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In Figure 4, we give an example of stateless 
component. There are three middleware’s components in 
the template: container, thread pool and instance pool. In 
advice, the internal detail of the wrapper is ignored, and 
only the position where the template should be weaved 
with the application is given. We also give a configurable 
profile extension for LQN to support the dynamic 
attributes. The details of the profile are given in table 1. 

 
TABLE 1.  

CONFIGURABLE PROFILE EXTENSION 
 attribute specification 

symbol $ Declare a parameter 
* An optional parameter 

 
@ Reference to a specific 

component 

 
: Reference the name of the 

matched component in advice 

token 

Scope The scope of the resource： 
 Component: for each 

component 
 Tenant: for each tenant 
 Container: for the whole 

container 
 Server: for the whole 

server 

 
Schedule Schedule strategies, FIFO 

(default),HOL,PPR 
Priority Priority of the request 

Type The type of the component 

 
Method The type of the method 

supported by the component 
 
For example in figure 4, the thread pool’s capacity 

($poolSize) is a mandatory parameter, and the schedule 
strategies ($schedule*) is an optional parameter, whose 
priority is inherited from Target component (@Target*).  
The thread pool would only share with the same tenant 
(scope:tenant), which means different tenant would use 
different thread pool. Therefore, the concurrency users of 
each tenant can be controlled.  For each service or 
function of a component, there is a parameter for resource 
demands, such as $s_invokeService in StatelessContainer. 
There are several methods [12][13] to get this type of 
parameter. 

B. Basic Aspect Models 
Besides stateless component, there are several other 

typical component types, such as stateful component and 
data access components. The details of these types’ 
wrapper are given as follows: 

1)  Stateful Component 
Some component required to save the state of the 

user’s operation. For example, in an online shopping 
application, same component need to save which items 
has already been choice by the user. 

Figure 5 gives an example of stateful component’s 
aspect model. There are three type of method: create, 
remove and invoke. Method create and remove is used for 
state management, and invoke is the other normal 

methods. Other part of the aspect model is the same as 
the stateless one. 

 
Figure 5. Aspect model of stateful component 

 

2) Data Set Component 
Data set component manage the relations between the 

persistent object and the storage data in database. Each 
persistent object corresponds to one row in database. To 
create or remove a persistent object means insert or delete 
one row in database. 

Figure 6. Aspect model of data set component 
 
Aspect model of data set component is more complex 

than other type of components. Besides the thread pool 
and the critical section of the container, the data object is 
used exclusively. That means one object could not be 
used by two users concurrently. In template, we use 
instance to model the persistent object. We assume that 
the invocation probability of different objects is equal, so 
the chance of each object is 1/$I, where $I is the number 
of objects. 

C. Instantiation Approach 
The aspect models describe the resources usage of a 

particular component, but the resources are shared by all 
components.  In order to make holistic model consist with 
the runtime environment, we provide an instantiation 
method.  

Figure 7 gives the algorithm of instantiation. The main 
point of our algorithm is that a new resource will be 
created and put into pool while there is not such resource 
existed in its scope, otherwise the resource in the pool. 

 
   Algorithm InstanceAdvice 

Input: information, advice, generic aspect model;   
        Output: Advice. 

1. for each task in generic aspect model do 
2.     get task’s scope 
3.     if the scope existed in information then 
4.         add new entry into the task  
5.         put the task into advice 
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6.     else 
7.         copy the task  
8.         put it the information within the scope 
9.         instance the parameter of the task 
10.         add new entry into the new task  
11.         put the task into advice 
12.     end if 
13.     if the entry need a priority then 
14.         the priority is get form its scope 
15.     end if 
16. end for 
17. connect the new entry set according to the 

generic aspect model 
18. return advice  

 
Figure 7. Instance algorithm 

 
Figure 8 gives an example of instantiation. There are 

two templates in this example. Template 1 use 4 kinds of 
resources and template 2 use 3 kinds of resources. 
Resources c and d are shared, so there are 5 kinds of 
resources in the pool. 

Figure 8. Example of instantiation 
 

D. Weaving Approach 
In our previous work, we can dynamically build an 

application model [14]. The workload characteristics, 
including the user scale and read/write ratio, can be 
modeled into a service invocation matrix with probability. 
In our approach, this application model should be woven 
with the platform model through its entrances, which are 
marked as jointcut. Because of the limited space, we will 
not describe the modeling of the application model in 
detail. 

After the resource pool and the application model have 
been instantiated and built, they should be woven into a 
holistic LQN model. We use a third model, called 
pointcut, and two morphisms, which identify the elements 
of the application model that have to be kept, removed 
and added to those of the application model.  

Let the application model, the pointcut model and the 
advice be three models, which are defined by a set of 
elements. The resources presented in advice are gotten 
from resource pool. Let pj and pa be two morphisms, 
such as (1) pj is a bijective morphism from pointcut to 

joinpoint, and (2) pa is an injective morphism from 
pointcut to the resource pool, and it can be obtained by 
the name of the elements. The morphisms pj is used to 
locate the components affected by the advice.  

These two morphisms can divided the model app and 
advice into 5 sub sets: 

 The set ࣬௞௘௘௣ representing the set of objects of app 
which have to be kept. ࣬௞௘௘௣ ൌ ሼ݁ ∈ ᇱ݁∄|݌݌ܽ ,ݐݑܿݐ݊݅݋݌∋ ݂ሺ݁ᇱሻ ൌ ݁ሽ. 

 The set ࣬௥௘௠௢௩௘  representing the set of objects of 
app which have to be deleted. ࣬௥௘௠௢௩௘ ൌሼ݁ ∈ ᇱ݁∃|݌݌ܽ ∈ ,ݐݑܿݐ݊݅݋݌ ∄݁ᇱᇱ ∈ ,݁ܿ݅ݒ݀ܽ ݂ሺ݁ᇱሻ ൌ݁ ∧ ݃ሺ݁ᇱሻ ൌ ݁ᇱᇱሽ 

 The set ࣬ௗ௨௣௟௜௖௔௧௘ௗ represents the set of elements of 
the app which have to be replaced. 	࣬ௗ௨௣௟௜௖௔௧௘ௗ ൌ ሼ݁	 ∈ ᇱ݁∃|݌݌ܽ ∈ ,ݐݑܿݐ݊݅݋݌ ∃݁ᇱᇱ ∈ ,݁ܿ݅ݒ݀ܽ ݂ሺ݁ᇱሻ ൌ	 ݁′′ሽ. 

 The set ࣬ௗ௨௣௟௜௖௔௧௘ௗ௔ௗ  represents the set of elements of 
the advice which describes the same objects as 
presented in ࣬ௗ௨௣௟௜௖௔௧௘ௗ . ࣬ௗ௨௣௟௜௖௔௧௘ௗ௔ௗ ൌሼ݁ ∈ ᇱ݁∃|݁ܿ݅ݒ݀ܽ ∈ ,ݐݑܿݐ݊݅݋݌ ∃݁ᇱᇱ ∈ ,݌݌ܽ ݃ሺ݁ᇱሻ ൌ݁ ∧ ݂ሺ݁ᇱሻ ൌ ݁ᇱᇱሽ. 

 The set ࣬௔ௗௗ  represents the set of elements of the 
advice which have to be added in app model. ࣬௔ௗௗ ൌ ሼ݁ ∈ ᇱ݁∄|݁ܿ݅ݒ݀ܽ ∈ ,ݐݑܿݐ݊݅݋݌ ݃ሺ݁ᇱሻ ൌ ݁ሽ. 
 

The woven model is a set of elements and is denoted as 
weaved model = ࣬୩ୣୣ୮⋃࣬ୢ୳୮୪୧ୡୟ୲ୣୢ⋃࣬ୟୢୢ. That means 
we keep the set of elements that have not been affected 
by the cache system, the set of elements which have been 
affected but also existed in advice, and the set of objects 
which have been added in the application model. 

Figure 9. Weaving example 
 
Figure 9 gives an example to illustrate the weaving 

algorithm. In this example, every task and event are seen 
as an element and the tenant model contains: {e1, e2, e3, 
r1, r2, d1, d2, d3,Client, Server}, The pointcut model 
contains: {e4,e5,r3,d4, Server}, And the advice model 
contains:{e4, e5, e6, r4, r5, d4, d5, Server}. Using the 
two morphisms we can get the following three sets: ࣬݇݁݁݌ ൌ ሼ݁3, ,2ݎ ݀1, ݀3, ሽݐ݈݊݁݅ܥ ݁ݒ݋݉݁ݎ࣬ , ൌ ሼ1ݎሽ ݀݁ݐ݈ܽܿ݅݌ݑ݀࣬ , ൌ ሼ݁1, ݁2, ݀2, ሽݎ݁ݒݎ݁ܵ ݀ܽ݀݁ݐ݈ܽܿ݅݌ݑ݀࣬ , ൌሼ݁4, ݁5, ݀4, : ሽݎ݁ݒݎ݁ܵ , ࣬ܽ݀݀ ൌ ሼ݁6, ,4ݎ ,5ݎ ݀5ሽ . 
Therefore, the result of the weaving is ݐ݈ݑݏ݁ݎ	 ൌሼ݁1, ݁2, ݁3, ݁6, ,2ݎ ,4ݎ ,5ݎ ݀1, ݀2, ݀3, ݀5, ,ݐ݈݊݁݅ܥ  .ሽݎ݁ݒݎ݁ܵ
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IV. EVALUATION 

In this paper, we choice an online project named 
software trust-worthy cooperation application (Trustie) 
[15] as our test bed. We deployed the projected in our 
local environment. Trustie is a three tier system, 
including a portal system deployment on Ngnix, Trustie 
system deployment on Tomcat, and several database 
servers and mail servers. 

 
Figure 10. The workload for different tenants 

 
There are more than 200 types of request in this system. 

We can divide the requests into two categories: browsing 
(stateless component) and processing (stateful 
component). The browsing type of requests require little 
computing resources for they only read the page from 
cache, and processing require plenty of resources because 
they need generate the rich client pages supported by 
Eclipse RAP[16].  

Workload is critical to the SLA [17]. In order to 
evaluate our work, we use HP LoadRunner to generate 5 
different type of workload to simulate 5 different types of 
tenants as show in figure 10. Tenant 1 is a type of heavy 
user, most of whose requests are processing request, and 
other tenants are gently users, most of whose requests are 
browsing request. And the workload of tenant 1 is 
changed cyclically. 

Figure 11 give the analyzed results of our approach. 
The utilization of the total CPU is measured by monitor, 
and the tenants’ utilization is analyzed by our approach. It 
is clearly that while the load of tenant 1 is high, the most 
of the resources is occupied by tenant 1, and other tenants 
have little change to response the requests. That is 
because while the load of tenant 1 is high, the total CPU 
utilization is nearly 100%, and the job of tenant 1 is 
longer than others, so the CPU will be occupied by tenant 
1. 

 
Figure 11. The resources consumption for different tenants 

 
Past experience [18] show that the CPU utilization 

should controlled fewer than 85% to let the system run 

smoothly. Therefore, to make the resources allocation 
fairly amount tenants, the heavy tenant’s consumption 
need to be controlled. In our case, it means we should 
reduce the concurrency users of tenant 1 to give other 
tenants more change to run.  

In order to find out the optimal concurrency of tenant 1, 
we should first build the holistic model, and then set the 
concurrency level for each tenant, finally we can find out 
the best configuration by search the best configurations.  

 
Figure 12. Searching for the optimal concurrency level 

 
Figure 12 gives the total CPU utilization for different 

configuration of tenant 1.  It can be seen that while the 
concurrency user is 52, the total CPU utilization is about 
85%. Thus, we can set the concurrency level of tenant 1 
as 50 for the analyzed results is little more optimize than 
real one. 

 
Figure 13. The CPU utilizations under concurrency control 

Figure 13 gives the analyzed results under concurrency 
control. It is clearly that the utilization of tenant 1 is 
controlled, thus the total CPU utilization is around 85%, 
and other tenants have more change to run. That means 
our approach can predict the performance of multi-
tenancy application under different configurations, and 
give valuable advices for performance optimization. 

V. RELATED WORK 

Traditional performance modeling approaches usually 
focus on applications. In [19], Becker and Dencker 
present an approach that automatically generates 
performance prototypes based solely on a design model 
with performance annotations. The main contribution of 
their work is building the mapping of instances of the 
Palladio Component Model (PCM) to prototype 
implementations, but it does not analyze the performance 
impacts of the underline platform, such as concurrency 
policy, hence it is not enough to predict the performance 
of connectors.  

Woodside proposed an automated construction of LQN 
models from the traces collected by the code added by a 
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tool integrated in the design environment [20]. In their 
approaches, one needs to insert additional code into the 
source code based on the design abstraction to collect 
execution traces and resource cost from special test cases. 
However, the approaches do not consider the impacts of 
the middleware also. 

There are some approaches emphasizing the influence 
on the middleware on the performance of a component-
based system. Llado [21] created an EQN based model to 
describe the performance of an EJB server. Cecchet [22] 
provided a benchmark for Java Enterprise application 
servers and found that the most influencing factor on the 
performance was caused by the middleware. Denaro [23] 
generated a prototype for a component-based application 
of an EJB system, but did not provide model building or 
tool support. Chen [24] gives a simple method to 
determine optimal thread pool sizes for Java application 
servers. However, these methods do not care about how 
to build performance model automatically and change 
with the environment. 

Verdickt [25] introduces a model transformation 
framework to include the performance overhead of 
middleware layers into a component-based system model. 
They use UML model, such as UML activity, deployment 
and collaboration diagrams, to build the performance 
models. Following MDA approaches, a model 
transformation maps a platform independent model into a 
platform specific model with a repository of middleware 
models which are also built with UML models. In their 
case study, the authors demonstrate how to include the 
performance impacts of the CORBA Object Request 
Broker (ORB) into the models. The main drawback of 
this approach is that it depends on the designers’ 
experience of performance modeling, because the 
application model should be provided by designers and 
how the middleware affects the application model should 
also be given by the designer. 

Grassi [26] provides a connector refinement 
transformation method which can transform the model 
from high level UML 2.0 architecture models into the 
KLAPER modeling language. KLAPER models can be 
transformed into queuing networks or Markov chains for 
performance analysis. This approach assumes the UML 
stereotype can be labeled with component connectors. 
For example, a connector could separate a static or 
dynamic synchronous client/server interaction. The 
authors suggest building a library of parametric connector 
behaviors’ models for each of the stereotypes. 

VI. CONCLUSION 

Multi-tenancy application is one of the most important 
techniques to share the platform. The performance of a 
multi-tenancy application is largely affected by the 
platform’s configurations. In this paper, we proposed a 
configuration driven modeling approach for this type of 
applications, which not only presents a feasible solution 
for modeling configuration aware systems, but also gains 
us valuable experiences of modeling the complex 
platforms. 
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