
Vulnerability Discovery Technology and Its

Applications

Zhunyang Pan
National Digital Switching System Engineering & Technological Research Center, Zhengzhou, China

Email: per_kong@126.com

Caixia Liu, Shuxin Liu and Shuming Guo

National Digital Switching System Engineering & Technological Research Center, Zhengzhou, China

Email: lcxtxr@163.com, liushuxin11@126.com, gsm@mail.ndsc.com.cn

Abstract—Vulnerability discovery technology becomes more

and more important in software development and network

security. This paper presents the classification of vulnerability

discovery technologies and discusses the advantages,

disadvantages and the extent of application of each class. Then

we emphasize the procedure and the improvement methods of

the Fuzzing test combined with protocol analysis. Furthermore,

according to protocol vulnerability discovery methods, we

analyze the issues of network vulnerability discovery and

propose the directions of future research.

Index Terms—vulnerability discovery, fuzzing test, protocol

analysis, network vulnerability

I. INTRODUCTION

People should attach great importance to the security of

any communication product. There are vulnerabilities in

almost all kinds of software and system, and the attackers

tend to find them within a short time. Then the attackers may

use the vulnerabilities to steal data and information or to

make the target work abnormally or even crash. Therefore, it

is very important to discover the vulnerabilities and remove

them before the attackers make use of them.

Vulnerabilities refer to the defects of the system, which

are generated in the design and development including pre

and post configuration application. They affect the safety

performance of the system seriously. Generally,

vulnerabilities are caused by nonstandard writing of the

procedure or imperfect system architecture. Reference [1]

elaborates the definitions of information security

vulnerabilities in different periods.

So far, people have studied vulnerabilities in many IT

fields.

 Reference [2] discussed and studied the vulnerabilities of

the computer system. It introduced the present condition of

network security, researched computer vulnerabilities and

exposures (CVE) in depth from the manifold point, and

established the Chinese version of the CVE standard. G.

Lorenz and his colleagues studied the vulnerabilities of SS7

telecommunications network and presented an attack

taxonomy. They also described the architecture of a system

for detecting and responding to SS7 network attacks [3].

Reference [4] analyzed test model for security vulnerability

in Web controls and put forward an improved test model.

Reference [5] made a model-based vulnerability analysis of

IMS network. It established a comprehensive vulnerability

analysis model of IMS network based on TVRA method and

made a systematic analysis of it. Ronald W. Ritchey and the

others pointed out the vulnerabilities which come from the

multi-host architecture in the network. They also analyzed it

using model checking [6]. Frank Piessens proposed a

structured taxonomy of software vulnerabilities, analyzing

the common vulnerabilities of the software and classifying

the most frequently occurring causes of vulnerabilities to

avoid common pitfalls [7]. Reference [8] discussed the

methods for the prevention, detection and removal of

software security vulnerabilities. It gave a brief description

of the source code security checkers available to partially

automate security analysis of the software and made a

discussion of functional programming techniques. Simon

Byers and his colleagues performed a brief analysis of the

movie production and distribution process and identified

potential security vulnerabilities that may lead to

unauthorized copies becoming available to those who may

wish to redistribute them. They also offered

recommendations for reducing security vulnerabilities in the

movie production and distribution process [9].

 In addition, people refine the object to analyze the

vulnerabilities of a particular software or system to study

other similar products. For example, Matt Bishop studied the

vulnerabilities of the UNIX system and network and made

an analysis of how to use Protection Analysis to improve the

security of existing systems, and how to write programs with

minimal exploitable security flaws [10].

The research of vulnerabilities is greatly helpful to

improve the security performance of the system. It also plays

an important role in improving network security. The

research of vulnerabilities mainly includes vulnerability

discovery, vulnerability analysis and vulnerability

exploitation.

Vulnerability discovery

Vulnerability discovery refers to exploring and finding

out the potential vulnerabilities of the system using different

kinds of detection technologies and exploration tools.

2000 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.8.2000-2007

Vulnerability analysis

Vulnerability analysis refers to analyzing the

vulnerabilities which have been discovered, evaluating the

threat levels and the utilization value, determining the effect

they may result in and providing a basis for the following

patching.

Vulnerability exploitation

Vulnerability exploitation means the concrete exploitation

of the vulnerabilities that have been discovered, including

both the attack using the vulnerabilities and the defense

against the vulnerabilities.

Logically, vulnerability discovery is the basis of

vulnerability analysis and vulnerability exploitation. At the

same time, it is the prerequisite of concrete analysis and

assessment.

This paper discusses the classification, advantages and

disadvantages of vulnerability discovery technologies and

also introduces some applications of the current ones.

Nowadays we rely on communication network increasingly.

And the number of terminal equipment which is connected

to the network is very large. If there are vulnerabilities in the

network, it will be a great threat to the security of personal

information. Vulnerabilities of the network commonly occur

on the communication protocols or the network architecture.

So here we discuss the popular technologies of protocol

vulnerability discovery and network vulnerability discovery.

II. STUDIES AND CLASSIFICATION OF VULNERABILITY

DISCOVERY TECHNOLOGIES

A. Studies of Vulnerability Discovery Technologies

In recent years, vulnerability discovery technology

becomes more and more important in the fields of software

and system. It has been an indispensable aspect. The security

personnel can find out the vulnerabilities of the system using

vulnerability discovery technology and remove them in time

in order to ensure the safety of the system. The ideal goal of

vulnerability discovery technology is to detect the

vulnerabilities totally automatically and to adjust adaptively.

However, there are several problems in the current detection

technologies, such as unique target, low efficiency and high

rate of false alarm and missing report.

For the reasons above, people research vulnerability

discovery technology constantly to overcome such problems.

Ziyad S. AI-Salloum and his colleagues proposed a

link-layer-based vulnerability discovery method to probe

vulnerabilities within an enterprise network [11]. Reference

[12] proposed a new Fuzzing method using multi data

samples combination. Sung-Whan Woo and the others

analyzed the vulnerability discovery process in web

browsers and presented a quantitative characterization of

browser vulnerabilities [13]. Andy Ozment pointed out that

many software vulnerability discovery processes are

unsound. He proposed a standard set of definitions relevant

to measuring the characteristics of vulnerabilities and

discovery processes and described the theoretical

requirement of the vulnerability discovery models [14].

Omar H. Alhazmi and the others described and evaluated

some new vulnerability discovery models for major

operating systems. They also discussed the applicability of

the proposed models and the significance of the parameters

involved [15]. Reference [16] proposed a new Weibull

distribution based on vulnerability discovery model and

compared it with the existing AML Model.

B. Classification of Vulnerability Discovery

Technologies

Table 1 shows the classification results under different

rules.

TABLE I.
CLASSIFICATION RESULTS UNDER DIFFERENT RULES

Rules
Operation of the

target
Mastery of the target

Classification

results

Static analysis White-box testing

Dynamic analysis Black-box testing

Combined analysis Gray-box testing

Vulnerability discovery technologies can be classified

into static analysis and dynamic analysis according to the

operation of the target [17]. Furthermore, we can also

combine them. Reference [18], for example, proposed a

static program analysis assisted dynamic software

vulnerability discovery method.

Static Analysis

Static analysis refers to the analysis in which we do not

need the actual operation of the target, but only do with the

mastered data of the target. We just detect the logical

problems, grammatical mistakes and implementation issues

by analyzing the source code or the structure systems.

Static analysis does not need the target to be in motion. It

has such advantages as simple operation and high detection

speed. And if we discover the vulnerabilities, we could

ascertain the cause quickly and remove them timely.

 However, static analysis has the following disadvantages.

First, it has a high degree of dependence on the data of the

target. We need to have the source code of the target or the

assembly code which are gained by disassembling. Second,

it needs a testing rule base with a high degree of coverage to

reduce the rate of missing report. It also needs to update the

testing rule base constantly. Third, it always has a high rate

of false alarm, so it will take a lot of manpower to screen the

result and the analyst has to have a good work experience. In

addition, static analysis lacks of the ability to discover the

vulnerabilities which may emerge during the execution

process. However, the source code is not always open. So

this analysis method has certain limitations. Generally, it is

used to test and improve the safety performance of the

software by the manufacturer. Although we can get the

assembly code or the scripting language of the procedures by

taking advantage of reverse engineering, it will cost too

much time, manpower and resource and need experienced

researchers.

Static analysis technology [1] mainly includes lexical

analysis technology, data flow analysis technology, symbolic

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 2001

© 2013 ACADEMY PUBLISHER

execution technology, model checking technology and so on

[19].

Dynamic Analysis

Dynamic analysis refers to recording and analyzing the

status and the output data of the target during the run session

to find out the vulnerabilities.

It monitors the status of the target during the run session

and discovers the vulnerabilities by detecting and analyzing

the abnormal situation. The rate of false alarm, in this case,

could be relatively low. Besides, we can input the testing

data to the target during its running and analyze its output or

response to detect the vulnerabilities. In this case, we need to

construct suitable testing data. Otherwise, there will be too

many false alarms and missing reports, leading to

inefficiency.

Inputting and tracking testing method, stack comparison

method and fault injection analysis are common dynamic

analysis methods [20].

In addition, we could also divide vulnerability discovery

technology into white-box testing, black-box testing and

gray-box testing according to the mastery of the target [21].

Detecting the vulnerabilities when the source code or design

information is mastered is called white-box testing. If we do

not have the original materials, we could only input testing

data and observe the results. The detecting in this situation is

called black-box testing [22]. And the situation of the

gray-box testing ranges between the two cases above. In this

case, we do not have the original materials, but we can get

the assembly code or other information through reverse

engineering.

III. PROTOCOL VULNERABILITY DISCOVERY

There are many kinds of vulnerabilities in network

protocols [23]. People have made certain progress in the

field of protocol vulnerability research, but generally for a

specific protocol. Reference [24], for example, studied the

vulnerabilities of EMAP (an efficient radio frequency

identification mutual authentication protocol). Reference [25]

detected the vulnerabilities of SIP in the IMS network and

established vulnerability discovery models on the basis of

Fuzzing.

 We can use static analysis method, dynamic analysis

method or their combination to detect the vulnerabilities of

the protocols. Static analysis method for protocols is mainly

dependent on the source code of the protocol. It analyzes the

realization of the related field of the source code to find out

the security problems of the code. Meanwhile, it combines

the corresponding functions in the specific field to discover

the vulnerabilities of the protocol. However, since the

protocol is always being used to carry relevant information

or to achieve particular control in the communication

process, it relates to specific operation of the protocol in this

process. Therefore, using dynamic test to discover protocol

vulnerabilities is more intuitive and specific. Currently, most

vulnerability discovery technologies for protocols are based

on dynamic analysis or utilize dynamic analysis for auxiliary

proving. And utilizing Fuzzing to detect vulnerabilities of

the protocols is a common method of dynamic testing.

A. Fuzzing Test
Fuzzing was first proposed by Miller B.P. and his

colleagues [26]. And it was first used to find out reliability

problems. Then it was widely used in the fields of

vulnerability discovery. Microsoft always detects the

vulnerabilities of its products before formally pushing them

to the market. And 20% to 25% of the security

vulnerabilities are discovered using Fuzzing [27].

The idea of Fuzzing test comes from black-box testing. It

is less demanding on the mastery of the source code or other

original data of the test object. It constructs the test cases

according to certain formation rules (changing the value of

the data or increasing the length of the data randomly). Then

input the cases into the external interface of the target,

analyze the running condition of the target to judge whether

the target works abnormally or not, and then find out the

vulnerabilities. Generally, the cases constructed are

malformed and aggressive. They are semi-effective to be

distinguishable and processible. And the cases, at the same

time, would make the target fail in the course of processing

the malformed part and work abnormally or even crash. The

flow of Fuzzing is shown in Fig. 1.

Formation rules

Construct the test cases

Input the cases into the external
interface of the target

Target running

abnormally？

Record for further screening
and analysis

Yes

No

Figure 1. The basic flow of Fuzzing test

We simulate the network communication flow when we

detect the vulnerabilities of the protocol. We construct the

malformed protocols as the testing cases and simulate the

interaction between the entities and monitor the running state

of the target. If the result is abnormal, it will be recorded for

further screening and analysis. If the system does not process

the cases, the cases will be discarded and new testing cases

will be constructed. Vulnerability discovery using Fuzzing

test has several advantages. On one hand, we do not have to

know the source code or the working details of the system.

On the other hand, this method has a high degree of

automation.

2002 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER

However, protocol vulnerability discovery using Fuzzing

is inefficient. Fuzzing test constructs the malformed

protocols mainly through changing the length of the packet

and the characters in certain positions. Cases constructed in

this way may be more likely to be discarded. Then it will

take a long time to do the testing.

In order to solve such problems, researchers combine

protocol analysis [28] or specific algorithms with Fuzzing to

increase the processed probability of the semi-effective

cases.

B. Fuzzing Test Combined with the Protocol Analysis
Before we start protocol vulnerability detection, we can

analyze the protocols first. Then we may construct suitable

testing cases. Protocol analysis refers to the research and

analysis of the structural features of the protocol, the

environment and the way of use, the specific function and

realization method. It includes resolving the meaning and

function of every field in the protocol. There is a standard

form of a protocol. Through analyzing the protocols, we can

distinguish the functions of each part of the protocol and

ascertain the changeable part and the unchangeable part. In

the construction process of the test cases, changing certain

data and keeping the fixed part according to the results of

protocol analysis can reduce the blindness of construction

and increase processed probability. Fuzzing test flow

combined with protocol analysis is shown in Fig. 2.

Get sample data

Protocol analysis

Rule base of the test cases

Target running

abnormally？

Record for further screening
and analysis

Yes

No

Extract the test cases
for testing

Updating

Building

Figure 2. Fuzzing test flow combined with protocol analysis

Thus, the rule base of the test cases is built by analyzing

the content of the packet in the workflow before the

malformed protocols are constructed. Then extract the test

cases for testing. It will record and wait for further analysis if

the target works abnormally. And if the target works

normally or does not respond, the results will be fed back to

the database for updating and there will be a new round of

testing.

For example, in view of SIP (Session Initiation Protocol,

an application layer signaling control protocol based on text)

vulnerability discovery, we can first resolve it for a certain

environment (Fig. 3 is a SIP parsing example). Then we

change the value of each field according to its meaning and

send the changed protocol. And the last step is to record and

analyze the relevant response. For example, to detect the

network resource vulnerabilities of SIP, we may change the

value of Max-Forward or CSeq field, send the changed

protocols as test messages, record and analyze the changes

of system processing delays.

Figure 3. SIP parsing example

Analyzing the protocols before constructing the cases can

improve testing efficiency significantly and reduce the

blindness of the testing. At the same time, we can build the

rule base of a certain protocol to provide basis for

vulnerability discovery of similar protocols in future work.

The problems in the Fuzzing test based on protocol

analysis are as follows.

The realization of the protocol analysis process

Analyzing and finding out the changeable part of the

protocols automatically and completely are the key to

construct the cases successfully. It will directly determine the

efficiency and the rate of missing report. Protocol analysis

always relies on the analysts, because the results of the

automated analysis often have a high rate of missing report.

The establishment of the testing rule base

Each protocol has its own format and transmission mode

so that we need to select an appropriate rule base for a

certain protocol. So in order to make this method generally

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 2003

© 2013 ACADEMY PUBLISHER

applicable, it will consume a large resource to establish the

rule bases.

The discovery of vulnerabilities in the fixed part of the

protocol

This kind of method can distinguish the so-called fixed

part through protocol analysis to improve the efficiency of

vulnerability discovery. However, in some networks, the

changes of the fixed part may also cause abnormal work of

the target network. In this case, there will be a missing

report.

C. Fuzzing Test Combined with Specific Algorithms

We can also add constraints to the formation of the testing

cases by combining them with some algorithms. The general

idea of this method is to find a suitable algorithm according

to the protocol type and its characteristics first, and then to

determine the variable value in the algorithm. We can use

statistic methods to determine the value. The first step is

controlling the generation of the test protocols by changing

the value for many times. Then we observe and analyze the

statistic results of the generated test messages being

processed and determine the optimal value of the variable.

The process of determining the best variable value is shown

in Fig. 4. After determining the algorithm and its variables,

the generation of test message can be limited specifically and

quantitatively to improve testing efficiency.

Select an appropriate

algorithm

Control the value
of the variable

Construct the test cases
and do the testing

The optimal value of the
variable is determined?

Record for further testing

Yes

No

Record and analyze the
running results of the target

Figure 4. Process of determining the best variable values

 For example, a limited distance formation method for

the testing cases is proposed to detect the vulnerabilities of

the Diameter protocol in the IMS. The method is based on

equivalence partitioning. It limits the differences between the

AVPs to make the testing cases more likely to be processed

by the target. This method can also be applied to other

network protocols. The crux is to find out the characteristics

of the effective malformed protocols and then utilize the

suitable algorithm.

The efficiency of vulnerability discovery can be improved

significantly by limiting the conditions of the formation of

the testing cases. This method applies to the situation that the

testing period is required to be stringent. However, it needs

to have an insight into the protocols to utilize this method.

And there may be a high rate of missing report because of

the limitations of the variety of the testing cases. Therefore,

the target of this method is relatively simple

IV. NETWORK VULNERABILITY DISCOVERY

Network vulnerability mainly refers to the security

problems in the architecture, communication protocols and

processes stipulated in the network standards. Currently, the

researches on network vulnerability mainly focus on the

terminal part of the computer networks and the

communication networks. The studied protocols are mainly

low-layer protocols, such as TCP and UDP. For example,

the security issues of TCP were discussed in References [29]

[30] [31].

However, researches on the core network are relatively

fewer. Vulnerabilities in the core network will make the

whole network face security threats. So the study on the

vulnerabilities of the core network is going deeper. Likewise,

we can use static analysis and dynamic analysis to detect

network vulnerabilities.

A. Static Analysis for Network Vulnerability

Static analysis for the network is different from the one

for the software. Its main objects are not the source code, but

the macroeconomic data, such as the architecture of the

network, the interface specification and so on. The Evolved

Packet System (EPS), for instance, will surely replace the

traditional 2G/3G network for its good performance. It can

provide a high level of security and confidentiality to the

users and the operators. However, after simply analyzing its

communication architecture, we could discover some

problems. In the early stage of the network construction,

considering the investment protection of the CS, the

operators may use the old voice solutions in the CS domain

to provide voice services. The process is called CS Fallback

[32]. In this case, communication services will get back to be

provided by the 2G/3G network, and the EPS network has to

face vulnerabilities in the traditional network. The

architecture of CS Fallback is shown in Fig. 5.

GERANGERAN

UTRANUTRAN

E-UTRAN MME

Uu

Um

LTE-Uu S1-MME

SGSN

MSC
Server

Iu-ps

Gb

S3

Gs

SGs

Iu-cs

A

UE

Figure 5. The architecture of CS Fallback

2004 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER

B. Dynamic Analysis for Network Vulnerability

The communication of the network is based on the

protocols. So protocol vulnerability is also the key factor

affecting the performance of network security. But network

vulnerability discovery is different from simple protocol

vulnerability discovery. Protocol vulnerability discovery

technologies described in the last section are mainly for

stateless protocols. But the protocols involved in network

communication flow are always state. It means that every

protocol message is related to several other ones. So, at this

time, we should detect network vulnerabilities according to

the state mechanisms of the protocols [27], combined with

the communication flow.

A simple diagram of network communication process is

shown in Fig. 6. A and B are both the entities of the network.

A sends Request 1 to B, and then it sends Request 2 to B if it

receives response from B. B will give the response for

Request 2 only after the above flow is over. The previously

described protocol vulnerability discovery can only be used

to test Request 1. If we want to detect the vulnerabilities in

the processing procedure of Request 2, we need to make A

send Request 1 correctly first, and then send the malformed

testing Request 2 after receiving Response 1 from B. If we

make A send the malformed testing Request 2 directly, B

may discard the testing message immediately for the lack of

previous necessary procedure. And then there will be a

missing report.

Entity A Entity B Entity X

Request 1

Request 2

Request N

Response 1

Response 2

Response N

Figure 6. Network communication process

Taking into account the above situation, we need to

determine the process mode of the network processing the

protocol at the beginning of the testing process. The

flowchart shown in Fig. 7 shows the process of detecting the

vulnerabilities of the network based on Fuzzing.

After the target is selected (Here, we choose Request 2 in

Fig. 6 as the example), it sends the normal Request 2 to the

target directly and monitors the response of B. If the

response is normal, it will continue the following steps in

accordance with protocol vulnerability discovery. And if A

does not receive normal response from B, it means that

Request 2 is state. So it needs to send Request 1 first, and

then it sends testing message 2 to do the detecting after

receiving Response 1.

In this way, we can test every signaling message in the

communication process. So the rate of missing report can be

reduced significantly. But the testing process will be very

tedious when the interaction of network signaling messages

is complex and there are too many state protocols. It needs to

simulate the associated processes for every testing case. So

the testing time will be relatively long. Therefore, to reduce

the blindness and to improve the relevance of the test during

the discovery process of network vulnerabilities, we should

first analyze the architecture and the communication flow

artificially.

Send the normal
Request N

Combine with other
technologies

Target running

abnormally？

Record for further screening
and analysis

Yes

No

Construct and send the
malformed Message N

Updating

No

Target responding
normally?

Simulate normal communication
process and send the signaling
messages 1~N-1 to the target

Yes

Figure 7. Fuzzing test flow for the network

V. CONCLUSION AND PROSPECT

This paper introduces the development of vulnerability

researches and the importance of such researches for the

field of information. It makes an overview of vulnerability

researches in different areas. Then we present the

classification of vulnerability discovery technologies as well

as the extent of application, advantages and disadvantages of

each class. We discuss the methods of protocol vulnerability

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 2005

© 2013 ACADEMY PUBLISHER

discovery and point out the strengths and weaknesses of

each method in detecting protocol vulnerabilities. Finally,

according to protocol vulnerability discovery technologies,

we analyze the issues in the process of detecting network

vulnerabilities and propose the idea of network vulnerability

discovery combined with the communication flow.

Vulnerability discovery technology has played an

important role in solving the security problems in the field of

information technology. The research is being more and

more systemic. Current vulnerability discovery technologies

have been improved. But the direction of improvement is

single. Researchers keep seeking a vulnerability discovery

technology which is highly automated, high-efficient with a

low rate of false alarm and missing report. But the difficulty

can be imagined. Therefore, a good research direction is to

seek an appropriate balance among the above aspects. In

addition, we should know the advantages and disadvantages

of the vulnerability discovery technologies and choose the

right one according to the actual situation.

ACKNOWLEDGMENT

This work was supported in part by a grant from a project

numbered 2011ZX03006-003.

REFERENCES

[1] Shizhong Wu, “Review and Outlook of Information Security

Vulnerability Analysis,” Journal of Tsinghua University

(Natural Science), vol. 49(2), pp.2065-2072, 2009.

[2] Chunying Wang, Daxin Liu and Danyu Zhang, “Analysis and

Research of Computer System Common Vulnerabilities &

Exposures (CVE),” The Seventh International Conferece on

Electronic Measrement and Instruments. ICEMI 2005.

[3] G. Lorenz, T. Moore, G. Manes, J. Hale, S. Shenoi，

“Securing SS7 Telecommunications Networks,” Workshop

on Information Assurance and Security, vol. 2, pp. 273-278,

June 2001.

[4] Guoxiang Yao, Quanlong Guan, and Kaibin Ni, “Test Model

for Security Vulnerability in Web Controls Based on

Fuzzing,” Journal of Software, vol. 7, No. 4, pp. 773-778,

April 2012.

[5] Dong Wang, and Chen Liu, “Model-based Vulnerability

Analysis of IMS Network.” Journal of Networks, vol. 4, No.4,

pp. 254-262, June 2009.

[6] Ronald W. Ritchey, and Paul Ammann, “Using Model

Checking to Analyze Network Vulnerabilities,” Security and

Privacy, IEEE Symposium on, 2000.

[7] Frank Piessens, “A Taxonomy of causes of Software

Vulnerabilities in Internet Software,” Supplementary

Proceedings of the 13th International Symposium on Software

Reliability Engineering. IEEE Computer Society Press, Los

Alamitos, CA, 2002.

[8] Jay-Evan J. Tevis, and John A. Hamilton, “Methods for the

Prevention, Detection and Removal of Software Security

Vulnerabilities,” Proceedings of the 42nd annual Southeast

regional conference. ACM, 2004.

[9] S. Byers, L. Cranor, D. Kormann, P. McDauiel, E. Cronin,

“An Analysis of Security Vulnerabilities in the Movie

Production and Distribution Process,” Telecommunications

Policy, vol. 28, pp. 619-644, 2004.

[10] M. Bishop, “A Taxonomy of UNIX System and Network

Vulnerabilities,” Technical Report CSE-95-10, Department of

Computer Science, University of California at Davis, 1995.

[11] Ziyad S. Al-Salloum, and Stephen D. Wolthusen, “A

Link-Layer-Based Self-Replicating Vulnerability Discovery

Agent,” Computers and Communications (ISCC), IEEE

Symposium on, 2010.

[12] Xueyong Zhu, Zhiyong Wu, and J. William Atwood, “A New

Fuzzing Method Using Multi Data Samples Combination,”

Journal of Computers, vol. 6, No. 5, pp. 881-888, May 2005.

[13] Sung-Whan Woo, Omar H. Alhazmi, and Yashwant K.

Malaiya, “An Analysis of the Vulnerability Discovery Process

in Web Browsers,” Proceedings of the 10th IASTED

International Conference on Software Engineering and

Applications, Dallas, TX, USA, 2006.

[14] A. Ozment, “Improving Vulnerability Discovery Models,”

Proceedings of the 2007 ACM workshop on Quality of

protection, ACM, 2007.

[15] O. H. Alhazmi, and Y. K. Malaiya, “Application of

Vulnerability Discovery Models to Major Operating Systems,”

IEEE Transactions on Reliability, vol. 57, No.1, pp. 14-22,

March 2008.

[16] HyunChul Joh, Jinyoo Kim, and Yashwant K. Malaiya,

“Vulnerability Discovery Modeling Using Weibull

Distribution,” Software Reliability Engineering, IEEE

International Symposium on, pp. 299-300, 2008.

[17] Jun Gao, Zhida Xu, and Jian Li, “Survey of Automatic

Discovery of Software Vulnerability,” Computer and Digital

Engineering, vol. 37, No. 1, pp. 100-104, 2009.

[18] Ruoyu Zhang, Static Program Analysis Dynamic Software

Vulnerability Discovery, MS thesis, Shanghai Jiaotong

University, 2010.

[19] E. M. Clarke, and E. A. Emerson, “Design and Synthesis of

Synchronization Skeletons Using Branching Time Temporal

Logic,” 25 Years of Model Checking, Springer Berlin

Heidelberg, pp. 196-215, 2008.

[20] Qiang Chi, Hong Luo, and Xiangdong Qiao, “Vulnerability

Discovery Analysis Techniques,” Computer and Information

Technology, pp. 90-92, 2009.

[21] Lin Shao, Xiaosong Zhang, and Enbiao Sun, “New Method of

Software Vulnerability Detection Based on Fuzzing,” The

Computer Applied Research, vol. 26, No. 3 pp. 1086-1088,

MARCH 2009.

[22] L. H. Tahat, B. Vaysburg, B. Korel, A. J. Bader,

“Requirement-Based Automated Black-Box Test Generation,”

Computer Software and Applications Conference, IEEE

Annual International, pp. 489-495, 2001.

[23] S. Whalen, M. Bishop, and S. Engle, “Protocol Vulnerability

Analysis,” Department of Computer Science, University of

California, Davis, USA, Technical Report CSE-2005-04, 2005.

[24] Tieyan Li, and Robert Deng, “Vulnerability Analysis of

EMAP-An Efficient RFID Mutual Authentication Protocol,”

Availability, Reliability and Security, The Second International

Conference on, IEEE, pp. 238-245, 2007.

[25] Shuxin Liu, Jianhua Peng, Caixia Liu, Xiaolong Xie., “SIP

Vulverability Discovery Model in IMS Based on Fuzz

Testing,” Application Research of Computers, vol. 29, No. 9,

pp. 3456-3459, 2012.

[26] B. P. Miller, L. Fredriksen, and B. So, “An Empirical Study of

the Reliability of UNIX Utilities,” Communications of the

ACM, vol. 33, No. 12, pp. 32-44, 1990.

[27] Baofeng Zhang, Chongbin Zhang and Yuan Xu, “Network

Protocol Vulnerability Discovery Based on Fuzzy Testing,”

Journal of Tsinghua University (Natural Science), vol. 49, No.

S2, pp. 2113-2118, 2009.

[28] Chi Liu, Kangfeng Zheng, and Hui Li, “Research of

Vulnerability Discovering Based on Protocol Analysis,” The

2009 Graduate Academic Exchange of Communication and

Information Technology Proceedings, pp. 302-308, 2009.

2006 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER

[29] B. Guha, and B. Mukherjee, “Network Security Via Reverse

Engineering of TCP Code: Vulnerability Analysis and

Proposed Solutions,” Network, IEEE, vol. 11, No.4 pp. 40-48,

1997.

[30] R. Ritchey, O’ Berry Brian, and S. Noel, “Representing

TCP/IP Connectivity for Topological Analysis of Network

Security,” Computer Security Applications Conference,

Proceedings, 18th Annual, IEEE, pp. 25-31, 2002.

[31] Aldar C-F. Chan, “Efficient Defence Against Misbehaving

TCP Receiver DoS Attacks,” Computer Networks, vol. 55, No.

17, pp. 3904-3914, 2011.

[32] Yihua Jiang, 3GPP System Architecture Evolution (SAE)

Principle and Design, People's Posts and Telecommunications

Press, China, 2010.

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 2007

© 2013 ACADEMY PUBLISHER

