
Human Action Recognition Using APJ3D and 
Random Forests 

 
Ling Gan 

Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts & Telecommunications, 
Chongqing, China 

Email: ganlingcq@yeah.net 
 

Fu Chen 
Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts & Telecommunications, 

Chongqing, China 
 
 
 

Abstract—Human action recognition is an important yet 
challenging task. In this paper, a simple and efficient 
method based on random forests is proposed for human 
action recognition. First, we extract the 3D skeletal joint 
locations from depth images. The APJ3D computed from 
the action depth image sequences by employing the 3D joint 
position features and the 3D joint angle features, and then 
clustered into K-means algorithm, which represent the 
typical postures of actions. By employing the improved 
Fourier Temporal Pyramid, we recognize actions using 
random forests. The proposed method is evaluated by using 
a public video dataset, namely UTKinect-Action dataset. 
This dataset is constituted of 200 3D sequences of 10 
activities performed by 10 individuals in varied views. 
Experimental results show that the robustness of 3D skeletal 
joint location estimation display very well results, and the 
proposed method performs very well on that dataset. In 
addition, due to the design of our method and the robust 3D 
skeletal joint locations estimation from RGB-D sensor, our 
method demonstrates significant reliability against noise on 
3D action dataset. 
 
Index Terms—APJ3D, Fourier Temporal Pyramid, 
random forests 
 

I.  INTRODUCTION 

Recent progresses on human action recognition have 
greatly improved multi-media technologies in a widely 
studied area, including video surveillance, sports video 
analysis, human computer interaction and video retrieval. 
Although human action recognition research work has 
received many encouraging developments, but still is 
quite a challenging task. Here we make human action 
recognition are the three major challenges. First is 

description of human action. Human action in the video 
sequence is a dynamic process that characterized not only 
with each frame of the body posture, but also with these 
the emergence of gesture sequences and continuous time. 
And even with a type of action, different individuals at 
the completion of the action of the process will be 
different due to the different height, shape, agility and so 
on. Therefore, on human action identification process, 
how to quickly extract simple but effective features is still 
facing a great difficulty in human action recognition. 
Second is representation model of human action, the 
relatively large changes in human action, but also has a 
strong combination of structural features, and how to 
combine these characteristics, design a strong distinction 
between the ability of the action of the model is an 
important issue in human action recognition. Third is 
efficient action classification algorithm design, action 
recognition has a high data dimension, training data 
acquisition difficulties characteristics, we hope that the 
behavioral categories algorithm has the training and 
classification speed, good effect, generalization ability 
characteristics. 

In order to solve the above challenges, researchers 
have proposed many solutions by the efforts. In 1975, 
Johansson’s experiment shows that humans can recognize 
action with highly compact observers [1]. Johansson 
demonstrated his statement taking a movie of a person 
walking in a dark room with lights connected to the 
person’s major joints. Even though only light spots could 
be observed that there was a strong identification of the 
3D motion in these movies. In recent studies, Fuijiyoshi 
and Lipton [2] proposed to use “star” skeleton extracted 
from silhouettes for motion analysis. Yu and Aggarwal [3] 
use extremities as semantic posture representation in their 
application for the detection of fence climbing. Zia et al. 
[4] propose an action recognition algorithm using body 
joint-angle features extracted from the RGB images from 
stereo cameras. Their dataset includes 8 simple actions 
(e.g., left hand up), and they were all taken from frontal 
views. Inspired by natural language processing and 
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Figure 1.  Overview of the method. 

information retrieval, bag-of-words approaches are also 
applied to recognize actions as a form of descriptive 
action unites. In these approaches, actions are represented 
as a collection of visual words, which is the codebook of 
spatio-temporal features. Schuldt et al. [5] integrate 
space-time interest point’s representation with SVM [6] 
classification scheme. Dollar et al. [7] employ histogram 
of video cuboids for action representation. Wang et al. [8] 
represent the frames using the motion descriptor 
computed from optical flow vectors and represent actions 
as a bag of coded frames. However, all these features are 
computed from RGB images and are view dependent. 
Researchers also explored action recognition algorithms 
from depth images. However, due to price reasons, 
research has been limited. 

The release of the low-cost RGB-D sensor Kinect has 
brought excitement to the research in computer vision, 
gaming, gesture-based control, and virtual reality. 
Shotton et al. [9] proposed a method to predict 3D 
positions of body joints from a single depth image from 
RGB-D sensor. Xia et al. [10] proposed a model based 
algorithm to detect humans using depth maps generated 
by RGB-D sensor. There are a few works on the 
recognition of human actions from depth data in the past 
two years.  

In this paper, we employ a feature based representation 
of 3D human posture named APJ3D. In this 
representation, we extract the 3D joint position features 
and the 3D joint angle features based on the depth data 
and the estimated 3D skeletal joint locations. We propose 
the APJ3D feature that extended from two types of 
features. We manually select 15 informative joints to 
build a compact representation of human posture. The 
APJ3D feature can against minor posture variation. The 
collection of APJ3D vectors from training sequences are 
first extracted using the joint position estimation and then 
clustered into K-means [11] algorithm. By employing the 
improved Fourier Temporal Pyramid, we recognize 
actions using random forests. Our method only utilizes 
depth information. Experiments show that this method 
achieves superior results on a challenging dataset. Our 
method is shown in Fig. 1. 

Our main contribution consists of two parts. First, we 
present a new method on human action recognition from 
depth imagery. Second, we propose a robustness 
representation of human postures and prove it is effective 

at action recognition, and the whole system runs at real-
time.  

The paper is organized as follows. Section 2 describes 
body part inference and joint position estimation from 
depth images. Section 3 describes our APJ3D as human 
posture representation. Section 4 addresses action 
recognition technique using random forests. Section 5 
introduces dataset and discusses the experimental results. 
Section 6 concludes the paper. 

II.  BODY PART DEMARCATE AND JOINT LOCATION 
ESTIMATION 

The human body is an articulated system of rigid 
segments connected by joints and human action is 
considered as a continuous evolution of the spatial 
configuration of these segments [12]. Here, we use 
joint locations to build a compact representation of 
postures. The locations estimation of the objects or 
persons in the 3D scene is an important problem, and 
RGB-D sensor provides a cheap and real-time solution. 
Shotton et al. [9] propose to extract 3D body joint 
locations from a depth image using an object 
recognition proposal. The human body is marked as 
body parts based on the per-pixel classification 
results. The parts include LU/ RU/ LW/ RW head, 
neck, L/R shoulder, LU/ RU/ LW/ RW arm, L/ R 
elbow, L/ R wrist, L/ R hand, LU/ RU/ LW/ RW torso, 
LU/ RU/ LW/ RW leg, L/ R knee, L/ R ankle and L/ 
R foot (Left, Right, Upper, Lower). They calculate 
the confidence-scored 3D location estimation of body 
joints by using a local mode-finding channel based on 
mean shift with a weighted Gaussian kernel. Their 
enormous and multiple training set allows the 
classifier to estimate body parts invariant of posture, 
body shape, clothing, and so on. Employing their 
algorithm, we obtain the 3D locations of 20 skeletal 
joints which include hip center, spine, shoulder center, 
head, L/ R shoulder, L/ R elbow, L/ R wrist, L/ R 
hand, L/ R hip, L/ R knee, L/ R angle and L/ R foot. 
Note that part of the body segmentation results can 
not be used directly. Fig. 2 shows an example result 
of 3D skeletal joints and the corresponding depth 
map. 

We apply these skeletal joint locations to express 
our representation of postures. Among these joints, 
hand and wrist and foot and ankle are very close to 
each other and thus superfluous for the 
characterization of body part constitution. Therefore, 
we calculate our features based expression of 
postures from 15 of the 20 joints, including head, 
neck, L/ R shoulder, L/ R elbow, L/ R hands, L/ R 
knee, L/ R feet, torso center and L/ R hip.  

Note that the estimated joint locations from RGB-
D sensor offer information concerning the orientation 
the person is facing RGB-D sensor, we are able to 
inform the left limb joints from those of the right 
limbs.  
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(a)                                                         (b) 

Figure 2.  (a) Skeletal joints locations (b) Depth image. 
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Figure 3.  Joint-angles representation: the zenith anglesθ  and the 
azimuth angles μ . 

III.  ANGLES AND POSITIONS OF 3D JOINT AS POSTURE 
REPRESENTATION 

As discussed, this section gives a detailed description 
of two types of features: the 3D joint position features 
and the 3D joint angle features, and we propose the 
APJ3D feature that extended from two types of features. 
We utilize to use the APJ3D feature to represent the 
actions. These features can characterize the human 
motions as well as the interactions between the objects 
and the human. These features are invariant to the 
translation of the human and robust to noise. 

A.  3D Joint Angles 
As the above discussed, the following features use the 

above skeletal joint locations. For each frame t , the 
skeleton rate is a sequence of graphs with 15 joints, 
where each joint has its geometric location. For a human 
subject, 15 joint positions are tracked by the skeleton 
tracker and each joint i  has 3 coordinates 

( ) ( ) ( ) ( ){ }, ,i i i it x t y t z tχ =  at a frame t . It is 
represented as a 3D point in a global Cartesian coordinate 
system. The joints contiguous to the torso are usually 
called first-degree joints, while joints contiguous to first-
degree joints are classified as second-degree joints. First-
degree joints include the elbows, the knees and the head, 
while second-degree joints are the extremities: the hands 
and feet.  

Different body postures are virtually acquired by 
alternating first and second-degree joints. Note that each 
joint movement has 2 degrees of freedom: a zenith 
angle θ and an azimuth angle μ , while the distance 
between contiguous joints is always invariant (Fig. 3).  

In the work of Raptis et al. [13], an oversimplified 

joint-angles representation is developed by alternating 

each joint location 3
i Rχ ∈  to local globular coordinates. 

First, a torso basis is estimated by applying a PCA [14] to 
a 7-3 torso matrix filled with the torso joint positions. 
Then, the globular coordinates of each first-degree joint 
are calculated as an interpretation of this torso basis to the 
joint. 

However, this same torso basis is used as consultation 
to alternate the second-degree joints, bring about a non-
local description of the angles. Also, as refered by the 
authors, some associations of joint positions can result in 
crumbled projections and consequently inconsistent 
angles, as in the open arms position [13]. 

B. 3D Joint Positions 
It is inadequate to only use the 3D joint angles to 

completely model an action. Therefore, it is indispensable 
to employ a feature to describe the local “depth 
appearance” for the joints. The 3D joint positions [15] are 
used to establish the motion of the human body. Since 
joint positions is invariant features. The pairwise relative 
positions of the joints results in more discriminative 
features for representing the human movement is our key 
suggestion.  

Due to the coordinates are normalized, so the motion is 
invariant to the absolute body position, the initial body 
orientation and the body size. 

For each joint i , we extract the pairwise relative 
position features by taking the difference between the 
position of joint i  and that of each other joint j : 

                            ij i jp p p= −                                   (1) 

The 3D joint feature for joint i  is defined as: 

   { }i ijp p i j= ≠丨                                (2) 

Although enumerating all the joint pairs introduces 
some information that is irrelevant to our classification 
task, our approach is able to select the joints that are most 
relevant to our recognition task.   

C.  APJ3D as Posture Representation 
Through the analysis above, we introduce our new 

feature, namely APJ3D. The APJ3D feature is described 
as follows. 

First of all, we use the same torso basis for first-degree 
joints, and the representation of second-degree joints by 
considering rotations of the orthonormal torso basis 
{ }, ,U R T . Let v  be the vector defined by the right arm 
and the right elbow and w  the vector between the right 
elbow and the right hand. To define a local basis for the 
right hand, we rotate the torso basis { }, ,U R T  by the 

angle ( )arccos v rβ = ⋅  around the axis b v r= × . 

Note that if 1v r⋅ = , no rotation is applied. Also 
1v r⋅ ≠ −  since the right arm can never rotate 

completely left due to body constraints. The rotated basis 
is translated to the right elbow and the spherical 
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Figure 4.  fourier temporal pyramid. 

coordinates of the right hand are computed as    
 θ  the angle between v  and w  
 μ  the angle between the rotated t  and the 

projection of w  in the plane whose normal is v  
If v  and w are collinear, we just set 0ϕ = , as the 

azimuth is not defined, and this will not be an issue to us. 
The other second-degree joints are similarly constructed 
using variants of the torso basis, such that collapsing 
issues are avoided by other body constraints. 

Each joint position iχ   is represented using a pair of 

spherical angles ( ) ,i iθ μ  that specifies it in a locally 
defined spherical coordinate system. We also compute 
the angleη between the directional vector z  from the 
RGB-D sensor and the inverted vector t−  from the torso 
basis, to detect torso inclinations. Thus, a body posture 
joint-angles representation is a posture descriptor vector 

( ) 19
1 2 9 9, , , , ,v Rθ μ θ μ η= ∈ . 

Afterward, we select the pairwise relative position 
features as 

 m  the relative position between the torso center 
and the hands 

 n  the relative position between the torso center 
and the feet 

Thus, we use vector ( ),p m n=  to act as the features 
for action. Representing the human motion as the relative 
joint positions results in more discriminative and intuitive 
features. This can be better characterized through the 
pairwise relative positions. 

Finally, we extract two types of features from each 
frame t : the 3D joint position features [ ]p t , and the 3D 

joint angle features [ ]v t . We combine them through 
weighted sum method, and superimposed them to form a 
new feature. So we can represent the posture by the 
vector  [ ] [ ]{ },S p t v t . 

IV.  ACTION RECOGNITION USING RANDOM FORESTS 

We recognize a variety of human actions by using 
random forests technique similar to the standard random 
forests structure [16]. In this section, we introduce how to 
recognize human action by using random forests. 

Although the applied feature is robust to noise, but we 
using the current random forests to recognize human 
action, we always experience temporal misalignment so 
that the recognition results is very sensitive to temporal 
interval. So we review Fourier Temporal Pyramid [15], 
and we propose to use the improved Fourier Temporal 
Pyramid to represent the temporal dynamics of these 
frame-level features, and to solve the problem of 
temporal interval.  

A.  Key Posture Learning 
We apply an image sequence or video to represent each 

action, and using the vector representation of postures to 

represent an image sequence or video. As the vector 
representation of postures is in a continuous space, the 
key process is to alternate each frame into an observation 
symbol so that each action may be represented by an 
observation sequence.  

In order to reduce the number of observation symbols, 
we extract APJ3D features from each frame t: the vector 

[ ] [ ]{ },S p t v t . We cluster the feature vectors by using 

K-means. Then each action is represented as a sequence 
of the key postures. In this way, each action is a time 
series of the key postures. 

B.  Fourier Temporal Pyramid 
The Fourier temporal pyramid technique similar to the 

spatial pyramid method [17]. In order to capture the 
temporal structure of the action, apart from the global 
Fourier coefficients, we recursively partition the action 
into a pyramid, and use the short time Fourier transform 
for all the segments, as showed in Fig. 4 .The final 
feature is the concatenation of the Fourier coefficients 
from all the segments. 

We improve Fourier Temporal Pyramid. The improved 
Fourier Temporal Pyramid is described as follows. For 
each key posture s , let ( ),g p v=  denote its overall 
feature vector where p is its 3D pairwise position vector 
and v  is its 3D joint angle vector. Note that each element 
g  is a function of time and we can write it as [ ]g s . For 
each time segment at each pyramid level, we use Short 
Fourier Transform [18] to element [ ]g s  and acquire its 
Fourier coefficients, and we utilize its high-frequency and 
low-frequency coefficients as features. The Fourier 
Temporal Pyramid feature at key postures is defined as 
the high-frequency and low-frequency coefficients at all 
levels of the pyramid, and is denoted as G . 

The applied Fourier Temporal Pyramid way has 
several benefits. First, by obtaining the low-frequency 
Fourier coefficients, the applied way is robust to noise. 
Second, by obtaining the high-frequency Fourier 
coefficients, the applied way can reflect the action 
mutation. Finally, this way is insensitive to temporal 
interval, because time series with temporal translation 
have the same Fourier coefficient magnitude, and the 
temporal structure of the actions can be characterized by 
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Figure 5.  Decision tree growing. 

the pyramid structure. 
In this section, we use four-level Fourier Temporal 

Pyramid, with 1/4 length of each segment as the high-
frequency coefficients and low-frequency coefficients. 

C.  Randomized Tree Training 
The training process is constructed according to the 

standard random forests structure [16]. We extract 
features from the training sets are trained with the random 
forests classifier, and assembled by a set of randomized 
decision trees. In each decision tree, W  segment features 
are randomly selected from the training sets and put at a 
root node, and mapped to a set of termination leaf nodes 
by the interior binary splitting joints. At each interior 
joint, f  variables are randomly selected out of the F  
feature dimension and the decision threshold T  is 
correspondingly chosen in the range 

( ) ( ){ }min max
q q q qT f v T f v≤ ≤丨 . The splitting 

function is defined as: 

                 ( ) ( ){ }
,

1,

0,
n q

l r q

if q I f v T
f v

otherwise

⎧ ⎫∈⎪ ⎪=⎨ ⎬
⎪ ⎪⎩ ⎭

丨 ＞                    (3) 

After training, supposing K  leaf nodes are generated 
in a decision tree, each segment w W∈  must fall into a 
leaf node k K∈ . As illustrated in Fig. 5, the class label 
at a leaf node k

ckP , refers to the proportion of segments 
within each action class that reaches this leaf node after 
training 1k

ckP =∑ .  
 

To measure the training quality of each leaf node, the 
proportion of segments from sequences of a same action 
falling into the same leaf node, the information gain is 
defined at each split node: 

 ( ) ( )1
1

r
r

n n

I I
E E I E I

I I
Δ =− −                       (4) 

Δ E  refers to the information gain, ( )E  denotes 

entropy, 1I , rI  and nI  indicate the left splitting features, 
the right splitting features and the total input features at 
the splitting node respectively. This equation is given 
with respect to the splitting function at each splitting node. 

Since the f  variables are randomly selected from the 
feature vector and the decision threshold T  cannot be 
predefined to maximize the information gain, a set of 
combinations of ‘ f ’s and ‘ t ’s are recursively tried to 
boost training quality. 

D.  Learning Forests 
The training set is equally divided into a number of 

subsets, and then dispatched to different decision trees. 
Normally, in order to boost the general performance, the 
subsets are set to have overlaps with each other. 
Supposing the total training feature number is N  and 
there are 1N  decision trees within the random forests 
classifier, and the features that are dispatched to each 
decision tree are more than the number  1/N N . In the 
testing stage, each segment feature is pushed to the root 
node of each decision tree in the random forests classifier, 
and eventually forwarded to a terminating leaf node. The 
path between a root node and a terminating leaf node 
consists of a set of split nodes, and each split node 
contains a binary splitting function. When the segment 
feature drops into a terminating leaf node, a histogram 

nP  refers to the proportion of segments per class label 
that fall into this leaf node during training stage, which is 
the soft voting result at the decision tree  1n N∈  . 
Finally, the prediction histogram of the whole forests is 
acquired by summing up the voting histograms from all 
the decision trees: 

 
1

1

N

f n
n

P P
=

=∑                                       (5) 

V.  EXPERIMENTS RESULTS 

In this section, we first give the experimental 
environment in Section A. Second, we give the 
description of experimental data sets in Section B. Last, 
we give the experimental results and analysis in Section 
C. 

A.  Experimental Environment  
The experiment has been implemented on a personal 

computer with a 2. 3-GHz Intel i5 processor CPU using 
Microsoft VS2010. The experiment selected some 
representative standard test environments to test the 
robustness of joint location estimation. 

B.  Data Sets  
We choose UTKinect-Action dataset [19] to evaluate 

the proposed action recognition method. In the dataset, 
there are about containing 10 types of human actions in 
indoor settings. The RGB images and depth maps were 
captured at 30 frames per second. The 10 actions include: 
walk, sit down, stand up, pick up, carry, throw, push, pull, 
wave and clap hands. As shown in table.1.  
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Figure 7.  In a fluorescent light environment. 

 

Figure 8.  In the dark environment. 

 

Figure 9.  In the complex background environment. 

 

Figure 6.  Sample images from videos of the 10 activities in the
dataset. 
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Figure 10.  Recognition accuracy rate in the case of different number of 
frames on KTH date sets. 

 
 

 
Each action was collected from 10 different persons 

for 2 times: 9 males and 1 female. One of the persons is 
left handed. Sample RGB images from the dataset are 
shown in Fig. 6. 

C.  Experimental Results and Analysis  
To verify the robustness of skeletal joint location 

estimation, we test and compare the skeletal joint location 
estimation algorithm in different environments.  

Fig. 7, Fig. 8 and Fig. 9given a few representative 
frames in the joint location estimation results. As is 
shown in Fig. 7 and Fig. 8 when human in a fluorescent 

light and the dark environment the skeletal joint location 
estimation algorithm can recognize the human target 
timely. And Fig. 9 shows that when the complex 
background environment algorithm can eliminate the 
target joint location in time. The experimental results 
indicated that the real-time and the robustness are high 
for the skeletal joint location estimation algorithm in 
different environments. 

In our experiments, we using UTKinect-Action dataset 
because those actions were chosen to cover various 
movement of arms, legs, torso and their combinations, 
and the subjects were advised to use their right arm or leg 
if an action is performed by a single arm or leg. Although 
the background of this dataset is clean, this dataset is 
challenging because many of the actions in the dataset are 
highly similar to each other. 

We extract the 3D skeletal joint locations from the 
depth sequence by using the real time joint location 
estimation. Since there is no human-object interaction in 
this dataset, we only extract the 3D joint location features. 

 In this dataset, we take the actions of five people for 
training and use those of the remaining one for testing. 
For each action sequence of a person in this dataset, we 
extract APJ3D features from each frame. In order to 
reduce the training time, the [20] give an experiment on 
KTH data sets. The experimental results show that 
snippets of 5-7 frames (0.3-0.5 seconds of video) are 
enough to achieve a performance similar to the one 
obtainable with the entire video sequence. As shown in 
Fig. 10. So we take K-means algorithm, and made action 
sequence of a person clustering key postures. Then 
obtaining the high-frequency and low-frequency 
coefficients by the improved Fourier Temporal Pyramid. 
We train and test by random forests. Training set or 
testing set is composed by those actions.  

 
 
 

TABLE I.   
THE NUMBENR OF ACTION TYPE 

Number Action Number Action 

1 Walk 6 Throw 

2 Sit down 7 Push 

3 Stand up 8 Pull 

4 Pick up 9 Wave 

5 Carry 10 Chap hands 
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Figure 12.  Recognition performance of our method measured using 
confusion matrices. 
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Figure 11.  Recognition performance of our method and DHMM. 

 

 

 
We can observe Fig. 11 and the confusion matrix of 

Fig. 12. Although some actions is performed not well, 
because of the interference of some external factors, or 
the classification errors may occur if two actions are too 
similar to each other, such as “sit down” and “stand up”, 
or if the occlusion is so large that the skeleton tracker 
fails frequently, such as the action “push” and “throw”. 
But for most of the actions, our method works very well.  

Table.Ⅱ shows the accuracies of different methods. 
The accuracy of Discrete Hidden Markov Model is 
90.92%, this method taking histograms of 3D joint 
locations as the feature, and using Discrete Hidden 
Markov Model to train and recognition.  By employing 
the APJ3D and the improved Fourier Temporal Pyramid, 

our method can obtain a recognition accuracy of 92%. 
This is a relatively good result considering the difficulties 
in this dataset. From the table, we can see that: a higher 
recognition rate can be achieved with our method. 

In order to test our method against noise stability, we 
select action “walk” as subjects. Our method and that of 
Discrete Hidden Markov Model is shown in Fig. 13. In 
this experiment, we add white Gaussian noise to the 3D 
joint locations of action “walk”, and compare the relative 
accuracies of the two methods. For each method, its 
relative accuracy is defined as the accuracy under the 
noisy environment divided by the accuracy under the 
environment without noise. We can see that our method 
is much more robust to noise than the Discrete Hidden 
Markov Model.  
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Figure 13.  The relative accuracy between our method and DHMM. 

In this experiment, the robustness of the proposed 
method and only random forests to temporal shift is also 
compared. We circularly shift all the training data, and 
keep the test data unchanged. The relative accuracy is 
shown in Fig. 14. It can be seen that both methods are 
robust to the temporal shift of the depth sequences, but 
only random forests is more sensitive to temporal shift 
than the proposed method. 
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Figure 14.  The relative accuracy between our method and only random 

forests. 

 

VI.  CONCLUSION 

We have proposed novel features and used random 
forests model for human action recognition with depth 
images. The proposed features are discriminative enough 
to classify human actions with subtle differences as well 
as human object interactions and robust to noise. In order 
to solve the sensitive issue of temporal misalignment, we 
use random forests with the improved Fourier Temporal 
Pyramid. The improved Fourier Temporal Pyramid is 
capable of better capturing the intra-class variations and 
is more robust to the noises and errors in the depth 

TABLE II.   
RECOGNITION ACCURACY COMPARISON FOR UTKINECT-ACTION 

DATASET 

Method overall 
accuracy 

Discrete Hidden Markov Model [19] 90.92% 

Proposed Method 92% 
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images and the skeletal joint locations. The experiments 
demonstrated the superior performance of the proposed 
method to the state of the art methods. In the future, we 
aim to exploit the effectiveness of the proposed technique 
for the understanding of more complex activities. 
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