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Abstract—A route planning method based on gradient-field 
quantum genetic algorithm model was presented in this 
paper. It introduces the gradient field of a grid map to 
quantum genetic algorithm model and uses quantum genetic 
algorithm (QGA) to optimize the cost function of route 
planning. By combining the quantum characteristics with 
the capabilities of the large diversity of the population, as 
well as fast convergence rate and high global searching, the 
optimization of route was guided and realized in our method 
by using the genetic operators with the essential 
characteristics of quantum and the gradient information of 
a grid map. Experimental results demonstrated that our 
method further effectively improves the quick convergence 
and capability of searching the optimal route. 
 
Index Terms—route planning, gradient field, QGA 
 

I.  INTRODUCTION 

Route planning has been extensively studied in detail 
within architectures, military and commercial use in the 
last decade. Route planning problem is essential to design 
a trajectory to optimize one route for avoiding the 
obstacles between a starting point and an ending point 
under several given constraint conditions. In the route 
planning, deterministic algorithm [1] and stochastic 
algorithm [2] are two chief kinds of route optimization 
algorithms. With the increase of computational 
complexity and controlled time-consuming requirements, 
several stochastic approaches, which have the capabilities 
of avoiding the uncertainty of computational time and 
giving a feasible route, for example genetic algorithm 
(GA) [3- 5], have been developed and widely used in the 
area of route planning. 

Based on the particular physical characteristics of 
quantum such as quantum superposition and quantum 
entanglement, the quantum computing proposed, as a new 

computational model, is essentially different from 
traditional computational models. Moreover, it has 
altered our approach to further improve traditional signal 
and image processing techniques by introducing quantum 
computing to signal and image processing fields [6-8]. 
Narayanan [9] first proposed QGAby integrating 
traditional genetic algorithms based on quantum 
computational model. Han [10] further developedQGA 
by introducing quantum bit and quantum superposition in 
quantum characteristics.. Even if QGA has a similar 
process with traditional GA in implementing evolution, 
there are differences in the expressions in realizing 
chromosome coding using quantum bit and evolution 
mechanisms updating chromosome by the genetic 
operators with the essential characteristics of quantum. 
Therefore, compared with traditional GA, QGA has the 
strong capabilities of large diversity of population, quick 
convergence, and high global search. The artificial 
potential field method proposed by Khatib [11] to solve 
robot route planning problem has been extensively 
studied. However, there are some limitations, such as 
local minima and the difficulty of goal unreachable in 
route planning. 

In this paper, we proposed a route planning method 
based on gradient-field quantum genetic algorithm model 
(GQGA). By introducing the gradient field of a grid map 
to QGA model and using quantum genetic algorithm to 
optimize the cost function of route planning, the proposed 
method guides the optimization of route by using the 
genetic operators with the essential characteristics of 
quantum and the gradient information of a grid map. By 
combining the quantum characteristics with the 
capabilities of the large diversity of the population, fast 
convergence rate and high global searching, our method 
further effectively improves quick convergence and the 
capability of searching the optimal route. Compared with 
traditional GA, experimental results demonstrated its 
potential and feasibility. 

The remainder of this paper is organized as follows. 
Firstly, we introduce the fundamental concept of QGA in 
Section 2. Secondly, the proposed gradient-field quantum 
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genetic algorithm model is described in Section 3. Then, 
Section 4 shows the experimental results with different 
parameters in our method and comparison with traditional 
QGA and GA. Finally, we give our conclusion in Section 
5. 

II.  QGA 

Based on the concepts of a quantum-bit and 
superposition of states of quantum mechanics, QGA 
encodes a chromosome using the quantum-bit with the 
superposition state, so that the chromosome can be 
expressed as the superposition of several states. Even if 
GQA is a probabilistic algorithm which is similar to a 
genetic algorithm, the potential of the large diversity of 
the population is gained using the novel quantum-bit 
representation. 

A.  Representation 
Bit is a basic concept of classical information theory. 

In quantum system, the smallest unit of information 
stored in a two-state quantum computer is called a 
quantum-bit (qubit). Compared with the classical bit, a 
qubit may be in the ‘0’ or ‘1’ state, or in any 
superposition of the two. The state of a qubit Ψ can be 
represented as the following linear superposition between 
‘0’ and ‘1’ state, namely: 

10 βα +=Ψ                                  (1) 
Where, 0 and1  represent the classical ‘0’ and ‘1’ state 

respectively. βα , are two complex numbers that specify 
the probability amplitudes of the corresponding states. 

2|| α and 2|| β  gives the probability that the qubit will be 
found in the ‘0’ and ‘1’ state respectively, and they 
satisfy 1|||| 22 =+ βα . 

Based on quantum bit representation, a gene can be 
described by one or more quantum bits. Furthermore, a 
chromosome C consists of genes with quantum-bit 
encoding can be described as: 
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Where, n is the number of quantum bits, 
and 1|||| 22 =+ ii βα , ni ,,2,1= . If there is a system 
with n  quantum-bits, the system can represent n2 states at 
the same time. Therefore, because of the representation 
linear superposition of qubit states probabilistically, QGA 
has a better characteristic of diversity than classical 
approaches. As the qubit probability approaches to 1 or 0, 
the chromosome converges to a single state and the 
property of diversity disappears gradually, and then the 
convergence will be also obtained with the qubit 
representation. 

B.  Quantum Gates 
As can be seen from the qubit state representation, a 

chromosome can be encoded as the superposition of 
several states. A quantum gate is defined as a variation 
operator, by which operation the qubit is updated to 

satisfy the normalization condition 1|||| 22 =+ βα . 
Therefore, with acting on quantum superposition states 
by a quantum gate, the probability amplitudes of all 
ground states can be changed, so that the corresponding 
chromosomes will be updated. In quantum genetic 
algorithms, quantum rotation gate will be often used to 
update the chromosome. The following quantum rotation 
gate )(θU is used in this paper: 
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Where, θ is the rotation angle. The corresponding 
update operation of qubit is described as: 
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Where, T
ii ],[ βα is i-th qubit in the chromosome. iθ is 

a rotation angle of each qubit toward either 0 or 1 state 
depending on its sign. Its value is determined by the 
adjustment strategy. Its size determines the speed of 
convergence, and its sign determines the direction of 
convergence. 

III.  PROPOSED METHOD 

A.  Gradient-field of Grid Map 
The edge map derived from an image has the property 

that it is larger near the image edges, so the gradient of 
the edge map has vectors pointing toward the edges, 
which are normal to the edges at the edges. And the edge 
map is nearly zero in homogeneous regions, where an 
image is nearly constant. Based on the general properties 
of edge maps, we can increase the cost value near the 
obstacle to obtain an optimal route. However, since these 
gradient vectors in the edge map generally have large 
magnitudes only in the immediate vicinity of the edges, 
the limitation of the influence range of the gradient 
vectors is leaded. 

A gradient vector flow (GVF) method [12] proposed to 
enlarge the influence range was used in the paper, which 
will be helpful to obtain an optimal route. For a grid 
map ),( yxI , the gradient vectors field 

)],(),,([),( yxvyxuyxV = defined as any gray-level edge 
map can be obtained from its edge map ),( yxf by 
minimizing the following energy equation: 

dxdyfVfvvuu yxyx
222222 )( ∇−∇++++= ∫∫με    (5) 

Using the calculus of variations, it can be shown that 
the GVF field can be found by solving the following 
Euler equations: 
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Where, 2∇ is the Laplacian operator. By solving the 
above (6) numerically, the improved gradient vectors 
field ),( yxV will be obtained to enlarge the influence 
range of the gradient vectors. Based on the gradient 
vectors field of a grid map in the paper, an optimal route 
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can be evaluated to relative central positions among 
obstacles by increasing the cost value near the obstacle. 

B.  Route Encoding and Its Population Initialization 
A route consists of several nodes including the 

corresponding location information in this paper, while a 
population is defined as a set composed of routes. We 
define an initial population set P as },,,{ 21 Nppp , 
where N is the number of routes kp included in the 
population. A gene is considered as the location of each 
node in a route, while each route corresponds to a 
chromosome in a population. According to (2), we use 
qubit to encode the route kp , namely  
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Where, m and n correspond to the number of genes in a 
route and qubit in each gene respectively, 
and 1|||| 2

,
2

, =+ jiji βα ( mi ,,2,1= , nj ,,2,1= ). 
Based on the theory of quantum computing, qubit will 

only collapse to a single state when quantum state is 
observed and measured every time. Then the 
probability 2|| α or 2|| β of the qubit will determine its 
observation value expressed by a single state. The 
measurement rule of observation value is defined as: 
for T

jiji ],[ ,, βα , if 2
,

2
, |||| jiji βα < , the observation value is 1; 

otherwise it is 0.  
In this paper, a binary-encoded form was used to 

describe the location information of each node. Therefore, 
the correspondence between node locations and quantum 
bits can be built using above measurement rule. In 
addition, due to the gene described by qubit is multi-
states, the state of each chromosome is the superposition 
of all possible states. Therefore, this will also ensure 
QGA to have population diversity. 

C.  Estimate of Cost Function 
In genetic algorithm, the cost function is considered as 

an effective standard to measure an individual in a 
population. Usually, the smaller its cost value, the better 
an individual will be; otherwise, the individual is the 
worse. According to their cost value, the individuals are 
chosen to ensure that the better individuals can be 
selected in the next generation. Therefore, the cost 
function should correctly reflect the constraint conditions 
and requirements in route planning. 

For the sake of simplicity, only obstacle constraint, 
distance constraint and gradient-field constraint of grid 
map are considered in this paper. The cost function J , 
consists in the obstacle cost thf , the distance cost df and 
gradient-field cost gf , is treated as the estimate index and 
described as: 

gdth fffJ 321 ωωω ++=                     (8) 

Where, )3,2,1( =iiω is the weight coefficient. gf is 
defined as the sum of gradient-field magnitude on all 
node location in an route. Therefore, the smaller the value 
of a cost function J , the better the corresponding evolved 
route will be. 

D.  Quantum crossover 
In traditional GA, the crossover operator is generally 

invalid when a crossover operator is generally 
implemented between two chosen individuals which are 
same in a population. Based on quantum coherence 
property, quantum interference crossover [9] is treated as 
quantum crossover operator in this paper. Therefore, all 
chromosomes in the population will be involved in 
quantum crossover operation, and new chromosomes are 
created by rearranging chromosomes along the diagonal 
in the procedure. For example, when the size of 
population and chromosome are chosen as 4 and 5 
respectively (see Table I), A1-B2-C3-D4-A5 is a new 
chromosome after quantum crossover operation. 

As can be seen, quantum crossover operator can avoid 

the problems that traditional crossover operators are 
invalid in the evolution when two routes are same. 
Furthermore, route information in the population is made 
full use as much as possible. Therefore, premature 
convergence is overcome. This also improves the 
efficiency of crossover operators the searching speed of 
the algorithm. 

E.  Quantum gates strategy 
Quantum gate mutation operator described by quantum 

gates strategy in Eq.(3) is used as the mutation operator in 
this paper. According to the task of route planning, we 
use the rotation-angle adjust strategy shown in Table II, 
in which a gene is randomly selected in the current route 
and its observation value from its qubit T

jiji ],[ ,, βα is 
obtained. Then compared the cost values of the current 
route p with its current optimal route b , the angle and 
direction of rotation are determined further and the 
current route is finally updated. 

In Table II, ji,b and ji,g represent observation values of 
the j-th qubit at the i-th gene in the current optimal 
route b and current route p respectively. The rotation 
angle is jijijiji sign ,,,, ),( θβαθ ⋅=  where ),( ,, jijisign βα  and 

ji,θ  represent the direction and the angle of rotation 

respectively.  

TABLE I.   
QUANTUM INTERFERENCE CROSSOVER 

No. Chromosome 
1 A1 A2 A3 A4 A5 
2 B1 B2 B3 B4 B5 
3 C1 C2 C3 C4 C5 
4 D1 D2 D3 D4 D5 
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There is a direct connection between the size of 
rotation angle and the algorithm convergence. If the angle 
is too large, premature convergence can easily take place 
and affects accuracy of convergence. Otherwise, if the 
angle is too small, the speed of convergence will be 
significantly influenced. The dynamic adjustment 
strategy about rotation angle has many advantages over 
the stationary one.  Therefore, the size of rotation angle is 
randomly selected in the range of )1.0,005.0( ππ in this paper. 

IV.  EXPERIMENTS AND ANALYSIS 

All simulation experiments in this paper were 
completed in PC platform running Windows XP with 
Inter Core2 Duo E5300 2.60GHz CPU and 1G memory. 
A 512512×  digital grid map shown in Fig. 1 was used in 
our experiments, in which the dark areas are defined as 
the simulated obstacles. The value of obstacle cost thf is 
chosen as 5000, and the weight coefficient 1ω , 2ω and 

3ω are chosen as 0.3,0.4and 0.3 respectively. We define 
the reciprocal of a cost function J as the fitness 
function F , namely JF /1= . In addition, ‘F_Route’ and 
‘A_J’ represent the average number of iterations and the 
average optimal cost value respectively, when the first 
feasible route is found in each evolution. 

A.  Chosen different parameters in GQGA 
The method by choosing different numbers of gene 

and chromosome in a population is firstly implemented in 
our experiments. The two points chosen as the start-point 
and end-point of each route correspond to the point S and 
point T in Fig. 3. According to experience value 
determined by a large number of test, the number of 
experiments and iteration each condition is 20 and 300 
respectively. The statistical average results from all 
obtained data each condition is shown in Table III.  

As shown in Table III, we can obtain a feasible route 
when the smaller size of population is chosen. 
Furthermore, when the number of gene is same, 
‘F_Route’ not only substantially reduces with increasing 
the size of population, but ‘A_J’ gradually decreases and 
converges. Based on the large diversity of the population 
derived from the introduction of gradient-field and 
quantum operators, it is demonstrated that the proposed 

method has the stronger capabilities of the searching and 
convergence  

In addition, when the size of population is same, 
‘F_Route’, describing the average number of iterations, in 
which first feasible route is found, firstly decrease and 
then increase with increasing the number of iterations, 
and then the average optimal cost value ‘A_J’ increase. 
These are caused by the location of the selected start-
point and end-point. Moreover, the excessive nodes 
(namely, the number of genes) will increase the risk of 
failure in route planning. 

B.  Results comparison with traditional QGA 
1) Convergence capabilities 
When the gene number is 10 in Table III, Fig. 1(a)-(d) 

show the fitness curves for routes obtained from different 
chromosome number in a population (namely, NumC is 
10, 20, 50 and 100) in our method, while Fig. 1(e) shows 
the fitness curves when NumC is 10 in traditional QGA. 
Every fitness curve in 20 experiments are represented as 
the dashed lines in Fig. 1(a)-(e), while the average fitness 
curve from the 20 experiments are represented as the real 
lines. The average fitness curves are represented in Fig. 
1(f) when the number of chromosome is chosen as 10, 50 
and 100 respectively. 

As can be seen in Fig. 1(a)-(d), with increasing the 
number of chromosome in a population, the intensity of 
fitness curves increases gradually, and the number of 
iteration finding first feasible route is substantially 
reduced. Compared with traditional QGA, fitness curves 
shown in Fig. 1(d)-(e) in the proposed GQGA has more 
intensity with increasing the number of iterations, and 
first feasible route is found earlier. The difference of the 
fitness function value F in Fig. 1(d)-(e) is caused by using 
different cost function (only the obstacle cost and the 
distance cost are used, and its corresponding weight 
coefficient is 0.5). Therefore, it further demonstrates our 
method has stronger convergence capabilities. 

 
 
 
 
 
 
 

TABLE II 
ADJUSTING STRATEGY ABOUT A ROTATION ANGLE 

gi,j bi,j J(p)>J(b) ||θi,j|| 
sign(αi,j,βi,j) 

αi,jβi,j>0 αi,jβi,j<0 αi,j=0 βi,j=0

0 0 True/False 0 0 0 0 0 

1 0 True ||θi,j|| -1 +1 ± 1 0 

1 0 False 0 0 0 0 0 

0 1 True ||θi,j|| +1 -1 0 ± 1

0 1 False 0 0 0 0 0 

1 1 True/False 0 0 0 0 0 

 

TABLE III 
RESULTS COMPARISON AMONG DIFFERENT PARAMETERS IN GQGA 

Gene 
number

Proformance 
index 

Population number 

6 10 20 50 

6 
F_Route 99.1 74.4 41.5 15.4 

A_J 180.6 169.6 168.4 165.8 

10 
F_Route 117.1 56.4 27.5 11.7 

A_J 183.8 180.8 171.2 167.6 

20 
F_Route 189.7 132.7 43.5 23.4 

A_J 368.8 256.4 235.3 203.0 
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------ represent every fitness curve; —— represent average fitness curve

Figure 1. Fitness curves from different parameters (The gene number is 
10). 
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    (b) the gene number is 10            (c) the gene number is 20 

Figure 2. Results comparison about F_Route in Table 4 between GQGA
and QGA. 

      
(a)QGA (NumC=100, NumG=10)   (b) GQGA (NumC=50, NumG=10)

Figure 2.  Results comparison about the obtained optimal route 
between GQGA and QGA. 

2) The number of iteration finding first feasible route 
Comparison test for the number of iteration finding 

first feasible route ‘F_Route’ between GQGA and QGA 
was implemented in our experiments by choosing 
different number of gene and chromosome in a 
population (Shown in Table IV). ‘Inc(%)’ represents the 
growth rate of ‘F_Route’, namely 

QGAPathFGQGAPathFQGAPathFInc −−−−−− ×−= /%100)( , 
when selecting the same number of gene and 
chromosome in GQGA and QGA. ‘A_Inc(%)’ represents 
the average value of the growth rate ‘Inc(%)’ when 
selecting the different number of gene in the condition of 
same chromosome. Furthermore, Fig. 2 shows the 
comparison for the number of iteration finding first 
feasible route between GQGA and QGA. As can be seen 
in Table IV and Fig. 2, the proposed GQGA is better than 
QGA, and the number of iteration finding first feasible 
route ‘F_Route’ has an average increase of nearly 25%. 
Therefore, it further demonstrates our method has the 
stronger searching capabilities. 

3) The obtained optimal route 
When the gene number (defined as NumG) is 10, the 

optimal route obtained from different chromosome 
number in a population (namely, 50 and 100) in our 
method and QGA respectively are showed in Fig. 3. As 
can be seen in Fig. 3, the smaller chromosome number in 
our method has a similar route with the larger 
chromosome number in QGA. Moreover, the obtained 
optimal route in our method is further away from the 
obstacles by introducing the gradient field. This further 
illustrates that a more feasible route can be obtained in 
our method, and can greatly reduce the computational 
consumption. 

C.  Results Comparison with Traditional GA 

Comparison experiments between GQGA and QGA 
was implemented in our experiments. Here, the number 
of gene is 10; the start-point and end-point of each route 
are chosen as the point S and point T in Fig. 3, and the 
number of experiments and iteration each condition is 20 
and 300 respectively. The statistical average results from 
different methods were shown in Table V. ‘Time’ 
represents the time-consuming of every generation in 
iterative process. 

As can be seen in Table V, compared with traditional 
QGA and GA, the number of iteration finding first 
feasible route ‘F_Route’ in the proposed GQGA is better 
than traditional QGA when chromosome number is 20, 
and is close to the result in GA when chromosome 
number is 50. Furthermore, the obtained ‘F_Route’ in the 
proposed GQGA is far superior to the result in GA when 
chromosome number is 50, while the two method have a 

TABLE IV 
RESULTS COMPARISON AMONG DIFFERENT PARAMETERS BETWEEN 

GQGA AND QGA 

Gene 
number 

Proformance 
index 

Population number 
6 10 20 50 

6 
QGA 128.8 87.9 65.2 23.7 

GQGA 99.1 74.4 41.5 15.4 
Inc(%) 23.1 15.4 36.3 35.0 

10 
QGA 118.5 102.4 32.7 20.2 

GQGA 117.1 56.4 27.5 11.7 
Inc(%) 1.2 44.9 15.9 42.1 

20 
QGA 195.0 141.8 78.3 29.8 

GQGA 189.7 132.7 43.5 23.4 
Inc (%) 2.7 6.4 44.4 21.5 

A_Inc (%) 9.0 22.2 32.2 32.9 
 

JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2515

© 2013 ACADEMY PUBLISHER



similar time-consuming. Therefore, it further 
demonstrates the smaller size of population in our method 
has a similar result with the larger size of population in 
traditional QGA and GA, and our method has the 
stronger capabilities of searching convergence. 

V.  CONCLUSIONS 

By introducing the gradient field of a grid map to QGA 
model and using QGA to optimize the cost function of 
route planning, a route planning method based on GQGA 
model is presented in this paper. Based on quantum 
characteristics with the capabilities of the large diversity 
of the population, fast convergence rate and high global 
searching, the proposed method guides and realizes the 
optimization of route by using the genetic operators with 
the essential characteristics of quantum and the 
gradient information of a grid map, in which quick 
convergence and the capability of searching the optimal 
route are further improved effectively. Experimental 
results demonstrate that our method has important 
reference value in route planning. 
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TABLE V 
RESULTS COMPARISON AMONG GA, QGA AND GQGA 

 GQGA QGA GA 
NumC 10 20 50 10 20 50 

F_Route 56.4 27.5 11.7 102.4 32.7 18.2 
Time 0.19 0.33 0.75 0.15 0.28 0.73 
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