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I. INTRODUCTION

Face recognition is the computer technology applied in
biometric identification. In practical applications of face
recognition, high-dimensional face data not only is
difficult to deal with but also contains redundant feature
information. Therefore dimensionality reduction is the
common pre-processing step in applications of data
mining[1]. The past twenty years have witnessed rapid
development on dimensionality reduction algorithms.
Among them, Principal Component Analysis (PCA) [2]
and Linear Discriminant Analysis (LDA) [3] are two
most popular dimensionality reduction algorithms. LDA
is a supervised method for feature extraction and
dimensionality reduction and has been widely used in
many applications such as face recognition [3-7]. Aiming
at the problem of singular caused by the small sample
size problems, some extensions of LDA have been
developed [8-14], However, these extensions of LDA and
LDA must take into account of the premise that data
approximately obeys a Gaussian distribution that cannot

always be satisfied in practicable applications. For
solving the problem, Cui et al proposed a Graph-based
Fisher Analysis (GbFA) [15]. In the term of the theory of
spectrum graph [16-18], GbFA redefines the intrinsic
graph based on the same-class samples and the penalty
graph based on the not-same-class samples, making the
original neighbor same-class samples much closer in the
output space while pushing apart the original neighbor
not-same-class samples in the output space. Hence GbFA
encodes the rich discriminating information and enhances
the classification. Moreover, there is no assumption that
data obeys Gaussian distribution for GbFA.
With development of the tensor algebra, typical tensor

dimensionality reduction algorithms [19, 20] are
proposed. Usually tensor dimensionality reduction
algorithms represent 1 ... mn n× × data as a point in tensor
space 1 ... mR R× × , which guarantee that projected low-
dimensional data preserves spatial relations of high-
dimensional data. [20] extended traditional LDA into
second-order tensor space. [21] proposed Tensor Locality
Sensitive Discriminant Analysis (TLSDA) to preserve the
key structure of data by using the labeled samples and
TLSDA has high performance as well as low time
complexity. [22] proposed Tensor Locally Linear
Discriminative Analysis (TLLDA) algorithm for image
presentation, which is originated from the Local Fisher
Discriminant Analysis (LFDA).
Semi-supervised dimensionality reduction exploits

supervised information in labeled samples and fuses
unsupervised information in unlabeled samples [23, 24].
Motivated above analysis, a Semi-supervised Tensor
Graph-optimized Linear Discriminant Analysis
(STGLDA) for face recognition is proposed, which is
originated from PCA and GbFA. The algorithm firstly
regards two-dimensional face images as a second-order
matrix in the tensor space 1 2n nR R⊗ ; then fuses PCA and
GbFA with linear weighted way; finally gets two project
matrixes U and V to achieve the projecting from high-
dimensional data to low-dimensional data. Following the
characteristic of tensor dimensionality reduction, the
algorithm preserves global scatter structure and enhances
discriminant information. Experimental results on YaleB
and AR show that the proposed algorithm is efficient.
The rest of the paper is organized as follows: Section

Ⅱ reviews PCA and GbFA. STGLDA is introduced in
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Section Ⅲ . In Section Ⅳ , we compare proposed
STGLDA with TPCA, TLPP, OTNPE and TLLDA. The
experimental results and analyses are presented. Finally,
we provide some concluding remarks and future work in
SectionⅤ.

II. RELATED WORKS

A. Principal Component Analysis (PCA)
PCA is an unsupervised dimensionality reduction

method for preserving the global data structure.
Destination of PCA is to find iteratively the maximum-
variance direction of the data points. The objective
function of PCA is defined as:
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B. Graph-based Fisher Analysis (GbFA)
According to the graph theory, GbFA defines the
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The objective function of GbFA is defined as follows:

( )( )
( )( )

1

1T T'

argmax

argmax

p cT

T

T G G

tr T XLXT T XLXT

−

−

=

⎡ ⎤= ⎢ ⎥⎣ ⎦

(7)

Ⅲ. SEMI-SUPERVISED TENSOR GRAPH-OPTIMIZED
LINEAR DISCRIMINANT ANALYSIS (STGLDA)

A. Objective function
According to these analyses, on the basis of PCA and

GbFA, the paper proposed a Semi-supervised Tensor
Graph-optimized Linear Discriminant Analysis
(STGLDA) for face recognition.
Two-dimensional matrix face images are naturally

represented by second-order tensors in the case of
image sequences[25]. A two-dimensional matrix

image is an element of the tensor space 1 2n nR R⊗ . Given
training samples 1{ | }d n

i i iX x x R == ∈ that contain C
classes, (1 )i i Cn ≤ ≤ denotes the number of samples of the i-
th class. According to Eq.(2) and Eq.(7), STGLDA aims
to find two projecting U and V to get

{ }1, ,T
nY U XV y y= = … ,fusing PCA and GbFA with the

linear weighted way under constrained conditions TU U I=

and TV V I= . The trace radio of objective function on
STGLDA is defined as follows:
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where β denotes the weighted trade-off parameter.

B. Theory Analysis
Since ( )2 TA tr AA= , we can obtain
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Figure 1. A group of face images on YaleB.

Figure 2. A group of face images on AR.
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To ensure U and V converged, we iterate the procedure
for several times until error conditions are satisfied.

C. Algorithm Steps
Input:Input:Input:Input: Training samples 1 2{ }| ,1i

n n
ixX i nx R ×= ≤ ≤∈ of

the tensor space 1 2n nR R⊗ , error ε .
Output:Output:Output:Output: two project matrixes ( )1 1U n l× and ( )2 2V n l× .
Steps:Steps:Steps:Steps:
(1)Initial setting: (1) 1 1( , )U I n l= , (1) 2 2( , )V I n l= , 1t = ，

(1)U and (1)V denote respectively unit matrix,
1 2{ | ,1 }

i i

n lv v vX x x R i n×= ∈ ≤ ≤ , 2 1{ | ,1 }i i
n lu u uX x x R i n×= ∈ ≤ ≤ ,

elements of vX and uX are zero.
(2)Set iteration circle variation t=1.
(3)Calculate (1 )i i

v V i nx x= ≤ ≤ .
(4) According to Eq. (5) and Eq.(6), calculate

respectively ijW and '
ijW in 1{ },...,v v v

nxX x= .
(5) According to Eq. (11) and Eq.(12), calculate

respectively ̂bL and ̂wL .
(6)Transform Eq.(8) into the generalized eigenvector

problem to calculate ( )tU and ( )tU is normalized.

(7)Calculate (1 )u T
i i U i nx x= ≤ ≤ .

(8) According to Eq. (5) and Eq.(6), calculate
respectively ijW and '

ijW in 1{ },...,u u u
nxX x= .

(9) According to Eq. (11) and Eq.(12), calculate
respectively ̂bL and ̂wL .
(10)Transform Eq.(8) into the generalized eigenvector

problem to calculate ( )tV and ( )tV is normalized.

(11)If ( ) ( 1)t tU U ε−− ≺ and ( ) ( 1)t tV V ε−− ≺ , then jump into
step (12), else t =t +1 and jump into step (3).
(12)Obtain projecting matrix ( )tU U= and ( )tV V= .

Ⅳ. EXPERIMENT

A. Experimental datasets
In the experiment, YaleB and AR face datasets are

selected. They are described as followed:
(1) YaleB contains 2414 front-view face images of 38

individuals. For each individual, about 64 pictures were
taken under various laboratory-controlled lighting
conditions. In our experiments, we resize images to
32×32 pixels.
(2)AR consists of over 4000 face images of 126

individuals. For each individual, 26 pictures were taken
in two sessions that separated by two weeks and each
section contains 13 images, which include front view of
faces with different expressions, illuminations and
occlusions. In our experiment, we resize theses face
images of AR to 30×30 pixels.
A group of face images on YaleB and AR are shown in

Fig.1-Fig.2.

B. Experimental settings
In order to evaluate the performance of STGLDA,

TPCA, TLPP, OTNPE and TLLDA are selected for
making comparison. Parameter settings in various
algorithms are shown in Table1.

We repeated 40 times and the average of recognition
accuracy is gotten as experimental results.

C. Experimental results
In experiments, the simplest nearest neighbor

classification algorithm is adopted. Besides, we select

TABLE I.
PARAMETER SETTINGS OF ALGORITHMS

Algorithms Parameter settings
TPCA no

STGLDA κ = 7

TLLDA κ = 7

OTNPE κ = 7

TLPP κ = 7
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Figure 3. Recognition Accuracy VS. Reduced Dimensions(d×d)
with L =8 on YaleB.
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Figure 4. Recognition Accuracy (100%) VS. Reduced
Dimensions(d×d) with L =16 on YaleB.
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Figure 5. Recognition Accuracy VS. Reduced Dimensions(d×d)
with L =7 on AR.
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Figure 6. Recognition Accuracy VS. Reduced Dimensions(d×d)
with L =14 on AR.

randomly T images from each group face for training
samples and remains for testing. Reduced dimensions(d

× d) are increased with the increment of two and
corresponding classification accuracies are calculated. All
experiments are repeated 40 times and average
recognition accuracy is gotten as the experimental result.

Experimental results on YaleB and AR are shown in
Fig.3-Fig.6.

D. Experimental analysis
(1) The performance of TLLDA is superior to TPCA,

TLPP and TLLDA owing to containing power
discriminant information from TLDA and local structure
information from TLPP. However, the recognition
accuracy of STGLDA is great higher than in TLLDA on
AR and YaleB with extern disturbs. The reason is that the
radio of between-class discriminant information and
within-class discriminant information defined in
STGLDA has power robustness.

(2) TPCA performs much worse than STGLDA,
which demonstrates that the way of the linear weighted
way using Eq.(9) and Eq.(10) is efficient.

(3)Although TLPP and OTNPE have the good ability
for capture local structure information, STGLDA has
more performance of dimensionality reduction
classification, which is explained that the intrinsic graph
based on the same-class samples and the penalty graph
based on the not-same-class samples defined in GbFA is
inherited by STGLDA, encoding more discriminating
information.
(4) STGLDA is superior to TLLDA. The reason is that

TLLDA is originated from Local Fisher Discriminant
Analysis (LFDA). In contrast with LFDA, GbFA has
richer discriminant information. Moreover, TLLDA also
ignores the global structure information of unlabeled
samples.

ⅤCONCLUSION

In the paper, a kind of dimensionality reduction
algorithm named Semi-supervised Tensor Graph-
optimized Linear Discriminant Analysis (STGLDA) for
face recognition is proposed, which is based on Principal
Component Analysis (PCA) and GbFA. The algorithm
regards two-dimensional face images as a second-order
matrix and fuses PCA and GbFA with linear weighted
way, following the characteristic of tensor dimensionality
reduction and preserving the global scatter structure and
the enhanced discriminant information. Experimental
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results on YaleB and AR demonstrate the effectiveness of
our algorithm.
However, each approach has its own advantages and

disadvantages. PCA fails to capture global geometric
characteristics. Moreover, the proposed algorithm is for
two-dimensional face images. How to extend it to more
order tensor to deal with data with more than three-
dimension face images is also the future work.
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