
Constructing and Rendering of Multiresolution
Representation for Massive Meshes with GPU

and Mesh Layout

Yaping Zhang
Faculty of Computer Science & Information Technology, Yunnan Normal University, Kunming, Yunnan, China

Email: zhangyp.cs@gmail.com

Xu Chen
Department of Computer and Information Science, Southwest Forestry University, Kunming, Yunnan, China

Email: chenxu_gis@yahoo.com.cn

Abstract—Multiresolution technique is one of the most
efficient approaches to improve the rendering performance,
but its design and implementation for massive meshes are
still very difficult. This paper researches and realizes
constructing and rendering of multiresolution
representation for massive meshes base on surface partition,
which could provide vertex-grained local refinement and
generate the optimal rendering quality. Our approach
adopts dual hierarchy to represent the mesh. One is cluster
hierarchy of progressive meshes for coarse-grained selective
refinement. The other is vertex hierarchy built with
progressive mesh in the cluster node to provide fine-grained
local refinement. In order to promote the speed of local
refinement, we introduce some data structures and
dependency rules to realize parallel view-dependent
refinement for vertex hierarchy by using GPU, which
greatly reduces the load of CPU and enables it to prefetch
data to hide I/O latency effectively. In addition, we propose
a new mesh layout algorithm which reorders triangles
contained by cluster node to reduce the average cache miss
ratio and further improve the rendering speed.

Index Terms—multiresolution representation, massive
meshes, surface partition, GPU, mesh layout

I. INTRODUCTION

Over the last decade, advances in model acquisition,
computer-aided design (CAD), and simulation
technologies have resulted in massive complex meshes
[1]. We call these meshes as out-of-core meshes that
largely overload the performance and memory capacity of
state-of-the-art graphics and computational platforms,
and so it is difficult to render them interactively.
Multiresolution technique as one of the most efficient
approaches to improve rendering performance, which
needs to build a hierarchical structure implemented by
mesh simplification or level of detail methods, can
effectively reduce the geometric complexity of the model,
and thus improve the rendering speed. However, there are
many difficulties in the design and implementation of this
technique for massive meshes. Firstly, as geometric data
and auxiliary data structures of massive meshes can not

be completely loaded into memory due to limited
memory size, the traditional multiresolution modeling
and rendering algorithm can not be directly applied to the
massive meshes. Secondly, with limited bus bandwidth
and CPU processing power, the construction process of
multiresolution representation for massive meshes often
takes much time, which is not conducive to system
debugging and real-time applications. Therefore
constructing and rendering of multiresolution
representation for massive meshes has become a hot topic
in the research area of computer graphics [2][3].

The modern Graphics Processing Unit (GPU) consists
of many multiprocessors (MP) and additional memory,
and uses the SIMT (Single Instruction Multiple Thread)
parallel programming paradigm, which makes it have
higher performance on handling graphics tasks than CPU
[4]. Owing to the parallel architecture of GPU, the
conventional algorithm, such as vertex hierarchy
refinement, can not be applied directly to GPU.

Based on intensive study on massive mesh
simplification and multiresolution techniques in recent
years, we propose a novel approach for constructing and
rendering out-of-core multiresolution representation for
massive meshes based on surface partition, which could
provide vertex-grained local refinement and generate the
optimal rendering quality. In order to promote the speed
of local refinement and rendering, we use GPU to
perform parallel view-dependent refinement for vertex
hierarchy, which greatly reduces the load of CPU and
enables it to prefetch data to hide I/O latency effectively.
In addition, we propose a new mesh layout algorithm to
reduce the average cache miss ratio (ACMR) and further
improve the rendering speed.

The remainder of this paper is organized as follows:
Section Ⅱ briefly reviews previous work in this area,
while Section Ⅲ introduces construction of
multiresolution representation for massive meshes.
Section Ⅳ presents out-of-core rendering. Some results
and analyses are provided in Section Ⅴ. Finally we
summarize our research and future work in Section Ⅵ.

1968 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.8.1968-1975

II. RELATED WORK

Considering the basic unit of level of detail,
multiresolution representation for meshes can be divided
into two categories: vertex hierarchy and cluster
hierarchy. Each node in vertex hierarchy contains only
one vertex, such as merge tree [5] constructed by Xia et
al. This representation method was able to provide the
most fine-grained level of detail, but for massive meshes,
the overhead of selection and switching of level of detail
was great. Each node in cluster hierarchy contains a
number of triangles and vertices, which can reduce the
switching cost of selection refinement and thus be
suitable for representing massive meshes, such as [2][6].

According to objects divided, the cluster hierarchy can
mainly be divided into two types: space partition cluster
hierarchy and surface partition cluster hierarchy. The
space partition cluster hierarchy divides bounding volume
of the model. Lindstrom [7] used a sparse octree
decomposition of space over a uniform rectilinear grid,
and exploited vertex clustering on a rectilinear octree grid
to coarsen and create a hierarchy for the mesh. The run-
time component then traversed this hierarchy and
produced an adaptive mesh that could be displayed
interactively. Simplification, level-of-detail hierarchy
construction were performed entirely on disk, and used
only a small, constant amount of memory, whereas the
run-time system pages in only the rendered parts of the
mesh in a cache coherent manner. The limitation of this
approach was that the multiresolution surface constructed
could not provide the fidelity of the original mesh.
Cignoni et al. [6] used a regular conformal hierarchy of
tetrahedra to spatially partition the model. Each
tetrahedral cell contained a precomputed simplified
version of the original model, represented using cache
coherent indexed strips for fast rendering. The
representation was constructed during a fine-to-coarse
simplification of the surface contained in diamonds (sets
of tetrahedral cells sharing their longest edge).
Appropriate boundary constraints were introduced in the
simplification to ensure that all conforming selective
subdivisions of the tetrahedron hierarchy lead to correctly
matching surface patches. For each frame at runtime, the
hierarchy was traversed coarse-to-fine to select diamonds
of the appropriate resolution given the view parameters.
Shaffer et al. [8] presented an external memory
multiresolution surface representation for massive
polygonal meshes, which also used a uniform grid to
sample the mesh and build an external memory octree by
a bottom-up merging process. The bottom level of this
octree encoded the original surface, which formed the
finest level of resolution. The construction phase required
only two passes over the input mesh plus external sorts of
the vertices and faces. The sorts ensured coherent access
of the processed mesh data from disk

Space partition method is easy to implement, but the
quality of division is not good, which usually uses the
vertex clustering to simplify the divided sub-meshes.
Surface partition method is in accordance with the model
topology to partition model surface, which produces sub-
meshes with better uniformity and flatness, and

commonly uses edge collapse to simplify the sub-meshes.
Surface partition cluster hierarchy can generate better
rendering results, but it is complex to implement.
Clustered Hierarchy of Progressive Meshes (CHPM) [9]
is currently the best one among known construction and
rendering algorithms of multiresolution representation
based on the surface partition for massive models. The
method represented the model as a clustered hierarchy of
progressive meshes and used the cluster hierarchy for
coarse-grained selective refinement and progressive
meshes for fine-grained local refinement. However,
refinement of progressive meshes is ordered, which
means CHPM requires many more unnecessary vertex
splits and renders more triangles to meet the view-
dependent criteria compared to a vertex hierarchy usually
when rendering. From the table of runtime performance
given by CHPM, we can find that about 90% of the total
time is used to rendering. Based on the above analysis,
performing selective refinement with the vertex hierarchy
instead of linear progressive mesh may be a good method
to minimize the number of triangles rendered. However,
the selective refinement for vertex hierarchy is time-
consuming, which can lead to higher running time.

The construction process of multiresolution
representation for massive meshes often takes much time,
which is not conducive to system debugging and real-
time applications. There are two main solutions. (1) The
use of PC clusters. For example, Cignoni et al. [6]
built a tetrahedron hierarchy with 1, 4, 8, and 14 workers.
Overall processing times ranged from about 3K-4K
triangles/s for 1 CPU to 15K-30K triangles/s for 14 CPU.
Zhang et al. [2] built the external memory octree for lucy
model proposed by reference [8] with 4 workers, the
speedup of processing time was 2.08:1. Although parallel
construction of multiresolution representation for massive
meshes using PC clusters can effectively shorten the
preprocessing time, the flexibility of deployment has
been limited. (2) The use of GPU. DeCoro et al. [10] used
geometry shader of GPU to achieve real-time
simplification based on vertex clustering, and gained
acceleration ratio of 15-25 compared to CPU
implementation. Ji et al. [11] used GPU parallel
computing power to accelerate view-dependent
multiresolution hierarchy refinement algorithm based on
LOD atlas texture of geometric image, the GPU-
accelerated implementation achieved more than an order
of magnitude performance gain over CPU version. Two
rendering passes using this method were included. During
the first pass, the level of detail selection was performed
in the fragment shaders. The resultant buffer from the
first pass was taken as the input texture to the second
rendering pass by vertex texturing, and then the node
culling and triangulation could be performed in the vertex
shaders. The approach could generate adaptive meshes in
real-time. However, with the limits of the vertex shaders,
merging vertices to suppress the T-junction might cause
the generation of degenerated triangles. Hu et al. [12, 13]
realized parallel view-dependent refinement of
progressive mesh, which was the first vertex hierarchy
refinement algorithm based on GPU. Such fine-grain

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 1969

© 2013 ACADEMY PUBLISHER

control has previously been demonstrated using
sequential CPU algorithms. However, these algorithms
involve pointer-based structures with intricate
dependencies that cannot be handled efficiently within
the restricted framework of GPU parallelism. By
introducing new data structures and dependency rules, Hu
et al. realized fine-grain progressive mesh updates as a
sequence of parallel streaming passes over the mesh
elements. But it only handled the models which can be
loaded into main memory.

Most modern computers adopt hierarchies of memory
levels. Each level of memory serves as a cache for the
next level, such as cache-main memory-disk hierarchy.
Lower levels are larger in size and farther from the
processor and have slower data access times, typically
disk. Data transfer is performed whenever there is a cache
miss between two adjacent levels of the memory
hierarchy. For massive meshes, its data is stored in disk
initially. With the difference of access speed between
memory levels, usually several orders of magnitude, we
need to optimize the layout of mesh to minimize the
ACMR during rendering. Lin et al. [14] proposed a
simple yet effective algorithm for generating a sequence
for efficient rendering of 3D polygonal meshes based on
greedy optimization, which was one of the classic mesh
layout algorithms. Their strategy was to associate each
vertex with a cost value, which was tailored to reduce

cache misses. Specifically, the vertex with the minimum
cost would be picked as the focus vertex. For each face
connecting to the focus vertex that had not been rendered,
its vertex(es) would be pushed into buffer and it would be
rendered and output. The cost metric of this method was
the combination of three weighting coefficients. However,
how to set these weights for any given mesh was not
straightforward and its computational complexity was
more than O(t) (t represents the number of triangles
contained in the input mesh). Sander et al. [15] simplified
the cost metric proposed by reference [14], and only
considered the position of the vertices in the cache as
factor. Computational complexity of the algorithm was
close to O(t), but ACMR was slightly lower than that of
reference [14].

Ⅲ. CONSTRUCTING OF MULTIRESOLUTION

REPRESENTATION FOR MASSIVE MESHES

We represent the model as dual hierarchies (Fig. 1): a
cluster hierarchy of progressive meshes for coarse-
grained selective refinement and a vertex hierarchy for
progressive meshes contained in the cluster node for fine-
grained local refinement. The construction process
includes cluster hierarchy generation, building vertex
hierarchy adapted to parallel view-dependent refinement,
and mesh layout.

Figure 1. Dual hierarchy

A. Cluster Hierarchy Generation
Cluster hierarchy generation proceeds in three steps:

First, we decompose the model into clusters, which are
spatially localized portions of the input mesh. The

generated clusters should be nearly equally sized in terms
of number of triangles for several reasons. This property
is desirable for out-of-core mesh processing to minimize
the memory requirements. Moreover, enforcing spatial

1970 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER

locality and uniform size provides higher performance for
selective refinement. The decomposition occurs in several
passes to avoid loading the entire input mesh at once.
These clusters facilitate out-of-core access to the mesh
for the remaining steps [9]. Next, we construct the cluster
hierarchy using a graph partitioning algorithm [16] which
can make it with nearly equal cluster size, high spatial
locality, well-balanced structure and minimum shared
vertices. The algorithm represents each cluster as a node
in a graph, weighted by the number of vertices. Clusters
are connected by an edge in the graph if they share
vertices or are within a threshold distance of each other.
The edges are weighted by the number of shared vertices
and the inverse of the distance between the clusters, with
greater priority placed on the number of shared vertices.
The cluster hierarchy is then constructed in a top-down
manner by recursively partitioning the graph into halves
considering the weights, thus producing a binary tree.
Finally, we build the progressive meshes (PM) for each
cluster by applying “half-edge collapses.” After creating
the PM, the error range of the cluster is computed and
expressed as a pair: (min bound, max error). The max
error is the error value associated with the base mesh (M0)
and the min bound is the error value associated with the
highest resolution mesh (Mn). When proceeding to the
next level up the hierarchy, the mesh within each
cluster’s PM is initialized by merging the base meshes of
the children. Since the intermediate clusters should be
nearly the same size as the leaf level clusters, each cluster
is simplified to half its original face count at each level of
the hierarchy [9].

At runtime, we maintain an active cluster list (ACL),
which represents a front in the cluster hierarchy
containing the clusters of the current mesh (as shown in
Fig. 1), and perform coarse-grained selective refinement
on this list.

B. Vertex Hierarchy Generation
Vertex hierarchy can be built easily according to the

linear progressive mesh. However conventional vertex
hierarchy refinement algorithms involve pointer-based
structures with intricate dependencies that cannot be
handled efficiently within the restricted framework of
GPU parallelism, we introduce some data structures to
realize fine-grain vertex hierarchy updates of progressive
mesh [12]. The method maintains a set of static structures
used to store vertex hierarchy of progressive mesh, a set
of dynamic structures encode the active, selectively
refined mesh. A unique aspect is that the active mesh is
fully specified by a stream of vertices. This stream
contains all vertices “above” the active frontier in the
vertex hierarchy, such as all the blue nodes called active
vertices in Fig. 1. Splitting each active vertex will create
two active faces. The indices of the vertices in every pair
of faces {fl, fr} are obtained by retrieving the indices of
the leaf vertices in the same faces in Mn and searching up
the hierarchy for the coarsest vertices in collapsed states.
The algorithm performs a set of parallel streaming passes
to update the vertex stream as the view parameters
change, and to create an index buffer for rendering [12].

During the PM construction, for each colv, each
removed face fl and fr is adjacent to two other mesh faces,
{fn0, fn1} and {fn2, fn3} respectively, as shown in Fig. 2. As
a result of edge or vertex-pair collapses a triangle may
“foldback” on itself or changes its normal by about π (as
shown in Fig. 3). We refer to this as a mesh fold-over or
just a foldover [18].

Figure 2. The neighborhood around a split/collapse operation [12].

Figure 3. Foldover case [18]

To prevent foldovers of the triangles in the mesh, the

splits and collapses must adhere to dependency rules. The
explicit rules [17] check for the presence and adjacency
of these four faces in the current selectively refined mesh.
Specifically the rules are as follows:

(i) A split splv is legal if the faces {fn0, fn1, fn2, fn3} all
exist in the current selectively refined mesh.

(ii) A collapse colv is legal if fl is currently adjacent to
{fn0, fn1} and fr is currently adjacent to {fn2, fn3}.

Unfortunately, test (ii) involves maintaining face
adjacencies, which is difficult in a parallel algorithm.

The implicit dependencies rely on the enumeration of
vertices generated after each collapse. If the model has n
vertices at the highest level of detail they are assigned
vertex-ids 0, 1, … , n-1. Every time a vertex pair is
collapsed to generate a new vertex, the id of the new
vertex is assigned to be one more than the greatest vertex-
id thus far. This process is continued till the entire vertex
hierarchy has been constructed. The implicit
dependencies are as follows:

(I) Vertex-Pair Collapse: A vertex-pair can be
collapsed if the vertex-id of their parent is less than the
vertex-ids of the parents of the collapsed boundary
vertices.

(II) Vertex Split: A vertex v can be safely split at
runtime if its vertex-id is greater than the vertex-ids of all
its neighbors.

The explicit rules [17] incur extra memory and are not
suitable for framework of GPU parallelism, whereas the
implicit rules [18] are too restrictive and require many
more unnecessary vertex splits to meet the view-
dependent criteria. Additionally, they all require
relatively complex runtime tests. We use an approach

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 1971

© 2013 ACADEMY PUBLISHER

[12], which follows the same refinement flexibility as the
explicit rules, but with a more compact representation
inspired by the implicit rules, and most importantly it is
well adapted to GPU stream processing due to its
simplicity. The approach is to perform a simpler check
that involves computing and storing two vertex indices
(vlmax and vrmax) instead of four face indices.

))(),(max(10max nvnvl fcfcv

))(),(max(32max nvnvr fcfcv

Where cv (f) is a non-ancestral vertex split that creates
f. More precisely, cv(f) is the vertex x whose split creates
face f, unless f ∈ M0 or x is an ancestor of v, in which
cases cv (f) = 0. The vertex hierarchy is linearized in
memory, with vertices assigned indices in the reverse
order that they were collapsed. Thus the leaf vertices are
consecutive and last, and can be distinguished from non-
leaf vertices solely by their index. For any vertex v, the
ordering also implies that v > vp (the parent of v). At
runtime, given the side vertices vl and vr in M, we can
check legality as follows [12]:

(I) A split splv is legal if vl > vlmax and vr > vrmax.
(II) A collapse colv is legal if (vl)

p < v and (vr)
p < v.

C. Mesh Layout
Due to the amount of data of multiresolution

representation for massive meshes is too large, only part
of the multiresolution structure can be loaded into
memory during rendering. Because of the difference of
access speed between the different storage media, usually
several orders of magnitude, we should minimize the
number of cache misses to improve the overall
performance. In this paper, considering the first-in-first-
out (FIFO) cache models, we propose a new algorithm to
reorder triangles contained by cluster node to reduce the
ACMR during rendering effectively. The algorithm
selects the vertex as the focus which can output the
maximum number of triangles when pressing it into
cache. It is similar to the greedy algorithm, which
chooses the operation to minimize increment of the cache
miss ratio.

Fig. 4 gives several examples of the selection of the
focus vertex for mesh layout, wherein the black solid dot
indicates that the vertex is in the cache, the hollow white
circle indicates that the vertex is not yet pressed into the
cache. In Fig. 4(a), if the white vertex is pressed into the
cache, it can output two triangles, the ACMR is 1/2
(mismatches a vertex, and outputs two triangles); in Fig.
4(b), if the white vertex is pressed into the cache, it can
output a triangle, the ACMR is 1/1 (mismatches a vertex,
and outputs one triangle); in Fig. 4(c), if any one white
vertex is pressed into the cache, it can not output any
triangle until another one is pressed into cache, which can
output a triangle, therefore the ACMR is 2/1 (mismatches
two vertexes, outputs a triangle). Consequently, based on
the current cache miss ratio, the algorithm selects the
white vertex in Fig. 4(a) as the focus to make the cache
miss with the lowest ratio, thus to reduce the overall
average ACMR.

If the above cost metric is used directly, it may cause
the new vertex pressed into the cache constantly.
However for some vertices earlier pressed into cache,
because the ACMR related to their adjacent vertices (not
in the cache) is not the minimum value of the global
search, they can not be accessed and may be pressed out
cache soon. When later accessing these vertices, we need
to press them into cache again. To solve this problem, our
cost metric function takes into consideration the location
of vertex in cache. The basic idea is that, if there are a
number of candidate vertices with the minimum ACMR,
the algorithm selects a candidate vertex adjacent to the
vertex which is the first one to enter the cache as the
current focus, and outputs all of its connecting triangles.
This can ensure to access the vertex which will leave the
cache as early as possible. As shown in Fig. 5, for
candidate vertices a and b, they also can output two
triangles and the ACMR is the same as 1/2, regardless of
which vertex pressed into the cache. But since the vertex
2 enters cache earlier than the vertex 3, which means the
vertex 2 will also leave the cache earlier, the algorithm
choose the vertex a as the focus vertex.

(a) Two triangles can be output

(b) One triangle can be output (c) No triangle can be output

Figure 4. The selection of the focus vertex for mesh layout

Figure 5. The position of vertices in the cache

Ⅳ. OUT-OF-CORE RENDERING

The entire representation is stored on the disk. We load
the coarse-grained cluster hierarchy and keep a working
set of cluster into main memory. We perform coarse-
grained refinement at the cluster hierarchy and fine-
grained refinement at the vertex hierarchy. The algorithm
introduces a frame of latency in the rendering pipeline in

1972 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER

order to fetch the newly visible clusters from the disk and
avoid stalls in the rendering pipeline.

The algorithm maintains an active cluster list (ACL),
as shown in Fig. 1, which is a cut of clusters in the
hierarchy representing the scene. During each frame, we
refine the ACL based on the current viewing parameters.
Specifically, we traverse the ACL and compute the error
bound for each cluster. Each cluster on the active front
whose error bound is less than the min bound of its error
range (see Section Ⅲ(A)) is split because the highest
resolution mesh cannot meet the error bound. Similarly,
sibling clusters that have a greater error bound than the
max error of their error range are collapsed. As for local
refinement for active clusters, the algorithm firstly checks
for desirable edge collapses and vertex splits, and updates
the vertex states accordingly; then updates and maintains
the stream of active vertices based on the updated states;
and finally generates the index buffer using the set of
split vertices and the updated frontier implied from the
states [12].

To improve rendering speed, we transfer geometry
data of clusters in the current ACL into GPU memory and
let GPU responsible for fine-grained refinement and
rendering for the vertex trees within the clusters. When
we update clusters in the ACL by performing cluster-
collapse and cluster-split operations, the children and
parent clusters are activated. But the data of these clusters
may not be loaded into GPU memory, which can stall the
rendering pipeline. To prevent these stalls, whenever a
cluster is added to the ACL, we use a separate thread to
prefetch its parent and children clusters into main
memory. When a cluster in the ACL needs to split, we
don’t split it temporarily if its children nodes are still not
loaded into main memory. But if its children nodes
already in main memory, we transfer the data into GPU
and leave the space for other nodes prefetched. Similarly,
we don’t perform cluster-collapse temporarily if the
parent node is still not in main memory. Otherwise we
move the data from main memory into GPU. In order to
save storage space, we only keep two levels of the
hierarchy above and below the current ACL in memory.

At the same time, in order to efficiently process a large
number of pre-fetch requests, we prioritize them based on
the prediction of level of detail updating and of the user's
operation, and insert them into the priority queue, which
makes the request with higher priority be completed more
quickly.

Ⅴ. RESULTS

We have implemented our algorithm on a dual 3.0
GHz PC, with 2GB of RAM and a NVIDIA GeForce
9800 GTX+ GPU with 512MB of video memory. Table 1
shows construction performance of multiresolution
representation for several massive meshes, including the
number of clusters in the entire hierarchy, the total
amount of data, and preprocessing time for cluster
decomposition, hierarchical simplification and mesh
layout. Since cluster hierarchy generation consumes little
time, which is included in the total time for cluster
decomposition. Vertex tree construction time is included

in hierarchical simplification time. Hierarchical
simplification is the most time-consuming step of the
construction algorithm. This is mainly because the
algorithm needs to calculate quadratic error metric of
each vertex within the cluster to construct tree hierarchy
for progressive mesh, and merge the base meshes of
children clusters as the highest resolution mesh
approximation of parent cluster. With the deepening of
the cluster level, the time of hierarchical simplification
increases significantly. Since our algorithm uses GPU to
realize parallel view-dependent refinement of vertex tree
within the cluster, which can get the least triangle sets to
meet the current viewpoint parameter required, we don’t
need to divide the original mesh into thousands of small
clusters like CHPM [9]. Thai Statue model in Table 1, for
example, is divided into 256 leaf nodes in our algorithm
and the entire hierarchy contains 511 cluster nodes, each
cluster contains about 20K vertices. Table 2 shows the
rendering performance for several massive meshes, which
includes the number of cluster nodes selected under
current viewpoint parameters, the number of triangles
rendered and the rendering time. The screen projection
error is set to one pixel. Fig. 6 shows the rendering results
of the corresponding model. For the number of triangles
rendered, the rendering effect of the model is satisfactory
with an interaction rate of about 20fps.

.Ⅵ CONCLUSION AND FUTURE WORK

There has been an explosion in the size of 3D meshes
during recent years, in part due to the drastic
improvements in resolution and accuracy of data
acquisition devices, such as laser range and CT/MRI
scanners. Because the extremely high fidelity of gigantic
meshes, they are applicable in many fields, such as
culture heritage protection, digital museum and virtual
human project. And thus high-quality rendering for these
gigantic meshes has been the pursuing goal of computer
graphics. Multiresolution representation based on space
partitioning methods only consider the geometric
information of the original mesh without concern for its
topology, its rendering quality is relatively poor. This
paper researches and realizes constructing and rendering
of multiresolution representation for massive meshes base
on surface partition, which can support vertex-level mesh
refinement and provide the best rendering results. Our
approach provides dual hierarchies. One is cluster
hierarchy of progressive meshes for coarse-grained
selective refinement. The other is vertex hierarchy which
built with progressive mesh in the cluster node to provide
fine-grained local refinement. In order to promote the
speed of local refinement, we take advantage of GPU
performing parallel view-dependent refinement for vertex
hierarchy, which greatly reduces the load of CPU and
enable it to prefetch data to hide I/O latency effectively.
In addition, we propose a new algorithm for mesh layout
to reorder the base mesh and further promote the
rendering performance.

The efficiency of our algorithm is derived from the
parallel execution of GPU and CPU, multi-thread data
prefetch supported by dual-core CPU. Now it is a hot

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 1973

© 2013 ACADEMY PUBLISHER

research topic in recent years to achieve a wide range of
applications with the processing power of GPU, such as
Zheng et al. [19] uses GPU general-purpose computing
and CUDA technology on RRTM (Rapid Radiative
transfer model) module in Global and Regional
Assimilation and Prediction System. The optimization
results indicate that a 14.3 × speedup is obtained
compared to CPU implementation. We believe that it is
the development trend to mine parallelism of traditional
algorithm, adopt parallel processing unit in GPU pipeline,
as well as assembled PC cluster or GPU clusters for
parallel processing.

TABLE I.
PREPROCESS TIMINGS AND STORAGE REQUIREMENTS FOR TEST

MODELS

Modal Dragon
Thai

Statue
Lucy

The number of vertices 3,609,600 4,999,996 14,027,872

The number of triangles 7,219,045 10,000,000 28,055,742

Original size (MB) 130 180 508

The number of clusters 255 511 1,023

Total size (MB) 416 576 1,625

Cluster decomposition (min) 2.7 4.4 18
Hierarchical simplification

(i)
35 46 138

Mesh layout (min) 1.5 3 5.8

Processing time (min） 39.2 53.4 161.8

TABLE II.
RENDERING PERFORMANCE

Modal
Num

triangles
Num

clusters
Rendered
triangles

Rendering
time (ms)

Dragon 7,219,045 8 307,216 12

Thai Statue 10,000,000 12 376,532 19

Lucy 28,055,742 12 529,960 41

(a) Dragon

 (b) Thai Statue (c) Lucy
Figure 6. Rendering results

ACKNOWLEDGMENT

This work was supported by applied basic research
programs of Yunnan Province (2010CD047) and the
National Natural Science Funds (61262070).

REFERENCES

[1] E. Gobbetti, D. Kasik, and S. Yoon, “Technical strategies
for massive model visualization,” In Proceedings of the
2008 ACM symposium on Solid and physical modeling,
pp.405-415, 2008.

[2] Yaping Zhang, Xiong Hua, Xiaohong Jiang and Shi
Jiaoying, “Out-of-Core Constructing and Interactive
Rendering of Multiresolution Representations for Massive
Meshes,” Journal of Computer-Aided Design & Computer
Graphics, vol.20, No.9, pp.1126-1131, 2008. (in Chinese)

[3] Yaping Zhang, Xiong Hua, Xiaohong Jiang and Shi
Jiaoying, “A Survey of Simplification and Multiresolution
Techniques for Massive Meshes,” Journal of Computer-
Aided Design & Computer Graphics, vol.22, No.4, pp.559-
568, 2010. (in Chinese)

[4] Qingkui Chen, Haifeng Wang, Songlin Zhuang,Bocheng
Liu, “Parallel Algorithm of IDCT with GPUs and CUDA
for Large-scale Video Quality of 3G,” Journal of
Computers, vol. 7, No. 8, pp.1880-1886, 2012

[5] J. C. Xia, and A. Varshney, “Dynamic view-dependent
simplification for polygonal models,” In Proceedings of
the 7th Conference on Visualization. New York, ACM
Press, pp.327-334, 1996.

[6] P. Cignoni, F. Ganovelli, E. Gobbetti, et al, “Adaptive
tetrapuzzles: Efficient out-of-core construction and
visualization of gigantic multiresolution polygonal
models,” ACM Transactions on Graphics, vol.23, No.3,
pp.796-803, 2004.

[7] P Lindstrom, “Out-of-core construction and visualization
of multiresolution surfaces,” In Proceedings of the 2003
symposium on Interactive 3D Graphics, New York, USA,
2003: 93-102

[8] E. Shaffer and M. Garland, “A multiresolution
representation for massive meshes,” IEEE Transactions on
Visualization and Computer Graphics, vol.11, No.2,
pp.139-148, 2005.

[9] S. E. Yoon, B. Salomon, R. Gayle and D. Manocha,
“Quick-VDR: Out-of-Core View-Dependent Rendering of
Gigantic Models,” IEEE Transactions on Visualization and
Computer Graphics, vol.11, No.4, pp.369-382, 2005

[10] C. DeCoro and N. Tatarchuk, “Real-time mesh
simplification using the GPU,” in Proceedings of
Symposium on Interactive 3D Graphics and Games, New
York, USA, pp.161-166, 2007

[11] Junfeng Ji, Enhua Wu, Sheng Li, Xuehui Liu, “View-
dependent refinement of multiresolution meshes using
programmable graphics hardware,” Visual Comput, vol.22,
pp.424–433,2006

[12] L. Hu, P. V. Sander, and H. Hoppe, “Parallel view-
dependent refinement of progressive meshes,” In
Proceeding(s) of ACM Symposium on Interactive 3D
Graphics and Games, pp.169-176, 2009.

[13] L. Hu, P. V. Sander, and H. Hoppe, “Parallel View-
Dependent Level-of-Detail Control,” IEEE Transactions on
Visualization and Computer Graphics, vol. 16, No. 5,
September/Octorber 2010.

[14] G. Lin and PYY Thomas, “An improved vertex caching
scheme for 3d mesh rendering,” IEEE Transactions on
Visualization and Computer Graphics, vol.12, No.4,
pp.640-648, 2006.

1974 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER

[15] P. V. Sander, D. Nehab, and J. Barczak, “Fast triangle
reordering for vertex locality and reduced overdraw,” In
Proceedings of SIGGRAPH 2007, New York, USA, ACM,
2007:89-98

[16] G. Karypis and V. Kumar, “Multilevel k-Way partitioning
scheme for irregular graphs,” Parallel and Distributed
Computing, 1998.

[17] H. Hoppe, “View-dependent refinement of progressive
meshes,” In Proceedings of ACM SIGGRAPH, pp. 189-
198, 1997.

[18] J. El-Sana and A. Varshney, “Generalized view-dependent
simplification,” In Proceedings of Eurographics, pp. 83-94,
1999.

[19] Fang Zheng, Xianbin Xu, Dongdong Xiang, Zhuowei
Wang, Ming Xu, Shuibing He, “GPU-Based Parallel
Researches on RRTM Module of GRAPES Numerical
Prediction System,” Journal of Computers, vol. 8, No. 3,
pp.550-558, March 2013

Yaping Zhang was born in Yunna Province, China in 1979.
She received the MS degree in computational mathematics from
Yunnan University in 2005, and PhD degree in Computer
Science from Zhejiang University in 2010, China. She is a
lecturer in the Computer Science Department of Yunnan
Normal University, Kunming, Yunnan, China. Her research
concentrates on real-time computer graphics and parallel
computing.

Xu Chen was born in Yunna Province, China in 1973. He
received the MS degree in Computational mathematics from
Yunnan University in 2004, and PhD degree in ecology from
Sun Yat-sen University in 2011, China. He is currently an
associate professor in Department of Computer and Information
Science, Southwest Forestry University, Kunming, Yunnan,
China. His research interests include remote sensing image
processing and GPU Computing.

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 1975

© 2013 ACADEMY PUBLISHER

http://dict.cn/ecology

