
A Co
R

Guang

Guang

Abstract—Mu
resource sha
resources acr
manage the
should know
strategies. Pe
predict the im
become more
the model
configuration
build the conf
we firstly dec
can be instan
these models
holistic perfo
performance
results derive
application d
the potential

Index Ter
Optimization

Multi-tena
models of cl
this applicat
(application)
reduce the
tenant. As s
tenancy depl
machines (V
Based), and t
Based). VM-
each tenant,
method alloc
Google’s Ap
tenant applic
and Salesforc

Compare w
whole platfo

onfigu
Resou

Dong Electric
School of In

Dong Electric

ulti-tenancy ap
aring approac
ross a large po

resources fai
w the impact
erformance mo
mpacts in adv
e difficult than
manually. In

n driven mode
figurations’ pe

couple the imp
ced with the r
can be merg

ormance mode
under differe

ed from testing
deployed on a
of this approac

rms—Configur
, Multi-tenant

I. INT

ancy is one
loud computin
tion model i
 share the sa
operation an
how in figur
loyment types

VM-Based), th
the method ba
-Based metho

such as the
cates one pro
pp Engine [3
cations in one
ce [5].
with other typ
orm except t

uration
urces O

c Power Desig
nformation Sc

c Power Desig

pplication is on
ches which e
ol of users. A
irly among te
ts of the re
odel has the na
vance. Howeve
n ever before,
n this paper
eling approac
erformance im

pacts into sever
untime configu
ed with the te

el, which can
ent configurat
g the approach
a widely-used
ch.

ration Dri

RODUCTION

of the imp
ng [1]. The m
is that it le

ame platform.
nd manageme
re 1, there ar
s: the method

he method bas
ased on share
d allocates on

e Amazon’s E
ocess for eac
3]. M-Based
middleware,

pes, M-Based
the data rela

n Driv
Optim

App
X

gn Institute, C
ience and Tec

Email:hu

Z
gn Institute, C

Email: che

ne of the impo
enables sharin
key requireme

enants is that
esource alloca
ative advantag
er, as the plat
it is hard to

r, we provid
h to automati

mpacts. In our w
ral templates w
urations. And
enant’s model
be used to pr
ions. Experim

h by using an o
platform illus

iven, Reso

ortant applic
most advantag
t lots of ten
 Therefore, it

ent cost for
e 3 typical m
d based on vi
sed on proces
ed middleware
ne VM instanc
EC2 [2]. P-B
ch tenant, suc

method shar
such as Intali

type can shar
ated to the u

ven M
mizatio

plicati

Xiang Huang
China Energy
chnology, Sun
uangxiang@ge

Zhi-gang Che
China Energy
enzhigang@g

ortant
ng of
ent to
t one
ations
ges to
tform
build
de a
tically
work,
which
then,

l as a
redict

mental
online
strate

urces

cation
ge of
nants
t can
each

multi-
irtual
ss (P-
e (M-
ce for
Based
ch as
re all
io [4]

re the
users,

there
reas
unde
phys
tena
doze
reso
occu
perf
phen
alloc

A
know
unde
Perf
(LQ
cost
perf
chal
tena
para
polic
runt
for i
very
appl
depl
task

In
mod
conf

Modelin
on of M
ions
g
Engineering G

n Yat-Sen Uni
edi.com.cn

en
Engineering G

gedi.com.cn

efore the ten
onably, and
erline platfor
sical machine

ants in one C
ens or hund

ources are shar
upied by CPU
formance wil
nomenon mak
cations.

Figure 1. Di

A key requirem
wledge of th
er different
formance mo

QN) [8] [9] m
ly decisions,

formance pred
llenges to buil
ancy applicati
ameters of th
cy and concu
ime. Thus it i
it directly. Se
y complex,
lications. To
loyment scen
.
n this paper,
deling approac
figurations. F

ng Ap
Multi-

Group Co. Ltd
versity, Guan

Group Co. Ltd

nants can sh
reduce the

rm [6]. For
, VM-based m

CPU, but M-b
dreds tenants
red by many te

U intensive ten
ll be dramat
kes it hard t

ifferent type of m

ment for perfo
he impacts o
kinds of co
dels [7], e.g

model, have n
thanks to th

dication ability
d such a perfo
ion. First, so
he platform,
rrency level,
is unable to b
cond, althoug
it can be
build the m

es is a time

, we propos
ch to analyze t
Firstly, the pl

pproac
-tenant

d., Guangdong
ngdong China

d., Guangdong

hare the res
cost introdu
example, o

method can o
based method
s [6]. Howe
tenants, resour
nants. Thus, o

atically deteri
to optimize t

multi-tenancy appl

ormance optim
of different c
onfigurations
g. Layer Qu
native advanta
heir relative
ty. But there
ormance mod
ome critical
such as reso
can only be d

build a perfor
gh the platform

reused amo
model for ea

consume an

se a configur
the impacts o
latform is de

h for
t

g, China

g, China

sources more
uced by the
on the same
only support 3
d can support
ever, as the
rces are easily
other tenants’
iorated. This
the resources

lication

mization is the
configurations

in advance.
eue Network
ages to make
low costs of
are two main
el for a multi-
configuration

ource sharing
determined at
rmance model
m’s impact is
ong different
ach particular
d error-prone

ration driven
f the platform
ecoupled into

e
e
e
3
t
e
y
’
s
s

e
s
.

k
e
f
n
-
n
g
t
l
s
t
r
e

n
m
o

2432 JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.10.2432-2438

several inter
parameters t
modeled as d
these aspect
status and w
model of
configuration
results. Our
effectiveness

Our main
aspect-orient
including the
into multi-te
works, our
dynamic m
according to
automatically
entire system
modeling a
evaluate our

The rest o
describes the
our modeling
approach thr
introduces r
summary.

I

Componen
most popul
applications,
on. A com
component ty
in a system
application s
provide the b

Figure 2

The comp
supported b
middleware
wrappers are
manage all th
a component
request the w
request to the

In this pap
several parts
part is mod
models are

racting aspec
that can only
dynamic elem
models can be

weaved with th
the entire

n can be foun
r experiment
s of our approa

n contribution
ted modeling
e shared resou
enancy applic

approach d
manipulation
o the resour
y building of
m. We also
a complex
approach.
f this paper is
e overview o
g approach in
rough a seri
related works

II. OVERVIEW

nt based dev
ar software
 such as JEE,

mponent-based
ypes, each of

m and is de
should be dep
basic service f

2. Component mo

ponent canno
by a wrappe

for a partic
e contained in
he resources w
t wants to us
wrapper, and
e middleware.
per, we decou
s according to
deled as aspe

woven with

ct models. T
be determin

ments in these
e instantiated
he tenant mod

system. Th
nd out based
tal results h
ach.

n is that we p
g approach
urces manage

cation. Compa
distinguishes

of configur
ce sharing p
the performa
present a so
multi-tenancy

 organized as
f our work. S

n detail. Sectio
ies of experi
s. The last

OF OUR APPR

velopment me
paradigm f

, .NET, CORB
d application
f which plays
scribed by a

ployed on a m
for runtime req

odel of multi-tena

ot run by its
er [11] (wh
cular compon
n the middlew
which the app
se a resource,
d the wrapper
.
uple the platfo
o the wrapper
ect model. B

the tenants’

The configur
ned at runtime
models. Secon
with their run

dels into a ho
hen the opt
d on the pred
have shown

propose a sta
for automati

ed by the plat
ared with exi
itself by: 1

ration param
policy and 2
ance models o
lid case stud
y application

follows. Sect
Section 3 pre
on 4 evaluate
iments. Sectio
section mak

ROACH

ethod [10] is
for multi-ten
BA, .COM, an
n is built

a specialized
an interface.
middleware, w
quirement.

ncy application

self, it shoul
hich is a m
nent). All of
ware. Middle
plication need
, it first send
r will forward

orm’s impacts
r’s type, and
Before the a
’ model, we

ration
e are
ndly,
ntime
olistic
timal

dicted
the

ateful
ically
tform
isting
) its

meters
2) its
of the
dy of
n to

tion 2
esents
s our
on 5

kes a

s the
nancy
nd so
upon

d role
The

which

ld be
micro
f the
eware
ded if
ds the
d the

s into
each

aspect
will

insta
the c
into
is m
aspe
does
our

T
Coll
Insta
to bu
reso
mod
Pred
optim

In
reso

A. B
A

advi
poin
platf
And
temp

Point

Advi

:Proce

:Proce

ance them and
configurations
the tenants’ m

means the poo
ect model is li
s the compon
approach is gi

Tenant
Models

Merge

Holistic
Model

a

Figure

The key point
lecting the con
antiating the
uild a resourc

ources pool wi
del of the
dicting the p
mize the resou

II

n this section
ources, and how

Basic Elements
An aspect mod
ice and temp
nts where th
form. Templa

d advices is u
plates.
tcut

ice

:Source

:Target

essor
{type:State

:Sourc

:Targe

essor

StatelessWrpper

Figure 4.

d generate a r
s. Therefore, a
model are col
ol is stand for
ike a wrapper
ent use the re
iven in figure

Aspec
Mode

(static mo

Instanc

Resour
Pool

affect

e 3. The overview

ts of our app
nfiguration pa
aspect models
es pool for th
ith the tenant
entire multi

performance w
urce allocation

I. MODELING

n, we introdu
w to merge th

s of Aspect Mo
del is compos
late. Pointcut
e application

ates describe a
used merge th

i
[$s_

[

getService
[$s_getService

{priority :@Target*

Template

less ;}

ce

t

1

r

Aspect model of

resource pool
all of the reso
llected from t
r the middlew
r which just d
esources. The
3.

ct
els
odel)

ce

rce
l

w of our approach

proach are a
arameters of th
s with their c

he platform. 3)
model into a

i-tenancy ap
with the LQ
n.

APPROACH

duce how to
hem with the t

Model
sed of three pa
t is used to
ns will inter
a wrapper’s i
the tenants m

invokeService
s_invokeService]

StatelessConta
(inf)

Aspect

getThread
[$s_getThread]

ThreadPool
($poolSize)

e]
InstancePool

(1)

{scope:container ;}

*;}

StatelessWr

1

1

f stateless compo

l according to
ources merged
the pool. That
ware, and the
describes how
e overview of

Configurations

h

s follows: 1)
he platform. 2
configurations
) Merging the
holistic LQN
plication. 4)

QN model to

instance the
enant model.

arts: pointcut,
find the join
act with the
internal logic.

model and the

ainer

t:Stateless

{scope:container ;}

{scope:tenant;
schedule :$schedule *;}

rpper

nent

o
d
t
e

w
f

)
2)
s
e

N
)
o

e

,
n
e
.
e

JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2433

© 2013 ACADEMY PUBLISHER

In Figure 4, we give an example of stateless
component. There are three middleware’s components in
the template: container, thread pool and instance pool. In
advice, the internal detail of the wrapper is ignored, and
only the position where the template should be weaved
with the application is given. We also give a configurable
profile extension for LQN to support the dynamic
attributes. The details of the profile are given in table 1.

TABLE 1.

CONFIGURABLE PROFILE EXTENSION
 attribute specification

symbol $ Declare a parameter
* An optional parameter

@ Reference to a specific

component

: Reference the name of the

matched component in advice

token

Scope The scope of the resource：
 Component: for each

component
 Tenant: for each tenant
 Container: for the whole

container
 Server: for the whole

server

Schedule Schedule strategies, FIFO

(default),HOL,PPR
Priority Priority of the request

Type The type of the component

Method The type of the method

supported by the component

For example in figure 4, the thread pool’s capacity

($poolSize) is a mandatory parameter, and the schedule
strategies ($schedule*) is an optional parameter, whose
priority is inherited from Target component (@Target*).
The thread pool would only share with the same tenant
(scope:tenant), which means different tenant would use
different thread pool. Therefore, the concurrency users of
each tenant can be controlled. For each service or
function of a component, there is a parameter for resource
demands, such as $s_invokeService in StatelessContainer.
There are several methods [12][13] to get this type of
parameter.

B. Basic Aspect Models
Besides stateless component, there are several other

typical component types, such as stateful component and
data access components. The details of these types’
wrapper are given as follows:

1) Stateful Component
Some component required to save the state of the

user’s operation. For example, in an online shopping
application, same component need to save which items
has already been choice by the user.

Figure 5 gives an example of stateful component’s
aspect model. There are three type of method: create,
remove and invoke. Method create and remove is used for
state management, and invoke is the other normal

methods. Other part of the aspect model is the same as
the stateless one.

Figure 5. Aspect model of stateful component

2) Data Set Component
Data set component manage the relations between the

persistent object and the storage data in database. Each
persistent object corresponds to one row in database. To
create or remove a persistent object means insert or delete
one row in database.

Figure 6. Aspect model of data set component

Aspect model of data set component is more complex

than other type of components. Besides the thread pool
and the critical section of the container, the data object is
used exclusively. That means one object could not be
used by two users concurrently. In template, we use
instance to model the persistent object. We assume that
the invocation probability of different objects is equal, so
the chance of each object is 1/$I, where $I is the number
of objects.

C. Instantiation Approach
The aspect models describe the resources usage of a

particular component, but the resources are shared by all
components. In order to make holistic model consist with
the runtime environment, we provide an instantiation
method.

Figure 7 gives the algorithm of instantiation. The main
point of our algorithm is that a new resource will be
created and put into pool while there is not such resource
existed in its scope, otherwise the resource in the pool.

 Algorithm InstanceAdvice

Input: information, advice, generic aspect model;
 Output: Advice.

1. for each task in generic aspect model do
2. get task’s scope
3. if the scope existed in information then
4. add new entry into the task
5. put the task into advice

2434 JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013

© 2013 ACADEMY PUBLISHER

6. else
7. copy the task
8. put it the information within the scope
9. instance the parameter of the task
10. add new entry into the new task
11. put the task into advice
12. end if
13. if the entry need a priority then
14. the priority is get form its scope
15. end if
16. end for
17. connect the new entry set according to the

generic aspect model
18. return advice

Figure 7. Instance algorithm

Figure 8 gives an example of instantiation. There are

two templates in this example. Template 1 use 4 kinds of
resources and template 2 use 3 kinds of resources.
Resources c and d are shared, so there are 5 kinds of
resources in the pool.

Figure 8. Example of instantiation

D. Weaving Approach
In our previous work, we can dynamically build an

application model [14]. The workload characteristics,
including the user scale and read/write ratio, can be
modeled into a service invocation matrix with probability.
In our approach, this application model should be woven
with the platform model through its entrances, which are
marked as jointcut. Because of the limited space, we will
not describe the modeling of the application model in
detail.

After the resource pool and the application model have
been instantiated and built, they should be woven into a
holistic LQN model. We use a third model, called
pointcut, and two morphisms, which identify the elements
of the application model that have to be kept, removed
and added to those of the application model.

Let the application model, the pointcut model and the
advice be three models, which are defined by a set of
elements. The resources presented in advice are gotten
from resource pool. Let pj and pa be two morphisms,
such as (1) pj is a bijective morphism from pointcut to

joinpoint, and (2) pa is an injective morphism from
pointcut to the resource pool, and it can be obtained by
the name of the elements. The morphisms pj is used to
locate the components affected by the advice.

These two morphisms can divided the model app and
advice into 5 sub sets:

 The set ࣬௞௘௘௣ representing the set of objects of app
which have to be kept. ࣬௞௘௘௣ ൌ ሼ݁ ∈ ᇱ݁∄|݌݌ܽ ,ݐݑܿݐ݊݅݋݌∋ ݂ሺ݁ᇱሻ ൌ ݁ሽ.

 The set ࣬௥௘௠௢௩௘ representing the set of objects of
app which have to be deleted. ࣬௥௘௠௢௩௘ ൌሼ݁ ∈ ᇱ݁∃|݌݌ܽ ∈ ,ݐݑܿݐ݊݅݋݌ ∄݁ᇱᇱ ∈ ,݁ܿ݅ݒ݀ܽ ݂ሺ݁ᇱሻ ൌ݁ ∧ ݃ሺ݁ᇱሻ ൌ ݁ᇱᇱሽ

 The set ࣬ௗ௨௣௟௜௖௔௧௘ௗ represents the set of elements of
the app which have to be replaced. 	࣬ௗ௨௣௟௜௖௔௧௘ௗ ൌ ሼ݁	 ∈ ᇱ݁∃|݌݌ܽ ∈ ,ݐݑܿݐ݊݅݋݌ ∃݁ᇱᇱ ∈ ,݁ܿ݅ݒ݀ܽ ݂ሺ݁ᇱሻ ൌ	 ݁′′ሽ.

 The set ࣬ௗ௨௣௟௜௖௔௧௘ௗ௔ௗ represents the set of elements of
the advice which describes the same objects as
presented in ࣬ௗ௨௣௟௜௖௔௧௘ௗ . ࣬ௗ௨௣௟௜௖௔௧௘ௗ௔ௗ ൌሼ݁ ∈ ᇱ݁∃|݁ܿ݅ݒ݀ܽ ∈ ,ݐݑܿݐ݊݅݋݌ ∃݁ᇱᇱ ∈ ,݌݌ܽ ݃ሺ݁ᇱሻ ൌ݁ ∧ ݂ሺ݁ᇱሻ ൌ ݁ᇱᇱሽ.

 The set ࣬௔ௗௗ represents the set of elements of the
advice which have to be added in app model. ࣬௔ௗௗ ൌ ሼ݁ ∈ ᇱ݁∄|݁ܿ݅ݒ݀ܽ ∈ ,ݐݑܿݐ݊݅݋݌ ݃ሺ݁ᇱሻ ൌ ݁ሽ.

The woven model is a set of elements and is denoted as
weaved model = ࣬୩ୣୣ୮⋃࣬ୢ୳୮୪୧ୡୟ୲ୣୢ⋃࣬ୟୢୢ. That means
we keep the set of elements that have not been affected
by the cache system, the set of elements which have been
affected but also existed in advice, and the set of objects
which have been added in the application model.

Figure 9. Weaving example

Figure 9 gives an example to illustrate the weaving

algorithm. In this example, every task and event are seen
as an element and the tenant model contains: {e1, e2, e3,
r1, r2, d1, d2, d3,Client, Server}, The pointcut model
contains: {e4,e5,r3,d4, Server}, And the advice model
contains:{e4, e5, e6, r4, r5, d4, d5, Server}. Using the
two morphisms we can get the following three sets: ࣬݇݁݁݌ ൌ ሼ݁3, ,2ݎ ݀1, ݀3, ሽݐ݈݊݁݅ܥ ݁ݒ݋݉݁ݎ࣬ , ൌ ሼ1ݎሽ ݀݁ݐ݈ܽܿ݅݌ݑ݀࣬ , ൌ ሼ݁1, ݁2, ݀2, ሽݎ݁ݒݎ݁ܵ ݀ܽ݀݁ݐ݈ܽܿ݅݌ݑ݀࣬ , ൌሼ݁4, ݁5, ݀4, : ሽݎ݁ݒݎ݁ܵ , ࣬ܽ݀݀ ൌ ሼ݁6, ,4ݎ ,5ݎ ݀5ሽ .
Therefore, the result of the weaving is ݐ݈ݑݏ݁ݎ	 ൌሼ݁1, ݁2, ݁3, ݁6, ,2ݎ ,4ݎ ,5ݎ ݀1, ݀2, ݀3, ݀5, ,ݐ݈݊݁݅ܥ .ሽݎ݁ݒݎ݁ܵ

JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2435

© 2013 ACADEMY PUBLISHER

IV. EVALUATION

In this paper, we choice an online project named
software trust-worthy cooperation application (Trustie)
[15] as our test bed. We deployed the projected in our
local environment. Trustie is a three tier system,
including a portal system deployment on Ngnix, Trustie
system deployment on Tomcat, and several database
servers and mail servers.

Figure 10. The workload for different tenants

There are more than 200 types of request in this system.

We can divide the requests into two categories: browsing
(stateless component) and processing (stateful
component). The browsing type of requests require little
computing resources for they only read the page from
cache, and processing require plenty of resources because
they need generate the rich client pages supported by
Eclipse RAP[16].

Workload is critical to the SLA [17]. In order to
evaluate our work, we use HP LoadRunner to generate 5
different type of workload to simulate 5 different types of
tenants as show in figure 10. Tenant 1 is a type of heavy
user, most of whose requests are processing request, and
other tenants are gently users, most of whose requests are
browsing request. And the workload of tenant 1 is
changed cyclically.

Figure 11 give the analyzed results of our approach.
The utilization of the total CPU is measured by monitor,
and the tenants’ utilization is analyzed by our approach. It
is clearly that while the load of tenant 1 is high, the most
of the resources is occupied by tenant 1, and other tenants
have little change to response the requests. That is
because while the load of tenant 1 is high, the total CPU
utilization is nearly 100%, and the job of tenant 1 is
longer than others, so the CPU will be occupied by tenant
1.

Figure 11. The resources consumption for different tenants

Past experience [18] show that the CPU utilization

should controlled fewer than 85% to let the system run

smoothly. Therefore, to make the resources allocation
fairly amount tenants, the heavy tenant’s consumption
need to be controlled. In our case, it means we should
reduce the concurrency users of tenant 1 to give other
tenants more change to run.

In order to find out the optimal concurrency of tenant 1,
we should first build the holistic model, and then set the
concurrency level for each tenant, finally we can find out
the best configuration by search the best configurations.

Figure 12. Searching for the optimal concurrency level

Figure 12 gives the total CPU utilization for different

configuration of tenant 1. It can be seen that while the
concurrency user is 52, the total CPU utilization is about
85%. Thus, we can set the concurrency level of tenant 1
as 50 for the analyzed results is little more optimize than
real one.

Figure 13. The CPU utilizations under concurrency control

Figure 13 gives the analyzed results under concurrency
control. It is clearly that the utilization of tenant 1 is
controlled, thus the total CPU utilization is around 85%,
and other tenants have more change to run. That means
our approach can predict the performance of multi-
tenancy application under different configurations, and
give valuable advices for performance optimization.

V. RELATED WORK

Traditional performance modeling approaches usually
focus on applications. In [19], Becker and Dencker
present an approach that automatically generates
performance prototypes based solely on a design model
with performance annotations. The main contribution of
their work is building the mapping of instances of the
Palladio Component Model (PCM) to prototype
implementations, but it does not analyze the performance
impacts of the underline platform, such as concurrency
policy, hence it is not enough to predict the performance
of connectors.

Woodside proposed an automated construction of LQN
models from the traces collected by the code added by a

2436 JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013

© 2013 ACADEMY PUBLISHER

tool integrated in the design environment [20]. In their
approaches, one needs to insert additional code into the
source code based on the design abstraction to collect
execution traces and resource cost from special test cases.
However, the approaches do not consider the impacts of
the middleware also.

There are some approaches emphasizing the influence
on the middleware on the performance of a component-
based system. Llado [21] created an EQN based model to
describe the performance of an EJB server. Cecchet [22]
provided a benchmark for Java Enterprise application
servers and found that the most influencing factor on the
performance was caused by the middleware. Denaro [23]
generated a prototype for a component-based application
of an EJB system, but did not provide model building or
tool support. Chen [24] gives a simple method to
determine optimal thread pool sizes for Java application
servers. However, these methods do not care about how
to build performance model automatically and change
with the environment.

Verdickt [25] introduces a model transformation
framework to include the performance overhead of
middleware layers into a component-based system model.
They use UML model, such as UML activity, deployment
and collaboration diagrams, to build the performance
models. Following MDA approaches, a model
transformation maps a platform independent model into a
platform specific model with a repository of middleware
models which are also built with UML models. In their
case study, the authors demonstrate how to include the
performance impacts of the CORBA Object Request
Broker (ORB) into the models. The main drawback of
this approach is that it depends on the designers’
experience of performance modeling, because the
application model should be provided by designers and
how the middleware affects the application model should
also be given by the designer.

Grassi [26] provides a connector refinement
transformation method which can transform the model
from high level UML 2.0 architecture models into the
KLAPER modeling language. KLAPER models can be
transformed into queuing networks or Markov chains for
performance analysis. This approach assumes the UML
stereotype can be labeled with component connectors.
For example, a connector could separate a static or
dynamic synchronous client/server interaction. The
authors suggest building a library of parametric connector
behaviors’ models for each of the stereotypes.

VI. CONCLUSION

Multi-tenancy application is one of the most important
techniques to share the platform. The performance of a
multi-tenancy application is largely affected by the
platform’s configurations. In this paper, we proposed a
configuration driven modeling approach for this type of
applications, which not only presents a feasible solution
for modeling configuration aware systems, but also gains
us valuable experiences of modeling the complex
platforms.

ACKNOWLEDGMENT

This work is partially supported by National Natural
Science Foundation of China (61272013).

REFERENCES

[1] Jiehui Ju, Jiyi Wu, Jianqing Fu, Zhijie Lin, Jianlin Zhang.
A Survey on Cloud Storage. Journal of Computers, Vol.6,
NO.8, 2011.

[2] Amazon EC2, URL: https://aws.amazon.com/ec2/
[3] Google App Engine, URL: https://appengine.google.com/
[4] Intalio, URL: http://www.intalio.com/
[5] Salesforce, URL: http://www.salesforce.com/
[6] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang and B. Gao. A

Framework for Native Multi-Tenancy Application
Development and Management. CEC/EEE, IEEE
Computer Society, pp. 551-558, 2007

[7] Chin-Ling Chen, Chia-Chun Yu. Performance Evaluation
of Active Queue Management Using A Hybrid Approach.
Journal of Computers, Vol.7, NO.5, 2012.

[8] M. Woodside, J. E. Neilson, D. C. Petriu, S. Majumdar.
The Stochastic Rendezvous Network Model for
Performance of Synchronous Client-Server-like
Distributed Software". In: IEEE Transactions on
Computers, vol.44, no.1, pp.20-34, 1995.

[9] Rolia, J. A. , Sevcik, K. C.. The Method of Layers". IEEE
Trans. On Software Engineering, vol.21, no.8, pp.689-700,
1995.

[10] Kung-Kiu Lau and Zheng Wang. Software Component
Models. IEEE Transactions on Software Engineering,
Vol.33, No.10, 2007.

[11] Ivica Crnkovic, Brahim Hnich, Torsten Jonsson.
Specification, Implementation, and Deployment of
Components. Communication of the ACM, Vol.45, No.10,
pp.35-40, 2002.

[12] Wei Wang, Xiang Huang, Xiulei Qin, Wenbo Zhang.
Application-Level CPU Consumption Estimation: Towards
Performance Isolation of Multi-tenancy Web Applications.
IEEE Fifth International Conference on Cloud Computing,
pp.439-446, 2012.

[13] Wei Wang, Xiang Huang, Yunkui Song. A Statistical
Approach for Estimating CPU Consumption in Shared
Java Middleware Server. IEEE 35th Annual Computer
Software and Applications Conference, 2011 Munich,
Germany, pp.541-546, 2011.

[14] Xiang Huang, Wei Wang. An Adaptive Performance
Modeling Approach to Performance Profiling of Multi-
Service Web Applications. In proceeding of Annual
Computer Software and Applications Conference, pp.4-13,
2011.

[15] Trustie forge, URL:
http://www.trustie.net/trustie/forge?language=en

[16] Eclipse RAP, URL: http://www.eclipse.org/rap/
[17] Congfeng Jiang, Jian Wan, Xindong You. Power Aware

Job Scheduling in Multi-Processor System with Service
Level Agreements Constraints. Journal of Computers, Vol.
5, No. 8, 2010.

[18] Steffen Becker. Coupled model transformations for QoS
enabled component-based software design, Ph. D. Thesis,
University of Oldenburg, Germany, January 2008.

[19] M. Woodside, C. Hrischuk, B. Selic, and S. Brayarov.
Automated Performance Modeling of Software Generated
by a Design Environment, Performance Evaluation, vol.
45, pp.107-123,2001.

[20] Curtis E. Hrischuk, Murray Woodside, Jerome A.
RoliaJerome, A. Rolia. Trace-Based Load Characterization

JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2437

© 2013 ACADEMY PUBLISHER

for Generating Performance Software Models. IEEE
Transactions on software engineering, vol. 25, no. 1, 1999.

[21] Catalina M. Llado, Peter G. Harrison. Performance
evaluation of an enterprise JavaBean server
implementation, in: Proc. 2nd Int. Workshop on Software
and Performance, WOSP'00, ACM, New York, NY, USA,
pp. 180-188, 2000.

[22] Emmanuel Cecchet, Julie Marguerite, Willy Zwaenepoel.
Performance and scalability of ejb applications, in: Proc.
17th ACM SIGPLAN Conf. on Object-oriented
programming, systems, languages, and applications,
OOPSLA'02, ACM, New York, NY, USA, pp. 246-261,
2002.

[23] Giovanni Denaro, Andrea Polini, Wolfgang Emmerich.
Early performance testing of distributed software
applications, in: Proc. 4th Int.Workshop on Software and
Performance, WOSP'04, ACM, New York, NY, USA, pp.
94-103, 2004.

[24] Shiping Chen, Yan Liu, Ian Gorton, Anna Liu.
Performance prediction of component-based applications,
Journal of Systems and Software, Vol.4, No.1, pp.35-43,
2005.

[25] Tom Verdickt, Bart Dhoedt, Frank Gielen, Piet Demeester,
\Automatic inclusion of middleware performance attributes
into architectural uml software models", IEEE
Transactions on Software Engineering, Vol.31, No.8, pp.
695-771, 2005.

[26] A model transformation approach for the early
performance and reliability analysis of component-based
systems, in: Proc. 9th Int. Symposium on Component-
Based Software Engineering, CB-SE'06, in: LNCS, vol.
4063, Springer, pp. 270-284, 2006.

Xiang Huang received the M.Sc. degree
from the South China University of
Technology, Guangzhou, China, in 2007
and Ph.D. degree in computer science and
technology from Chinese academy of
sciences, Beijing, China, in 2012.
His main research interests include
distributed systems, system performance
analysis, theory of computation etc.

Zhi-gang Chen is a senior engineer. His main research interests
include system planning, theory of computation etc.

2438 JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013

© 2013 ACADEMY PUBLISHER

