2432

JOURNAL OF SOFTWARE, VOL. §, NO. 10, OCTOBER 2013

A Configuration Driven Modeling Approach for
Resources Optimization of Multi-tenant
Applications

Xiang Huang
Guang Dong Electric Power Design Institute, China Energy Engineering Group Co. Ltd., Guangdong, China
School of Information Science and Technology, Sun Yat-Sen University, Guangdong China
Email:huangxiang@gedi.com.cn

Zhi-gang Chen
Guang Dong Electric Power Design Institute, China Energy Engineering Group Co. Ltd., Guangdong, China
Email: chenzhigang@gedi.com.cn

Abstract—M ulti-tenancy application is one of the important
resource sharing approaches which enables sharing of
resour ces across a large pool of users. A key requirement to
manage the resources fairly among tenants is that one
should know the impacts of the resource allocations
strategies. Performance model has the native advantages to
predict the impacts in advance. However, as the platform
become more difficult than ever before, it is hard to build
the model manually. In this paper, we provide a
configuration driven modeling approach to automatically
build the configurations' performanceimpacts. In our work,
we firstly decouple the impacts into several templates which
can be instanced with the runtime configurations. And then,
these models can be merged with the tenant’s model as a
holistic performance model, which can be used to predict
performance under different configurations. Experimental
results derived from testing the approach by using an online
application deployed on a widely-used platform illustrate
the potential of thisapproach.
Index Terms—Configuration Resour ces
Optimization, M ulti-tenant

Driven,

1. INTRODUCTION

Multi-tenancy is one of the important application
models of cloud computing [1]. The most advantage of
this application model is that it let lots of tenants
(application) share the same platform. Therefore, it can
reduce the operation and management cost for each
tenant. As show in figure 1, there are 3 typical multi-
tenancy deployment types: the method based on virtual
machines (VM-Based), the method based on process (P-
Based), and the method based on shared middleware (M-
Based). VM-Based method allocates one VM instance for
each tenant, such as the Amazon’s EC2 [2]. P-Based
method allocates one process for each tenant, such as
Google’s App Engine [3]. M-Based method share all
tenant applications in one middleware, such as Intalio [4]
and Salesforce [5].

Compare with other types, M-Based type can share the
whole platform except the data related to the users,

©2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.10.2432-2438

therefore the tenants can share the resources more
reasonably, and reduce the cost introduced by the
underline platform [6]. For example, on the same
physical machine, VM-based method can only support 3
tenants in one CPU, but M-based method can support
dozens or hundreds tenants [6]. However, as the
resources are shared by many tenants, resources are easily
occupied by CPU intensive tenants. Thus, other tenants’
performance will be dramatically deteriorated. This
phenomenon makes it hard to optimize the resources

allocations.

VM-based Process-based Shared Middleware

as an a4 4 a8 4 au ao

App Instances App Instances = App Instances App Instance
[Middleware]Middiaware] Micdleware]Middleware iddieware Middieware

X T

]

Hardware

Figure 1. Different type of multi-tenancy application

A key requirement for performance optimization is the
knowledge of the impacts of different configurations
under different kinds of configurations in advance.
Performance models [7], e.g. Layer Queue Network
(LQN) [8] [9] model, have native advantages to make
costly decisions, thanks to their relative low costs of
performance predication ability. But there are two main
challenges to build such a performance model for a multi-
tenancy application. First, some critical configuration
parameters of the platform, such as resource sharing
policy and concurrency level, can only be determined at
runtime. Thus it is unable to build a performance model
for it directly. Second, although the platform’s impact is
very complex, it can be reused among different
applications. To build the model for each particular
deployment scenes is a time consume and error-prone
task.

In this paper, we propose a configuration driven
modeling approach to analyze the impacts of the platform
configurations. Firstly, the platform is decoupled into

JOURNAL OF SOFTWARE, VOL. §, NO. 10, OCTOBER 2013

several interacting aspect models. The configuration
parameters that can only be determined at runtime are
modeled as dynamic elements in these models. Secondly,
these aspect models can be instantiated with their runtime
status and weaved with the tenant models into a holistic
model of the entire system. Then the optimal
configuration can be found out based on the predicted
results. Our experimental results have shown the
effectiveness of our approach.

Our main contribution is that we propose a stateful
aspect-oriented modeling approach for automatically
including the shared resources managed by the platform
into multi-tenancy application. Compared with existing
works, our approach distinguishes itself by: 1) its
dynamic manipulation of configuration parameters
according to the resource sharing policy and 2) its
automatically building of the performance models of the
entire system. We also present a solid case study of
modeling a complex multi-tenancy application to
evaluate our approach.

The rest of this paper is organized as follows. Section 2
describes the overview of our work. Section 3 presents
our modeling approach in detail. Section 4 evaluates our
approach through a series of experiments. Section 5
introduces related works. The last section makes a
summary.

II. OVERVIEW OF OUR APPROACH

Component based development method [10] is the
most popular software paradigm for multi-tenancy
applications, such as JEE, .NET, CORBA, .COM, and so
on. A component-based application is built upon

component types, each of which plays a specialized role
in a system and is described by an interface. The
application should be deployed on a middleware, which
provide the basic service for runtime requirement.

Wrapper

g:D Component u Container

Figure 2. Component model of multi-tenancy application

Wrapper

Middleware

The component cannot run by itself, it should be
supported by a wrapper [11] (which is a micro
middleware for a particular component). All of the
wrappers are contained in the middleware. Middleware
manage all the resources which the application needed if
a component wants to use a resource, it first sends the
request the wrapper, and the wrapper will forward the
request to the middleware.

In this paper, we decouple the platform’s impacts into
several parts according to the wrapper’s type, and each
part is modeled as aspect model. Before the aspect
models are woven with the tenants’ model, we will

©2013 ACADEMY PUBLISHER

2433

instance them and generate a resource pool according to
the configurations. Therefore, all of the resources merged
into the tenants’ model are collected from the pool. That
is means the pool is stand for the middleware, and the
aspect model is like a wrapper which just describes how
does the component use the resources. The overview of
our approach is given in figure 3.

L)
Tenant affect Aspect
Models -—— Models
L) (static model) |)’
- — T
< Instance > < Configurations
— N J
— r/—\
4 Merge \< Resource
N % Pool
= -«

Holistic
Model

\ J

Figure 3. The overview of our approach

The key points of our approach are as follows: 1)
Collecting the configuration parameters of the platform. 2)
Instantiating the aspect models with their configurations
to build a resources pool for the platform. 3) Merging the
resources pool with the tenant model into a holistic LQN
model of the entire multi-tenancy application. 4)
Predicting the performance with the LQN model to
optimize the resource allocation.

III. MODELING APPROACH

In this section, we introduce how to instance the
resources, and how to merge them with the tenant model.

A. Basic Elements of Aspect Model

An aspect model is composed of three parts: pointcut,
advice and template. Pointcut is used to find the join
points where the applications will interact with the
platform. Templates describe a wrapper’s internal logic.
And advices is used merge the tenants model and the
templates.

Pointcut

Figure 4. Aspect model of stateless component

2434

In Figure 4, we give an example of stateless
component. There are three middleware’s components in
the template: container, thread pool and instance pool. In
advice, the internal detail of the wrapper is ignored, and
only the position where the template should be weaved
with the application is given. We also give a configurable
profile extension for LQN to support the dynamic
attributes. The details of the profile are given in table 1.

TABLE 1.
CONFIGURABLE PROFILE EXTENSION
attribute | specification
symbol $ Declare a parameter
* An optional parameter
@ Reference to a specific
component
Reference the name of the
matched component in advice
Scope | The scope of the resource:
® Component: for each
component
token ® Tenant: for each tenant
® Container: for the whole
container
® Server: for the whole
server
Schedule | Schedule strategies, FIFO
(default), HOL,PPR
Priority | Priority of the request
Type The type of the component
Method | The type of the method
supported by the component

For example in figure 4, the thread pool’s capacity
($poolSize) is a mandatory parameter, and the schedule
strategies ($schedule*) is an optional parameter, whose
priority is inherited from Target component (@Target*).
The thread pool would only share with the same tenant
(scope:tenant), which means different tenant would use
different thread pool. Therefore, the concurrency users of
each tenant can be controlled. For each service or
function of a component, there is a parameter for resource
demands, such as $s_invokeService in StatelessContainer.
There are several methods [12][13] to get this type of
parameter.

B. Basic Aspect Models

Besides stateless component, there are several other
typical component types, such as stateful component and
data access components. The details of these types’
wrapper are given as follows:

1) Sateful Component

Some component required to save the state of the
user’s operation. For example, in an online shopping
application, same component need to save which items
has already been choice by the user.

Figure 5 gives an example of stateful component’s
aspect model. There are three type of method: create,
remove and invoke. Method create and remove is used for
state management, and invoke is the other normal

©2013 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. §, NO. 10, OCTOBER 2013

methods. Other part of the aspect model is the same as
the stateless one.

LatWrappe

StatWrapp
‘ Ginf) }7/

T 1

[$5_create W] ‘ [$5_romovo W] ‘ [$5_.

e Tomors SotThread [StatomhreadPool b, schods| Socfodulot
U85 create] | [fs_romove]l | [$5_gotThroad] | (satatPoolSize)

Figure 5. Aspect model of stateful component

2) Data Set Component

Data set component manage the relations between the
persistent object and the storage data in database. Each
persistent object corresponds to one row in database. To
create or remove a persistent object means insert or delete
one row in database.

Figure 6. Aspect model of data set component

Aspect model of data set component is more complex
than other type of components. Besides the thread pool
and the critical section of the container, the data object is
used exclusively. That means one object could not be
used by two users concurrently. In template, we use
instance to model the persistent object. We assume that
the invocation probability of different objects is equal, so
the chance of each object is 1/$l, where $I is the number
of objects.

C. Instantiation Approach

The aspect models describe the resources usage of a
particular component, but the resources are shared by all
components. In order to make holistic model consist with
the runtime environment, we provide an instantiation
method.

Figure 7 gives the algorithm of instantiation. The main
point of our algorithm is that a new resource will be
created and put into pool while there is not such resource
existed in its scope, otherwise the resource in the pool.

Algorithm InstanceAdvice
Input: information, advice, generic aspect model;
Output: Advice.
for each task in generic aspect model do
get task’s scope
if the scope existed in information then
add new entry into the task
put the task into advice

il

JOURNAL OF SOFTWARE, VOL. §, NO. 10, OCTOBER 2013

6. else

7. copy the task

8. put it the information within the scope
9. instance the parameter of the task
10. add new entry into the new task
11. put the task into advice

12. endif

13. if the entry need a priority then

14. the priority is get form its scope
15. endif

16. end for

17. connect the new entry set according to the
generic aspect model
18. return advice

Figure 7. Instance algorithm

Figure 8 gives an example of instantiation. There are
two templates in this example. Template 1 use 4 kinds of
resources and template 2 use 3 kinds of resources.
Resources ¢ and d are shared, so there are 5 kinds of
resources in the pool.

Template 1

Template 2

L

Resource Pool

Figure 8. Example of instantiation

D. Weaving Approach

In our previous work, we can dynamically build an
application model [14]. The workload characteristics,
including the user scale and read/write ratio, can be
modeled into a service invocation matrix with probability.
In our approach, this application model should be woven
with the platform model through its entrances, which are
marked as jointcut. Because of the limited space, we will
not describe the modeling of the application model in
detail.

After the resource pool and the application model have
been instantiated and built, they should be woven into a
holistic LQN model. We use a third model, called
pointcut, and two morphisms, which identify the elements
of the application model that have to be kept, removed
and added to those of the application model.

Let the application model, the pointcut model and the
advice be three models, which are defined by a set of
elements. The resources presented in advice are gotten
from resource pool. Let pj and pa be two morphisms,
such as (1) pj is a bijective morphism from pointcut to

©2013 ACADEMY PUBLISHER

2435

joinpoint, and (2) pa is an injective morphism from

pointcut to the resource pool, and it can be obtained by

the name of the elements. The morphisms pj is used to

locate the components affected by the advice.

These two morphisms can divided the model app and

advice into 5 sub sets:

® The set Ry, representing the set of objects of app
which have to be kept. Ry, = {€ € app|Ze’ €
pointcut, f(e') = e}.

® The set R,emove representing the set of objects of
app which have to be deleted. R,emope =
{e € app|3e’ € pointcut,Ze" € advice, f(e') =
eng(e) =¢"}

® The set Rgupiicatea Tepresents the set of elements of
the app which have to be replaced. Ryypiicatea =
{e € app|3e’ € pointcut,3e" € advice, f(e') =
e'"}.

® The set Rgﬁplicated represents the set of elements of
the advice which describes the same objects as
presented in Rayplicatea :RgZplicated =
{e € advice|3e’ € pointcut,Ie"” € app,g(e') =
enf(e") =¢e"}.

® The set R, 4 represents the set of elements of the
advice which have to be added in app model.
Raaa = {e € advice|de' € pointcut,g(e') = e}.

The woven model is a set of elements and is denoted as
weaved model = Ryeep URquplicated URadda- That means
we keep the set of elements that have not been affected
by the cache system, the set of elements which have been
affected but also existed in advice, and the set of objects
which have been added in the application model.

Figure 9. Weaving example

Figure 9 gives an example to illustrate the weaving
algorithm. In this example, every task and event are seen
as an element and the tenant model contains: {€l, €2, €3,
rl, r2, di, d2, d3,Client, Server}, The pointcut model
contains: {e4,e5,r3,d4, Server}, And the advice model
contains: {e4, €5, €6, r4, r5, d4, d5, Server}. Using the
two morphisms we can get the following three sets:
Rioep = 1€3,72,d1,d3,Client} , Rymppe = {r1}
Rauplicated = {e1,e2,d2, Server} , RY

uplicated =
{e4,eS,d4,:Server} s Radd={e6,r4,r5,d5}
Therefore, the result of the weaving is result =

{el,e2,e3,e6,12,14,7r5,d1,d2,d3,d5, Client, Server}.

2436

IV. EVALUATION

In this paper, we choice an online project named
software trust-worthy cooperation application (Trustie)
[15] as our test bed. We deployed the projected in our
local environment. Trustie is a three tier system,
including a portal system deployment on Ngnix, Trustie
system deployment on Tomcat, and several database
servers and mail servers.

e === e W RS EEEE OOT 1

Tirmp{ming)
tEnen? —=— tenentd

| +—tenent] & = tanentd —H—:ener'.bl

Figure 10. The workload for different tenants

There are more than 200 types of request in this system.

We can divide the requests into two categories: browsing
(stateless component) and processing (stateful
component). The browsing type of requests require little
computing resources for they only read the page from
cache, and processing require plenty of resources because
they need generate the rich client pages supported by
Eclipse RAP[16].

Workload is critical to the SLA [17]. In order to
evaluate our work, we use HP LoadRunner to generate 5
different type of workload to simulate 5 different types of
tenants as show in figure 10. Tenant 1 is a type of heavy
user, most of whose requests are processing request, and
other tenants are gently users, most of whose requests are
browsing request. And the workload of tenant 1 is
changed cyclically.

Figure 11 give the analyzed results of our approach.
The utilization of the total CPU is measured by monitor,
and the tenants’ utilization is analyzed by our approach. It
is clearly that while the load of tenant 1 is high, the most
of the resources is occupied by tenant 1, and other tenants
have little change to response the requests. That is
because while the load of tenant 1 is high, the total CPU
utilization is nearly 100%, and the job of tenant 1 is
longer than others, so the CPU will be occupied by tenant

CRU ULlizaben (%)

S Cr

ggBongoorecs oo asa s doay
0

40 50 B0

Time(ming)
tementd =& tanents il

—r teneniz —=— teneni — o Tatal CPY Utilizaticn B5% theashoid |

Figure 11. The resources consumption for different tenants

Past experience [18] show that the CPU utilization
should controlled fewer than 85% to let the system run

©2013 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. §, NO. 10, OCTOBER 2013

smoothly. Therefore, to make the resources allocation
fairly amount tenants, the heavy tenant’s consumption
need to be controlled. In our case, it means we should
reduce the concurrency users of tenant 1 to give other
tenants more change to run.

In order to find out the optimal concurrency of tenant 1,
we should first build the holistic model, and then set the
concurrency level for each tenant, finally we can find out
the best configuration by search the best configurations.

100 T T T T

95 - B

Utilization £%7
=]
T
1

G5 b

=) 1 1 1 1 1
a0 75 70 65 B0 a5 a0

Concurrent Threads
Figure 12. Searching for the optimal concurrency level

Figure 12 gives the total CPU utilization for different
configuration of tenant 1. It can be seen that while the
concurrency user is 52, the total CPU utilization is about
85%. Thus, we can set the concurrency level of tenant 1
as 50 for the analyzed results is little more optimize than
real one.

100 T T T T T
ol 2 . =

CPU ibzaliea (%)

Tarna{mins)

[+ tonemi fenant? —=— tenarad — o —fenantd —B— tanardh Total CPU Utlization 5% thanshald

Figure 13. The CPU utilizations under concurrency control

Figure 13 gives the analyzed results under concurrency
control. It is clearly that the utilization of tenant 1 is
controlled, thus the total CPU utilization is around 85%,
and other tenants have more change to run. That means
our approach can predict the performance of multi-
tenancy application under different configurations, and
give valuable advices for performance optimization.

V. RELATED WORK

Traditional performance modeling approaches usually
focus on applications. In [19], Becker and Dencker
present an approach that automatically generates
performance prototypes based solely on a design model
with performance annotations. The main contribution of
their work is building the mapping of instances of the
Palladio Component Model (PCM) to prototype
implementations, but it does not analyze the performance
impacts of the underline platform, such as concurrency
policy, hence it is not enough to predict the performance
of connectors.

Woodside proposed an automated construction of LQN
models from the traces collected by the code added by a

JOURNAL OF SOFTWARE, VOL. §, NO. 10, OCTOBER 2013

tool integrated in the design environment [20]. In their
approaches, one needs to insert additional code into the
source code based on the design abstraction to collect
execution traces and resource cost from special test cases.
However, the approaches do not consider the impacts of
the middleware also.

There are some approaches emphasizing the influence
on the middleware on the performance of a component-
based system. Llado [21] created an EQN based model to
describe the performance of an EJB server. Cecchet [22]
provided a benchmark for Java Enterprise application
servers and found that the most influencing factor on the
performance was caused by the middleware. Denaro [23]
generated a prototype for a component-based application
of an EJB system, but did not provide model building or
tool support. Chen [24] gives a simple method to
determine optimal thread pool sizes for Java application
servers. However, these methods do not care about how
to build performance model automatically and change
with the environment.

Verdickt [25] introduces a model transformation
framework to include the performance overhead of
middleware layers into a component-based system model.
They use UML model, such as UML activity, deployment
and collaboration diagrams, to build the performance
models. Following MDA approaches, a model
transformation maps a platform independent model into a
platform specific model with a repository of middleware
models which are also built with UML models. In their
case study, the authors demonstrate how to include the
performance impacts of the CORBA Object Request
Broker (ORB) into the models. The main drawback of
this approach is that it depends on the designers’
experience of performance modeling, because the
application model should be provided by designers and
how the middleware affects the application model should
also be given by the designer.

Grassi [26] provides a connector refinement
transformation method which can transform the model
from high level UML 2.0 architecture models into the
KLAPER modeling language. KLAPER models can be
transformed into queuing networks or Markov chains for
performance analysis. This approach assumes the UML
stereotype can be labeled with component connectors.
For example, a connector could separate a static or
dynamic synchronous client/server interaction. The
authors suggest building a library of parametric connector
behaviors’ models for each of the stereotypes.

VI. CONCLUSION

Multi-tenancy application is one of the most important
techniques to share the platform. The performance of a
multi-tenancy application is largely affected by the
platform’s configurations. In this paper, we proposed a
configuration driven modeling approach for this type of
applications, which not only presents a feasible solution
for modeling configuration aware systems, but also gains
us valuable experiences of modeling the complex
platforms.

©2013 ACADEMY PUBLISHER

2437

ACKNOWLEDGMENT

This work is partially supported by National Natural
Science Foundation of China (61272013).

REFERENCES

[1] Jiehui Ju, Jiyi Wu, Jianqing Fu, Zhijie Lin, Jianlin Zhang.
A Survey on Cloud Storage. Journal of Computers, Vol.6,
NO.8, 2011.

Amazon EC2, URL: https://aws.amazon.com/ec2/

Google App Engine, URL: https://appengine.google.com/

Intalio, URL: http://www.intalio.com/

Salesforce, URL: http://www.salesforce.com/

C. J. Guo, W. Sun, Y. Huang, Z. H. Wang and B. Gao. A

Framework for Native Multi-Tenancy Application

Development and Management. CEC/EEE, |EEE

Computer Society, pp. 551-558, 2007

[7] Chin-Ling Chen, Chia-Chun Yu. Performance Evaluation
of Active Queue Management Using A Hybrid Approach.
Journal of Computers, Vol.7, NO.5, 2012.

[8] M. Woodside, J. E. Neilson, D. C. Petriu, S. Majumdar.
The Stochastic Rendezvous Network Model for
Performance of Synchronous Client-Server-like
Distributed ~ Software". In: |EEE Transactions on
Computers, vol.44, no.1, pp.20-34, 1995.

[91 Rolia, J. A., Sevcik, K. C.. The Method of Layers". IEEE
Trans. On Software Engineering, vol.21, no.8, pp.689-700,
1995.

[10] Kung-Kiu Lau and Zheng Wang. Software Component
Models. IEEE Transactions on Software Engineering,
Vol.33, No.10, 2007.

[11] Ivica Crnkovic, Brahim Hnich, Torsten Jonsson.
Specification, Implementation, and Deployment of
Components. Communication of the ACM, Vol.45, No.10,
pp.35-40, 2002.

[12] Wei Wang, Xiang Huang, Xiulei Qin, Wenbo Zhang.
Application-Level CPU Consumption Estimation: Towards
Performance Isolation of Multi-tenancy Web Applications.
IEEE Fifth International Conference on Cloud Computing,
pp.439-446, 2012.

[13] Wei Wang, Xiang Huang, Yunkui Song. A Statistical
Approach for Estimating CPU Consumption in Shared
Java Middleware Server. |EEE 35th Annual Computer
Software and Applications Conference, 2011 Munich,
Germany, pp.541-546, 2011.

[14] Xiang Huang, Wei Wang. An Adaptive Performance
Modeling Approach to Performance Profiling of Multi-
Service Web Applications. In proceeding of Annual
Computer Software and Applications Conference, pp.4-13,
2011.

[15] Trustie forge, URL:
http://www.trustie.net/trustie/forge?language=en

[16] Eclipse RAP, URL.: http://www.eclipse.org/rap/

[17] Congfeng Jiang, Jian Wan, Xindong You. Power Aware
Job Scheduling in Multi-Processor System with Service
Level Agreements Constraints. Journal of Computers, Vol.
5, No. 8, 2010.

[18] Steffen Becker. Coupled model transformations for QoS
enabled component-based software design, Ph. D. Thesis,
University of Oldenburg, Germany, January 2008.

[19] M. Woodside, C. Hrischuk, B. Selic, and S. Brayarov.
Automated Performance Modeling of Software Generated
by a Design Environment, Performance Evaluation, vol.
45, pp.107-123,2001.

[20] Curtis E. Hrischuk, Murray Woodside, Jerome A.
RoliaJerome, A. Rolia. Trace-Based Load Characterization

e —
AN N AW
e e

2438

for Generating Performance Software Models. IEEE
Transactions on software engineering, vol. 25, no. 1, 1999.

[21] Catalina M. Llado, Peter G. Harrison. Performance
evaluation of an enterprise JavaBean server
implementation, in: Proc. 2nd Int. Workshop on Software
and Performance, WOSP'00, ACM, New York, NY, USA,
pp. 180-188, 2000.

[22] Emmanuel Cecchet, Julie Marguerite, Willy Zwaenepoel.
Performance and scalability of ejb applications, in: Proc.
17th ACM S GPLAN Conf. on Object-oriented
programming, systems, languages, and applications,
OOPSLA'02, ACM, New York, NY, USA, pp. 246-261,
2002.

[23] Giovanni Denaro, Andrea Polini, Wolfgang Emmerich.
Early performance testing of distributed software
applications, in: Proc. 4th Int.Workshop on Software and
Performance, WOSP'04, ACM, New York, NY, USA, pp.
94-103, 2004.

[24] Shiping Chen, Yan Liu, Ian Gorton, Anna Liu.
Performance prediction of component-based applications,
Journal of Systems and Software, Vol.4, No.1, pp.35-43,
2005.

[25] Tom Verdickt, Bart Dhoedt, Frank Gielen, Piet Demeester,
\Automatic inclusion of middleware performance attributes
into architectural uml software models", |EEE
Transactions on Software Engineering, Vol.31, No.8, pp.
695-771, 2005.

©2013 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. §, NO. 10, OCTOBER 2013

[26] A model transformation approach for the early
performance and reliability analysis of component-based
systems, in: Proc. 9th Int. Symposium on Component-
Based Software Engineering, CB-SE'06, in: LNCS, vol.
4063, Springer, pp. 270-284, 2006.

Xiang Huang received the M.Sc. degree
from the South China University of
Technology, Guangzhou, China, in 2007
and Ph.D. degree in computer science and
technology from Chinese academy of
sciences, Beijing, China, in 2012.

His main research interests include
distributed systems, system performance
analysis, theory of computation etc.

Zhi-gang Chen is a senior engineer. His main research interests
include system planning, theory of computation etc.

