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Abstract—Traditionally variational level set model for image 
segmentation is solved by using gradient descent method, 
which has low computational efficiency and needs complex 
re-initialization of level set functions as signed distance 
functions. In this paper, we first reformulate the variational 
model as a constrained optimization problem. Then we 
present an augmented Lagrangian projection method to 
preserve signed distance functions and accelerate the 
implementation. By introducing auxiliary variables, we 
convert derivative constraints to algebraic equations with 
simple projection. We apply the proposed algorithm to the 
two-phase/multiphase Chan-Vese models. Numerical results 
are provided to compare our algorithm with some others, 
which demonstrate effectiveness and efficiency of our 
approach. 
 
Index Terms—level set method, signed distance function, 
augmented Lagrangian method, projection, segmentation 

I.  INTRODUCTION 

In the last twenty years, many of the most general 
segmentation models have been solved by the level set 
method (LSM) [1-3]. The basic idea of the LSM is to 
implicitly represent a contour or interface as the zero 
level set of a higher dimensional function, called a level 
set function (LSF), and formulate the motion of the 
contour as the evolution of the LSF. For closed contours, 
signed distance functions (SDFs) were originally adopted 
to represent LSFs. Some recent developments have 
proposed to use label functions [4], rather than SDFs, to 
represent contours. This change allows us to use convex 
relaxation techniques [5] and fast algorithms [6-8] to 
provide effective alternatives to distance preserving 
LSMs. Nevertheless, the LSM for image segmentation 
uses zero level set of a continuous SDF to express 
contour, and the geometric features such as normal, 
curvature can be calculated naturally, which is very 
convenient to post processing of curves and surfaces [9]. 
For this reason, it is important to design fast and accurate 
algorithms for distance preserving level set methods. 

In conventional level set formulations, the LSF is no 
longer preserved as an SDF during contour evolution. To 
overcome this difficulty, two approaches have been 
suggested to restore the regularity of the LSF and 
maintain stable interface evolution. Re-initialization [10] 
is the most common method, which is performed by 
periodically stopping the evolution and reshaping the 
degraded LSF as an SDF. However, this approach 
introduces the questions of when and how to re-initialize 
the LSF. Also, it may incorrectly move the zero level set 
away from the expected position. In order to avoid re-
initialization, the second method aims at constraining the 
LSF to preserve an SDF during the contour evolution [9, 
11-15]. In [11], the authors introduce a new formulation 
to restrict the LSF to an SDF. But this formulation 
consists of three PDEs, which makes the numerical 
implementation more difficult than the standard LSM. 
More recently, Li et al. [12] has proposed to add a penalty 
term into the original energy functional. The penalty term 
eliminates the need for re-initialization. However, the 
time step of their method is restricted by the Courant-
Friedrichs-Lewy (CFL) condition [16] and the SDF 
property is only encouraged but not enforced. In [14], Liu 
et al. proposes an augmented Lagrangian method (ALM) 
to get rid of re-initialization. Their method simplifies the 
treatment of constraint greatly, but it does not avoid the 
computation of curvature, which is time-consuming. 

In this paper, we propose a constrained optimization 
approach, split augmented Lagrangian projection method 
(SALPM), to get rid of re-initialization and improve the 
computation efficiency. We incorporate the variable 
splitting technique to update the Lagrange multiplier, and 
constrain level set functions to stay distance functions via 
direct projection. We apply our algorithm to the Chan-
Vese models [17, 18]. Comparisons with other methods 
have shown the high efficiency of our proposed approach. 

The rest of this paper is organized as follows. In 
Section II, we review briefly the LSM applied to image 
segmentation. In Section III, we discuss the framework of 
our new model in detail. Numerical results are given in 
Section IV. Section V draws the conclusions. Corresponding author: Cunliang Liu 
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II.  RELATED WORKS 

A.  LSM and VLSM  

We first recall the traditional LSM. Let 2RΩ ⊂  be an 
open bounded domain, ( ) :f RΩ →x  be a given image, 
where ( , )x y=x  is a pixel in Ω . The LSF φ  is normally 
defined as an SDF 
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where ( , x)d C  denotes the Euclidean distance from x  to 
.C  A constraint to (1) is the equation 

 ( )x, 1tφ∇ =  (2) 

To satisfy (2), [10] used a re-initialization scheme to 
solve the following equation to steady state 
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where 0φ  is the function to be re-initialized. 
The variational LSM (VLSM) proposed in [19] offers 

us a way to embed the LSF directly into the energy 
functional by utilizing the following facts  

 ( ) ( )d , dC S Hδ φ φ φ
Ω Ω

= ∇ =∫ ∫x x  (4) 

In the above, | |C  is the length of C , | |S  is the area of 
S  (an open set S ∈ Ω , i.e. C S= ∂ ). ( )H z  and ( )zδ  are, 
respectively, Heaviside function and Dirac delta function. 
To avoid singularity in numerical implementation, ( )H z  
and ( )zδ  are usually expressed in regularized versions 
with parameter 0ε >  to approximate the original ones as 

 ( ) 1 1 arctan
2
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B.  The Chan-Vese Model without Re-initialization 
We here adopt the Chan-Vese model for image 

segmentation, as it represents a large class of active 
contour models published in the literature. The Chan-
Vese model proposed to use m level set functions to 
represent 2mn =  phases. If 1m = , it is called the two-
phase Chan-Vese mode, otherwise it is the multiphase 
Chan-Vese model [17, 18].  

For 1, 2,...,i n=  and 1,2,...,j m= , let ( 1 2
1 1 1... m

i i ib b b− − − ) be 
the binary representation of 1i − , where 1 0 1j

ib − = ∨ . The 
characteristic function ( )iχ x  can be written as the 
following general expression [20] 
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1
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where jφ  is the level set function. The Chan-Vese model 
becomes the following minimization problem 
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where γ  is a positive tuning parameter, iu is the mean 

intensity value, and ( , )i iQ u x  is defined as 2( )iu f− .  
Considering the constraint (2), we can formulate the 

problem (7) as a constrained minimization problem 
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In order to force the LSF to be an SDF during 
evolution, great efforts have been made to enforce (1) to 
satisfy (2). The authors in [12] add a quadratic 
penalization term of (2) into the functional and obtain the 
following unconstrained minimization problem 
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The minimization problem (9) is usually solved by 
using an alternating optimization scheme 
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Theoretically, μ  should be a large penalty parameter, but 
it was pointed out in [12] that the time step 0tΔ > and 
the parameter 0μ > must satisfy 0.25tμΔ < for stability. 
Therefore, there is a contradiction between the accuracy 
of the constraint and the choice of large time steps. 

To improve the accuracy and stability, the authors in 
[14] introduce an ALM to solve the segmentation 
problem in (8). Define ( ) | | -1j j jD φ φ= ∇ , the augmented 
Lagrangian functional is 
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where jλ is called the Lagrange multiplier.  
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The minimization of (12) is solved by the following 
iterative scheme  
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and 

 ( )1 1 -1k k k
j j jλ λ μ φ+ += + ∇   (14) 

This method simplifies the treatment of constraint 
greatly, but it does not avoid the computation of 
curvature in evolution equation (13) as in (11). 

III.  THE PROPOSED METHOD  

A.  SALPM  

The SALM in this section is inspired by the researches 
in [6, 7]. Different from the constraint | | -1j jD φ= ∇  in 
(12), we introduce a new variable, say jw , to serve as the 
argument of the functional ,j j jD w u= − ∇  under the 
constraint .j jw u= ∇ This leads to the following 
constrained problem  
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Note here that the SALM reduces the possibility of ill-
conditioning by introducing the Lagrangian multiplier jλ  
and variable jw  at each step into the energy functional 
(15). Therefore, the convergence of this algorithm can be 
guaranteed without increasing μ  to a very large value as 
the penalty method in (9).  

Since (15) involves multiple variables, we also use the 
alternative minimization method to find the numerical 
solution to (15). A saddle point of the max-min problem 
(15) needs the following three equations 

 

( ) ( )
( )( )

1
div

div 0

njk ki
j i j

j ji
k

j j

w Q

w

δ φ
γ λ

φ φ

μ φ
=

∂ ∂χ
+ +

∂ ∂

− Δ − =

∑
  (16) 

( ) ( )1 1 0j k k k
j j j j

j

w
w

w εγ δ φ λ μ φ+ ++ + − ∇ = s.t. 1jw =   (17) 

 ( )1 1 1k k k k
j j j jwλ λ μ φ+ + += + − ∇   (18) 

We use the semi-implicit difference scheme and 

Gauss-Seidel iterative method to obtain a steady-state 
solution to the sub-problem (16). 

Minimization with respect to 1k
jw +  can be performed 

by using the following shrinkage operator [7]  
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At last, 1kw +  is obtained via a simple projection 
technique as 
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B.  Algorithm Details 
Now we present the iterative augmented Lagrangian 

projection method in Algorithm I. 
 

Algorithm I (SALPM) 

1.  Initialization: 0 0 0, ,j j jwφ λ and set 0,k =  

 for 1, 2,..., , 1, 2,..., .i n j m= =  
2.  Repeat  
3.       Update each 1k

iu + by (10); 

4.       Compute each 1k
jφ + by (16); 

5.       Compute each 1k
jw + by (19) and (20); 

6.       Compute each 1k
jλ + by (18); 

7.      1k k= + ; 

8. Until a stopping criterion 1k k kE E E η+ − ≤  is satisfied, where 

η  is a small positive value. 

IV.  EXPERIMENTAL RESULTS 

This section shows numerical results of our SALPM 
for both synthetic and real images. All the experiments 
are performed by using MATLAB v2010b on a Windows 
XP platform with an Intel Core 2 Duo CPU at 2.80 GHz 
and 2GB memory. To set up a relatively neutral criterion 
for comparison, we use the same initial contour for all the 
methods in each experiment. Moreover, some parameters 
are fixed for generality as follows: 2,ε =  0.02.tΔ = γ  is 
required to be tuned for each example, and is usually 
formatted by 2255 , (0,1).γ α α= × ∈  

A.  Comparison and Analysis of Two-phase Experiments 
We first compare our proposed algorithm to re-

initialization method in [10], Li et al.’s method in [12] 
and ALM in [14] designed to preserve the SDF in the 
LSM. The test image is presented in Fig. 1(a). For the re-
initialization method, the initial LSF is an SDF. The 
initial LSF for the other three approaches is a piecewise 
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(a)                                                                                  (b) 

          
(c)                                                                                  (d) 

          
(e)                                                                                  (f) 

             
(g)                                                                                  (h) 

           
(i)                                                                                  (j) 

Figure 1.  Segmentation of circle image with two phases. (a) Test image of size 100×100; (b) Same  segmentation result using re-initialization 
method, Li et al.’s method, ALM and SALPM, respectively; (c)-(d) Results with re-initialization for 20.01 255γ = × ; (e)-(f) Results with Li et 

al.’s method for 20.01 255γ = × ; (g)-(h) Results with ALM for 20.1 255γ = × ; (i)-(j) Results with SALPM for 20.01 255 .γ = ×  

constant function. Numerically, we can check that the 
four methods give the same solution as shown in Fig. 1(b). 
Figs. 1(c), 1(e), 1(g), and 1(i) show the evolution of the 
level set function for the four different methods. In Figs. 

1(d), 1(f), 1(h), and 1(j), we plot the corresponding mean 
deviation of | | 1kφ∇ − , which measures the distance 
between the computed LSF at the kth iteration. 
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(a)                                                                  (b)                                                                   (c) 

               
(d)                                                                  (e)                                                                   (f) 

Figure 2.  Segmentation of Europe night-lights image with two phases. (a) Test image of size 238×188; (b) Result with no re-initialization 
for 20.05 255γ = × ; (c) Result with re-initialization for 20.05 255γ = × ; (d) Result with Li et al.’s method for 20.1 255γ = × ; (e) Result with 

ALM for 20.05 255γ = × ; (f) Result with SALPM for 20.01 255 .γ = ×  

TABLE I 
COMPARISON OF ITERATIONS AND COMPUTATION TIME USING DIFFERENT SEGMENTATION METHODS  

Methods 
Iterations CPU time (s) 

Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 1 Fig. 2 Fig. 3 Fig. 5 

Re-initialization method [10] 200 217 - - 9.34 11.23 - - 

Li et al.’s method [12] 1000 318 235 216 8.51 8.37 17.49 11.94 

ALM [14] 50 47 67 59 3.68 1.92 5.71 3.03 

SALPM 33 34 45 41 1.85 1.09 3.09 1.46 

Although the final LSF provides the desired results in 
Fig. 1(c), the periodic re-initialization process produces a 
non-smooth minimization in Fig. 1(d). Besides, we do 
not know in general when to re-initialize the LSF as an 
SDF. In this experiment, we apply the re-initialization 
for every 5 iteration. We then consider the penalty 
method in [12]. Fig. 1(e) shows their method does not 
constrain exactly the LSF to be an SDF. Moreover, their 
approach slows down the minimization process as the 

number of iterations to reach the convergence state 
increases considerably as shown in Fig. 1(f). We observe 
from Fig. 1(g) that the ALM in [14] converges faster 
than Li et al.’s method, but the LSF differs from an SDF. 
Our algorithm is presented in Figs. 1(i) and 1(j). Our 
formulation constrains the LSF to be an SDF due to 
projections, and the proposed SALPM is fast because it 
avoids the calculation of the curvature term. 

Next, we show the segmentation results on a natural 
Europe night-lights image in Fig. 2(a). We can see from 
Figs. 2(b) and 2(c) that the segmentation results visually 
have different topologies for the two-phase Chan-Vese 
model with no or with re-initialization process using the 
same parameters, which demonstrates that whether or not 
the re-initialization is done affects segmentation 

accuracy. Then the segmentation results by Li et al.’s 
method, ALM and our SALPM are given in Fig. 2(d)-(f). 
From the segmentation results, we see that all the three 
methods work for this image and get the satisfactory 
results. However, when better and detailed segmentation 
results are needed, our proposed method indeed performs 
better in Fig. 2(f). 

 
 
 
 
 
See Table I for the corresponding iterations and 

computation time for segmentation of this example. For 
the re-initialization method, a lot of time is spent on re-
initialization. Li et al.’s method is faster than the re-
initialization method, although it requires a considerable 
number of iterations. We can see that the ALM and our 

method are much faster than both of the re-initialization 
method and Li et al.’s method. Moreover, our method is 
much faster than the ALM due to simple computation of 
Laplacian, generalized soft thresholding formula and 
projection. 
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(a) 

        
(b)                                                                                        (c) 

        
(d)                                                                                        (e) 

Figure 3.  Segmentation of synthetic image with three phases. (a) Original synthetic image of size 256×128; (b) Degraded image and the same 
initial contour for all the methods; (c) Result with Li et al.’s method for 20.1 255γ = × ; (d) Result with ALM for 20.05 255γ = × ; (e) Result 

with SALPM for 20.01 255 .γ = ×  
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Figure 4.  Evolution of error ratio for segmentation of the synthetic image using different methods. 

B.  Comparison and Analysis of multiphase Experiments 
To provide some more insights, we compare our SALPM 
with the Li et al.’s method and ALM on multiphase 
image segmentation. Fig. 3(a) is a synthetic image with 
three regions. Fig. 3(b) is the degraded image with 
Gaussian noise. We observe from Figs. 3(c)-3(e) that 

three algorithms work for this noisy image and get the 
desirable results, but our method gives better 
segmentation results than the other two methods. In Fig. 
4, we present quantitative comparisons among the three 
methods by giving the plots of the error ratio (denoted as 
ER [21]) vs. the iteration number. Here, the results are 
consistent with the conclusion in Fig. 3.  
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(a)                                                          (b) 

          
(c)                                                          (d) 

Figure 5.  Segmentation of real image with four phases. (a) Test image of size 139×115; (b) Result with Li et al.’s method for 20.1 255γ = × ; 
(c) Result with ALM for 20.05 255γ = × ; (d) Result with SALPM for 20.01 255 .γ = ×  

In Fig. 5, we present the experimental results for four-
phase natural image segmentation of the Li et al.’s 
method, ALM and SALPM. Again, we observe from 
Figs. 4(b)-(d) that our algorithm exhibits a better 

performance than the other two in the aspect of 
segmentation accuracy. Meanwhile, we conclude from 
Table I that the SALPM converges faster and consumes 
less time than any of the other methods. 

V.  CONCLUSIONS 

In this paper, we have introduced a new variational 
level set formulation that completely eliminates the need 
of the re-initialization and overcomes the speed 
limitation. By introducing some auxiliary variables, we 
design its fast split augmented Lagrangian projection 
method, which does not involve difference of curvatures, 
and can preserve SDFs automatically via a simple 
projection. In addition, even if the initial LSF is not an 
SDF, it can be corrected automatically. 

The idea of this paper can be easily extended to other 
models under the variational level set framework, such as 
motion segmentation, 3D reconstruction, and geometric 
surface processing etc. 
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