and behavior for OSS.

Framework for the data collection and representation.
As discussed in RQ6, OSS projects often produce large
volume of data representing their development and
evolution history. Research to date, explores the
repositories that maintain these data, a list of which
is provided in Figure 6. However, data collection and
representation in these repositories vary significantly
from project to project. Furthermore, data from the
same source may have different formatting (e.g., emails
are often free of format even in listing the senders
credentials). Due to these facts, it is a challenging task
to collect relevant data following a standard format
from OSS repositories. In this context, researchers
often employ their own means to collect and represent
data for research. This reduces the compatibility and
comparability of the reported results even if they use
same data sources. Taking these issues in consideration, a
framework for uniform data collection and representation
can be developed to make the results cohesive and
comparable to each other.

V. THREATS TOVALIDITY

Carrying out a survey is mostly a manual task. Thus
most threats to validity relate to the possibility of re-
searcher bias [9]. To minimize this, we adopted guidelines
on conducting SLR suggested by Kitchenham [13]. In
particular, we documented and reviewed all steps we
made in advance, including selection criteria and attribute
definitions.

In what follows, the description related to validity
threats pertaining to the article selection, the attribute
framework, and the article characterization is discussed.

A. Article Selection

Following the advice of Kitchenham [13], the inclusion
criteria is set at the time of defining the review protocol,
and the criteria are based on the research questions. This
reduces the likelihood of bias. Articles satisfying this
selection criterion are considered. For collecting relevant
articles we first performed automated keyword search and
then performed manual selection. The first step condenses
the selection bias whereas the latter ensures the rele-
vance of the selected articles. Finally, a non recursive
search through the references of the selected articles
is performed. This increases the representativeness and
completeness of our selection. To further minimize the

selection bias and reviewer bias, domain experts (second
and third author) verified the relevance of the selected
articles against the selection criteria.

B. Attribute Framework

The construction of the attribute framework may be
the most subjective step [9]. Thus we take the following
steps to acknowledge this fact: the attribute set is derived
based on the research questions and domain of study.
Then a pilot study is carried out to further refine the
attribute framework. Furthermore, the representativeness
of the framework is examined by domain experts (second
and third author).

C. Article Assessment

Similar to the construction of the attribute framework,
the process of assigning the attributes to the research
articles is subjective and may be difficult to reproduce [9].
We address this validation threat through an evaluation
process where domain experts assess the collected data
against reviewed articles.

VI. D ISCUSSION

In this paper we have reported a systematic literature
review (SLR) on the evolution studies of Open Source
Software projects. To carry out this study we adopted
a review protocol following the guidelines presented in
[13] and [9]. A set of 101 articles (21 journal and 80
conference articles) were selected for the review. Through
a detailed reading of a subset of the selected articles,
we derived an attribute framework that was consequently
used to characterize the articles in a structured fashion.

We also posed a set of research questions in advance
that are investigated and answered throughout the study.
The attribute framework was sufficiently specific to char-
acterize the articles in answering the research questions.
The set of articles and collected data under this attribute
framework is presented in our review website [14]. None-
the-less, an elaborated discussion on the validity of the
review process is also presented.

The characterization of the reviewed articles will help
researchers to investigate previous studies from the per-
spective of metrics, methods, datasets, tool sets, and
performance evaluation and validation techniques in an
effective and efficient manner. We also put an elaborated
discussion on the most significant research results. In
summary, this article provides a single point reference
on the state-of-the-art of OSS evolution studies which
could benefit the research community to establish future
research in the field.

Related works in this track carried out a literature
review on open source software evolution [70]. This study
explores the software evolution, mostly emphasizing on
research methods, metrics, and data analysis. Contrast to
this, our review provides a holistic view of the evolution
of OSS projects, concerning all the facets studied to date.

2826 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

Yet our reported result pertaining to the conflicting re-
porting of Lehman’s law of software evolution confirmed
the findings in [70]. This suggests that future work in
the area of OSS evolution should explore more to unify
the findings through comprehensive study on the the open
areas discussed in this paper.

REFERENCES

[1] R. Grewal, G. Lilien, and G. Mallapragada, “Location,
location, location: How network embeddedness affects
project success in open source systems,” inManagement
Science, vol. 52, no. 7, 2006, pp. 1043–1056.

[2] S. Suh and I. Neamtiu, “Studying software evolution
for taming software complexity,” inAustralian Software
Engineering Conference, 2010, pp. 3–12.

[3] G. Robles, J. Amor, J. Gonzalez-Barahona, and I. Herraiz,
“Evolution and growth in large libre software projects,” in
IWPSE’05, 2005, pp. 165–174.

[4] C. Roy and J. Cordy, “Evaluating the evolution of small
scale open source software systems,” inCIC 2006, 2006,
pp. 123–136.

[5] W. Scacchi, “Understanding open source software evo-
lution: Applying, breaking, and rethinking the laws of
software evolution,” inApplying, Breaking, and Rethinking
the Laws of Software Evolution. John Wiley and Sons Inc,
2003.

[6] B. A. Kitchenham, R. Pretorius, D. Budgen, O. P. Brereton,
M. Turner, M. Niazi, and S. Linkman, “Systematic litera-
ture reviews in software engineering- a tertiary study,”IST,
vol. 52, no. 8, pp. 792–805, 2010.

[7] B. Kitchenham and S. Charters, “Guidelines for perform-
ing systematic literature reviews in software,” inEngineer-
ing Technical Report EBSE-2007-01, 2007.

[8] M. Petticrew and H. Roberts, “Systematic reviews in the
social sciences: A practical guide,” inBlackwell Publish-
ing, 2005.

[9] B. Cornelissen, A. Zaidman, A. Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehen-
sion through dynamic analysis,”TSE, vol. 35, no. 5, pp.
684–702, 2009.

[10] C. Catal and B. Diri, “A systematic review of software
fault prediction studies,”Expert Systems with Applications,
vol. 36, no. 4, pp. 7346–7354, 2009.

[11] D. Łmite, C. Wohlin, T. Gorschek, and R. Feldt, “Empirical
evidence in global software engineering: a systematic
review,” ESE, vol. 15, no. 1, pp. 91–118, 2010.

[12] A. Pourshahid, D. Amyot, A. Shamsaei, G. Mussbacher,
and M. Weiss, “A systematic review and assessment of
aspect-oriented methods applied to business process adap-
tation,” JSW, vol. 7, no. 8, pp. 1816–1826, 2012.

[13] B. A. Kitchenham, “Procedures for performing systematic
reviews,” in Technical Report TR/SE-0401, Keele Uni-
versity, and Technical Report 0400011T.1, National ICT
Australia, 2004.

[14] M. M. Syeed, “http://reviewossevolution.weebly.com/,”
2013.

[15] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and
M. Khalil, “Lessons from applying the systematic literature
review process within the software engineering domain,”
JSS, vol. 80, no. 4, pp. 571–583, 2007.

[16] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and
H. Sharp, “Motivation in software engineering: A system-
atic literature review,”IST, vol. 50, no. 9-10, pp. 860–878,
2008.

[17] T. Dyba and T. Dingsyr, “Empirical studies of agile soft-
ware development: A systematic review,”IST, vol. 50, no.
9-10, pp. 833–859, 2008.

[18] D. Atkins, T. Ball, T. Graves, and A. Mockus, “Using
version control data to evaluate the impact of software
tools,” in ICSE, 1999, p. 324333.

[19] C. B. K. Beecher, A. Capiluppi, “Identifying exogenous
drivers and evolutionary stages in floss projects,”The
Journal of Systems and Software, vol. 82, no. 5, pp. 739–
750, 2009.

[20] J. Cook, L. Votta, and A. Wolf, “Cost-effective analysis
of in-place software processes,”TSE, vol. 24, no. 8, p.
650663, 1998.

[21] D. Perry, A. Porter, and L. Votta, “Empirical studies
of software engineering: A roadmap,” inThe Future of
Software Engineering, Finkelstein A (ed.). ACM Press:
New York NY, 2000.

[22] J. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. Amor,
and D. German, “Macro-level software evolution: a case
study of a large software compilation,”Journal Empirical
Software Engineering, vol. 14, no. 3, pp. 262–285, 2009.

[23] M. Godfrey and Q. Tu, “Evolution in open source software:
A case study,” inICSM, 2000, pp. 131–142.

[24] A. Capiluppi, J. Gonzlez-Barahona, I. Herraiz, and G. Rob-
les, “Adapting the staged model for software evolution to
free/libre/open source software,” inIWPSE ’07, 2007, pp.
79–82.

[25] D. Darcy, S. Daniel, and K. Stewart, “Exploring com-
plexity in open source software: Evolutionary patterns,
antecedents, and outcomes,” inHICSS ’10, 2010, pp. 1–11.

[26] G. Robles, J. M. Gonzalez-Barahona, M. Michlmayr, and
J. Amor, “Mining large software compilations over time:
Another perspective of software evolution,” inMSR ’06,
2006, pp. 3–9.

[27] K. Stefan, “Software evolution in open source pro-
jectsa large-scale investigation,”Journal of Software Main-
tainance and Evolution: Research and Practice, vol. 19,
pp. 361–382, 2007.

[28] T. Mens, J. Fernndez-Ramil, and S. Degrandsart, “The evo-
lution of eclipse,” inInternational Conference on Software
Maintenance (ICSM), 2008, pp. 386–395.

[29] A. Bauer and M. Pizka, “The contribution of free software
to software evolution,” inSixth International Workshop on
Principles of Software Evolution, 2003, pp. 170–179.

[30] A. Capiluppi, “Models for the evolution of os projects,” in
ICSM ’03, 2003, pp. 65–74.

[31] S. McIntosh, B. Adams, and A. Hassan, “The evolution of
ant build systems,” inMSR’10, 2010, pp. 42–51.

[32] Y. Lee, J. Yang, and K. Chang, “Metrics and evolution in
open source software,” inQSIC’07, 2007, pp. 191–197.

[33] G. Xie, J. Chen, and I. Neamtiu, “Towards a better
understanding of software evolution: An empirical study
on open source software,” inICSM’09, 2009, pp. 51–60.

[34] S. Ali and O. Maqbool, “Monitoring software evolution
using multiple types of changes,” inICET’09, 2009, pp.
410–415.

[35] A. Capiluppi and J. Ramil, “Studying the evolution of open
source systems at different levels of granularity: Two case
studies,” inIWPSE, 2004, pp. 113–118.

[36] M. M. Simmons, P. Vercellone-Smith, and P. Laplante,
“Understanding open source software through software
archeology: The case of nethack,” in30th SEW, 2006, pp.
47–58.

[37] K. Stewart, D. Darcy, and S. Daniel, “Observations on
patterns of development in open source software projects,”
in 5th WOSSE, 2005, pp. 1–5.

[38] A. Capiluppi and J. Ramil, “Studying the evolution of open
source systems at different levels of granularity: Two case
studies,” inIWPSE’04, 2004, pp. 113–118.

[39] M. Simmons, P. Vercellone-Smith, and P. Laplante, “Un-
derstanding open source software through software arche-
ology: The case of nethack,” inSEW ’06, 2006, pp. 47–58.

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2827

© 2013 ACADEMY PUBLISHER

[40] A. Capiluppi and T. Knowles, “Software engineering in
practice: Design and architectures of floss systems,” in
Open Source Ecosystems: Diverse Communities Interact-
ing, IFIP Advances in Information and Communication
Technology, vol. 299/2009, 2009, pp. 34–46.

[41] A. Capiluppi and J. Ramil, “Change rate and complexity
in software evolutions,” inWESS’04, 2004.

[42] R. Milev, S. Muegge, and M. Weiss, “Design evolution
of an open source project using an improved modularity
metric,” in OSS’09, 2009, pp. 20–33.

[43] W. Li and R. Shatnawi, “An empirical study of the bad
smells and class error probability in the post-release object-
oriented system evolution,”Journal of Systems and Soft-
ware, vol. 80, no. 7, pp. 1120–1128, 2007.

[44] K. Hayashi, K. Kishida, K. Nakakoji, Y. Nishinaka,
B. Reeves, A. Takasbima, and Y. Yamamoto, “A case study
of the evolution of jun: an object-oriented open-source 3d
multimedia library,” in ICSE’01, 2001, pp. 524–533.

[45] B. Dagenais and M. Robillard, “Creating and evolving
developer documentation: understanding the decisions of
open source contributors,” inFSE’10, 2010, pp. 127–136.

[46] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou,
and A. Hassan, “An empirical study on inconsistent
changes to code clones at the release level,” inWCRE ’09,
2009, pp. 85–94.

[47] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto, “Is duplicate
code more frequently modified than non-duplicate code in
software evolution?: An empirical study on open source
software,” in IWPSE-EVOL ’10, 2010, pp. 73–82.

[48] W. Jingwei, R. Holt, and A. Hassan, “Empirical evidence
for soc dynamics in software evolution,” inIEEE Interna-
tional Conference on Software Maintenance (ICSM 2007),
2007, pp. 244–254.

[49] I. Herraiz, J. Barahona, and G. Robles, “Determinism and
evolution,” in Proceedings of the 2008 international work-
ing conference on Mining software repositories (MSR’08),
2008, pp. 1–10.

[50] M. Weiss, G. Moroiu, and P. Zhao, “Evolution of open
source communities,”OSS, vol. 203, pp. 21–32, 2006.

[51] A. Capiluppi, P.Lago, and M. Morisio, “Evidences in the
evolution of os projects through changelog analysis,” in
Proceedings of the 3rd Workshop on Open Source Software
Engineering (ICSE03), 2003, pp. 19–24.

[52] A. mockus, R. Fielding, and J. herbsleb, “Two case stud-
ies of open source software development: Apache and
mozilla,” ACM Trans. Software Engineering and Method-
ology, vol. 11, no. 3, pp. 309–346, 2002.

[53] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and
Y. Ye, “Evolution patterns of open-source software systems
and communities,” inIWPSE, 2002, pp. 76–85.

[54] K. Ngamkajornwiwat, D. Zhang, A. Koru, L. Zhou, and
R. Nolker, “An exploratory study on the evolution of oss
developer communities,” inHICSS, 2008, p. 305.

[55] Q. Hong, S. Kim, S. Cheung, and C. Bird, “Understanding
a developer social network and its evolution,” in27th
ICSM, 2011, pp. 323–332.

[56] Q. Hong, S. Kim, S. Cheung, and C.Bird, “Understanding a
developer social network and its evolution,” in27th ICSM,
2011, pp. 323–332.

[57] R. Chang, S. Yang, J. Moon, W. Oh, and A. Pinsonneault,
“A social capital perspective of participant contributionin
open source communities: The case of linux,” inHICSS,
2011, pp. 1–10.

[58] M. Weiss, G. Moroiu, and P. Zhao, “Evolution of open
source communities,”OSS, vol. 203, pp. 21–32, 2006.

[59] A. Capiluppi, P. Lago, and M. Morisio, “Characteristics of
open source projects,” inCSMR ’03, 2003, p. 317.

[60] F. Hunt and P. Johnson, “On the pareto distribution of
sourceforge projects,” inProceedings of Open Source
Software Development workshop, 2002, pp. 122–129.

[61] Y. Yunwen and K. Kishida, “Toward an understanding of
the motivation open source software developers,” inICSE
’03, 2003, pp. 419–429.

[62] S. Shah, “Motivation, governance, and the viability of
hybrid forms in open source software development,” in
Management Science, vol. 52, pp. 1000–1014.

[63] J. Gutsche, “The evolution of open source communities,”
Topics in Economic Analysis and Policy, vol. 5, no. 1,
2005.

[64] G. Robles, J. M. Gonzalez-Barahona, and M. Michlmayr,
“Evolution of volunteer participation in libre software
projects: Evidence from debian,” in1st OSS, 2005, pp.
100–107.

[65] Y. Wang, D. Guo, and H. Shi, “Measuring the evolution
of open source software with their communities,”ACM
SIGSOFT Software Engineering Notes, vol. 32, no. 6, pp.
1–7, 2007.

[66] M. Syeed, T. Kilamo, I. Hammouda, and T. Systa, “Open
source prediction methods: a systematic literature review,”
in Proceedings of 8th. OSS, Springer, 2012.

[67] S. Bendifallah and W. Scacchi, “Work structures and shifts:
An empirical analysis of software specification teamwork,”
in 11th ICSE, 1989, p. 260270.

[68] N. Nagappan, B. Murphy, and V. Basili, “The influence of
organizational structure on software quality: an empirical
case study,” inICSE, 2008, p. 521530.

[69] T. Browning, “Applying the design structure matrix to
system decomposition and integration problems: a review
and new directions,” inIEEE Transactions on Engineering
Management, vol. 43, no. 3, 2001, p. 292306.

[70] H. Breivold, M. Chauhan, and M. Babar, “A systematic
review of studies of open source software evolution,” in
APSEC, 2010, pp. 356–365.

M.M. Mahbubul Syeed received his B.Sc degree in Computer
Science and Information Technology from Islamic University
of Technology, Bangladesh in September, 2002 and his M.Sc
degree in Information Technology from Tampere University of
Technology, Finland in April, 2010. He is currently working
towards his Ph.D. degree and working as a researcher in the
same university. His current research interest includes study of
Open Source Software ecosystem.

Imed Hammouda is currently an associate professor at Tam-
pere University of Technology (TUT) where he is heading the
international masters programme at the Department of Pervasive
Computing. He got his Ph.D. in software engineering from TUT
in 2005. Dr. Hammouda’s research interests include open source
software, software architecture, software development methods
and tools, and variability management. He is leading TUTOpen
- TUT research group on open source software. He has been
the principal investigator of several research projects onvarious
open initiatives. Dr. Hammouda’s publication record includes
over fifty journal and conference papers.

Tarja Systä is a professor at Tampere University of Technol-
ogy, of Pervasive Computing Department. Her current research
interests include software maintenance and analysis, software
architectures, model-driven software development, and develop-
ment and management of service-oriented systems.

APPENDIX

2828 JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

Figure 8. Tools (OSS and Proprietary) used for evolution studies

Figure 9. OSS Projects analyzed for evolution studies

JOURNAL OF SOFTWARE, VOL. 8, NO. 11, NOVEMBER 2013 2829

© 2013 ACADEMY PUBLISHER

