
An Internet Behavior Management System based 
on Android 

 
Miao Liu 

School of Computer Science and Educational Software/Guangzhou University, Guangzhou, China 
Email: liumiao@gzhu.edu.cn 

 
Gengtong Hou, Ying Gao, Chunming Tang, Dongqing Xie 

School of Computer Science and Educational Software/Guangzhou University, Guangzhou, China 
Email: {hougengtong,gaoying,tangchunming}@ gzhu.edu.cn 

 
 
 

Abstract— With the popularity of smart phones and mobile 
Internet, how to prevent young people from being addicted 
to Internet and games has become one of the issues which 
are most concern to parents. To solve this problem, we 
design and implement an Internet behavior management 
system which is based on Android. The system implements 
the mobile phone remote control, network interception and 
application running control. By using the system, users can 
filter communication data which contain sensitive words out 
of children’s mobile phones, monitor behavior of software in 
the children’s mobile phones, and limit the running time of 
them.  
 
Index Terms—Android, Internet management, network 
interception 
 

I.  INTRODUCTION 

Most current desktop applications of Internet behavior 
management are designed to limit the online behavior of 
employees in order to protect corporation’s information 
security. The function of this kind software includes the 
prohibition or monitoring something such as BT, stocks, 
chat, MSN, QQ, monitoring e-mail and bandwidth, in 
order to reduce viruses infecting and achieve the purpose 
of the correct guidance of employees Internet usage[1-5]. 
However, mobile devices have small memory and limited 
resources, what’s more, for security reason, most of 
mobile operating systems have strict restrictions on the 
functionality of applications and permission management, 
so it is difficult to obtain permission to manage any 
application such as stocks, QQ. These make the behavior 
management software extensions on mobile devices not 
be implemented so easily like desktop applications, that is 
the reason why techniques in desktop Internet behavior 
management software are not entirely suitable for use in 
mobile devices [6-9]. 

The rest of the paper is organized as follows: Section 
II discusses the related work and show the novelty. 
Section III analyses requirements. Section IV describes 
the system architecture. Section V puts forward the 
communication protocol. Section VI discusses the 
message dispatching mechanism. Section VII describes 

the system implantation in detail. Section VIII concludes 
the paper. 

II.  RELATED WORK 

There are some mobile parent control applications 
which are similar to Internet behavior management 
software, such as "Net nanny", "Norton Family parental 
control" and etc. This kind of software can block or filter 
web content, monitor SMS and call, remote control, real-
time GPS recording. Their functions are just refined or 
reduced functions of desktop’s parent control software, 
not bind them tightly with underlying mobile OS. Most 
parent control applications are just one application 
installed on the controlled device. Some applications 
need to set manually on the installed device. Others have 
remote administration through web sites, and parents also 
can read reports through these sites. 

Based on studying many desktop monitoring systems, 
we studied deeply on the phone mobile network 
technology, network interception technology, 
communication and control, mobile embedded system 
operating mechanism and other aspects of mobility, 
designed and implemented an Internet behavior 
management system. The system is also optimized for 
Android mobile phone platform [10-20]. The innovative 
points are listed below. 

• Remote Control. Unlike the above parent control 
applications, the system includes the control side 
application and the controlled side application. 
One control side may control many controlled 
sides. All of them are installed in mobile phones. 
So, parents can control kid’s phones through their 
phones conveniently in real time manner. Parents 
can set kid’s phones alarm events to remind their 
children, set blacklist/whitelist and also get usage 
or alarm reports in real time. 

• Intercept deeply. The current parent control 
applications can just block and filter web contents. 
We develop our intercept module combining with 
Linux kernels, and can intercept any 
communication data into or from any applications 
on the control sides.  

1932 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.8.1932-1942



Figure 1  The system packet diagram. 

• Applications control. Due to security guarantee, 
the top API of Android OS does not provide any 
functions about applications control. We use 
Linux kernels to implement opening and closing 
any applications on the controlled sides. So, 
parents can set starting time, time intervals and 
span limits for applications of kid’s phones.   

III.  REQUIREMENTS ANALYSIS 

For the needs of behavior monitoring on phones of 
kids, this software’s requirements are listed below. 

A.  Functional requirements 
• The control side should be able to instantly 

communicate with the controlled side. 
• The control side should be able to monitor and 

intercept the text messages on phones of the 
controlled side, and can edit interception list on 
phones of the controlled side. The controlled side 
doesn't have permission to modify this list. 

• The control side should be able to add alarm event 
to alert important events to the controlled side. 

• The control side should be able to monitor and 
control the running time of all applications on the 
controlled side, and the controlling rules can be set 
by the control side. 

• The control side should be able to monitor and 
filter network information on the controlled side, 
and the filtering rules can be set by the control 
side. 

• The control side should be able to monitor the 
GPS position of the controlled side, and the 
control side should be able to display this location 
information. 

• When phones of the controlled side has been 
replaced the SIM card, the control side should be 
notified. 

• When the controlled side program is uninstalled, 
clear the data or forced to shut down, the control 
side should be notified. 

B.  Non-functional Requirements 
• From the software's easy-to-use of consideration, 

the user interface design should be simple and 
features should be obvious in the GUI. 

• To consider the reliability of the software, the 
functionality of the program should be able to run 
properly when not connecting to the server. 

IV  THE SYSTEM ARCHITECTURE 

The system is divided into four components, the 
control terminal program (hereinafter referred to as the 
control side) is running on phones of parents, the main 
program of the controlled side (hereinafter referred to as 
the controlled side) and protection procedures (auxiliary 
controlled side) are running on phones of kids, server-
side program (hereinafter referred to as server side) is 
running on a public network server. The control side is 
responsible for sending control instructions to the 

controlled side. These instructions include setting the 
alarm, application running time control, location monitor, 
and network interception and so on. The main program of 
the controlled side is responsible for the execution of the 
received instructions and feeding the results back to the 
control side. These results include the location 
information, the content of the SMS which has been 
intercepted, and so on. The saver on the controlled side is 
responsible for monitoring the operational status of the 
main program. If the main program is forced to stop or 
uninstall by users, the saver will promptly notify the 
control side, in order to prevent the behavior of closing 
the program of controlled side by the children to escape 
from monitoring of their parents. The server side is 
responsible for forwarding the communication 
information between the control side and the controlled 
side, in order to achieve cross-Net communication. 

The programs on the Android platform (the control 
side and the controlled side) have the similar structure of 
the code. The code packet divides into four parts: user 
interface, model, utility and bean. The user interface part 
includes the interface design. The model part includes the 
implementation of the main logic functions, such as the 
alarm function and network interception function. The 
utility part includes the implementation of some common 
functions and interfaces which can be used by other parts. 
The bean part includes definitions of some simple data 
structures which will be used in communication processes. 
The packet diagram is shown in Figure 1. 

Each component (the control side, the controlled side) 
in the system has adopted a hierarchical system structure. 
From top to bottom are the view layer, Android 
component layer, model layer, tool layer and kernel layer. 
Classes in the View layer are mainly responsible for the 
user interface and responding to user action. Classes in 
the Android component layer are responsible for the 
interaction with system services, such as listening SMS. 
Classes in the Model layer are mainly responsible for the 
handling of the users’ data, such as alarm clock event 
management. Classes in tool layer provide some general 
function such as command interface operation and format 
conversion. The Kernel layer runs a module-
NetHookModule, which monitors the flow of data from 
the network in the system kernel. System layered 
architecture diagram is showed in Figure 2.  

 
 

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 1933

© 2013 ACADEMY PUBLISHER



Figure 2  System layered architecture. 

Figure 3  System sequence diagram. 

When we start the application on Android phones, we 
first see a graphical UI interface. When we touch its 
screen or press button, the components in the UI will be 
called the initialization operation and functional operation 
of the respective module, then jump into the respective 
interface of each module. In the controlled side, the main 
program maintains the Android underlying kernel 
synchronization and feedback, and also maintains the 
synchronization with the controlled side saver.  

The interaction among components in the system is 
shown in Figure 3.  

The controlled side automatically starts the saver at 
boot time. The saver is responsible for monitoring 
running states of the controlled side programs. If the 
controlled side programs close unexpectedly or are 
uninstalled, the saver will notify the control side promptly 
to ensure the control side to deal with the situation. The 
control side sends control message to the controlled side 
through the server side, such as accessing the application 
information on controlled side, and so on. The controlled 
side receives the control message, the execution results 
will feedback to the control side by communicating with 
the server side, and so the controlled side can 
communicate with the control side only if each keeps the 
connection with the server side. But when the main 
program of controlled side is abnormal, the saver can 

communicate with the control side directly, so the 
abnormal state can be notified to the control side 
promptly.   

The system adopts the C/S architecture, the control 
side and the controlled side is client sides, and the server 
side is the server component. Two clients keep their 
communication through their connections to the server. 

V.  THE COMMUNICATION PROTOCOL 

It is very important for message recognition and 
execution during communication processes, so it must 
have an agreement to keep the information in the 
identification process on each side. The protocol ensures 
that the receiver side can smoothly perform the intent of 
the sender side. It is necessary to ensure the consistency 
of the data definition. In the system, there is a common 
package, which defines the communication data format. 
The communication protocol is divided into four parts: 
the packet format, request codes, response codes and the 
message format. 

A.  The Packet Format 
Communication packet format is shown in Table I.  
The beginning of data packet is the protocol data unit 

type, which is identified by request codes or response 
codes. The following parts are the destination and source 
addresses, the source and destination addresses are 
numbers of mobile phones, and the end of a packet is 
message part. The message is determined according to the 
first protocol type. When sending a message, the system 
will fill in the protocol type according to the message 
type, and when receiving information, the program will 
parse out the correct message which corresponds to the 
protocol type. In the system, data packets are transported 
through TCP and UDP protocols, so the protocol 
eliminates the need for the data checksum and 
retransmission mechanism.  

B.  Request Codes 
The command side requests the receiving side to give 

something of response or execute some function. The 
request code represents the type of commands. The 
control side and the controlled side communicate with the 
server side through the same protocol, this can ensure that 
both sides of the data transmission and parsing operations 
are symmetrical, in order to achieve the accuracy of the 
communication. Table II lists all request codes and their 
meaning. 

C.  Response Codes 

TABLE I.   
COMMUNICATION PACKET FORMAT 

request code/ 
response code 

source phone 
number 

destination 
phone number 

message

1934 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER



Response codes are the identification of the feedback 
of the corresponding command message. When parsing a 
returning data packet, by extracting the response codes 
firstly, the system can know the type of packets and 
submit the data packet to the corresponding message 
module to interpret its meaning, or prompt the user to 
some appropriate information, such as interrupted the 
connection with server and so on. Table III lists response 
codes and their meanings. 

 

D.  Message Format 
The message is the last part of data packets.  This part 

needs to be analyzed by the message parsing module. The 
type of message corresponds to request code / response 
code. During parsing process, the analysis module can 
parse out the correct message by the request code / 
response code. All the request code and the 
corresponding code is listed in TABLE II and TABLE III, 
and Table IV lists the message type which corresponding 
to the requested code / response code, the request codes / 
response codes not listed in Table IV correspond to the 
empty message which the parsing module can ignore. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

TABLE II.   
RESPONSE CODES AND MEANINGS 

Response code Meaning 

RESPONE_GPS_INFO_MESSA
GE(0x6) 

Feedback location 
information 

RESPONE_APP_INFO_MESSA
GE(0x8) 

Feedback application 
information 

RESPONE_UDP_INFO_MESSA
GE(0x9) 

Feedback UDP socket 
information 

AGREE_TO_CONNECT_MESS
AGE(0xb) 

Feedback the result of 
agreement to connect 

DISAGREE_TO_CONNECT_M
ESSAGE(0xc) 

Feedback the result of 
disagreement to connect

RESPONE_APP_NUM_MESSA
GE(0xe) 

Feedback the number of 
the application  

GET_GPS_INFO_FAIL_MESSA
GE(0xf) 

Feedback the result 
indicates the failure to 

get the GPS information
RESPONE_APP_ICON_MESSA

GE(0x11) 
Feedback the icons of the 

application 
RESPONE_SERVER_INTERAC

TION_MESSAGE(0x15) 
Feedback the check result 
of connection with server

RESPONE_UDP_INTERACTIO
N_MESSAGE(0x16) 

Feedback the check result 
of the UDP  connection 

RESPONE_MESSAGE_INTERA
CTION_MESSAGE(0x17) 

Feedback the check result 
of the SMS  connection 

RESPONE_APP_INFO_FAIL_M
ESSAGE(0x18) 

Feedback the result 
indicates the failure to 

get the application 
information 

RESPONE_APP_RESTRICTION
_TIME_MESSAGE(0x19) 

Feedback application 
blocking time 
information 

RESPONE_CONTACT_MESSA
GE(0x1c) 

Feedback contact 
information  

RESPONE_SMS_BLACK_NAM
E_MESSAGE(0x1d) 

Feedback the black name 
list of SMS interception 

RESPONE_SMS_WHITE_NAM
E_MESSAGE(0x1e) 

Feedback the white name 
list of SMS interception

SEND_INTERCEPTED_SMS_M
ESSAGE(0x1f) 

Feedback the content of 
the SMS has intercepted 

to the control side 
RECOVERY_SMS_SUCCESS_

MESSAGE(0x21) 
Feedback the result 

indicates the success to 
recovery SMS 

 

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 1935

© 2013 ACADEMY PUBLISHER



 

VI.  MESSAGE DISPATCHING MECHANISM 

More than one module in the system need 
communicate with the other side. Each module has its 
own type of communication data. So the system needs to 
identify and classify the received message according to 

the message type, and dispatches messages to the 
corresponding module, and then each module extracts 
the message and executes instructions [21-22]. 

 
The system applies many kinds of communication 

methods such as SMS communication, UDP 
communication and TCP communication. Each 
communication method implements its own 
InteractionService service, the service is responsible for 
starting DataReceiver module. The module will start a 
cycle which is responsible for receiving data, and then 
starts a concrete receiver - interaction. After the receiver 
receives the data, the data will be submitted to the 
InteractionMessage module to analysis and format. 
When the message is returned to the DataReceiver, 

DataReceiver checks its validity, then the effective data 
will be submitted ExecuteInteractionMessage to the 
execution  module -, the dispatch module will send the 
message to the responding module by the message type, 
and the responding module will execute specific 
instruction to complete a process of receiving and parsing 

TABLE III.   
REQUEST CODES AND MEANINGS 

Command code Meaning 

APPLICATION_INTERCEPTIO
N_MESSAGE(0x0) 

Add limitation running time 
span of applications 

ADD_ALARM_MESSAGE 
(0x1) 

Set alarm time and message

CHAT_MESSAGE(0x2) Chat messages 

ASK_UDP_INFO_MESSAGE(0
x3) 

Request UDP socket 
message 

UPDATE_NET_HOOK_KEYW
ORD_MESSAGE(0x4) 

Update the network 
interceptors keyword 

message 
ASK_GPS_INFO_MESSAGE(0x

5) 
Request location message 

ASK_APP_INFO_MESSAGE(0x
7) 

Request application 
information  

ASK_FOR_CONNECT_MESSA
GE(0xa) 

Request to create the 
connection to the contact 

ASK_FOR_APP_NUM_MESSA
GE(0xd) 

Request the numbers of 
application  

ASK_FOR_CONNECT_SERVE
R_MESSAGE(0x10) 

Request to create 
connection for server 

CHECK_SERVER_INTERACTI
ON_MESSAGE(0x12) 

Request to check the 
connection to server  

CHECK_UDP_INTERACTION_
MESSAGE(0x13) 

Request to check the UDP 
connection to client 

CHECK_MESSAGE_INTERAC
TION_MESSAGE(0x14) 

Request to check the SMS 
connection to client 

ASK_FOR_CONTACT_MESSA
GE(0x1a) 

Request the contact of the 
controlled side  

ASK_FOR_SMS_NAME_MESS
AGE(0x1b) 

Request the name list of the 
SMS interception 

RECOVERY_SMS_MESSAGE(
0x20) 

Request to recovery the 
SMS which has intercepted

SOS_MESSAGE(0x22) The controlled side send the 
message to ask for help to 

the control side 
GENIUS_STOP_WARNNING_

MESSAGE(0x23) 
The message which 

indicates the main program 
of the controlled side has 

stopped 
GENIUS_UNINSTALL_WARN

NING_MESSAGE(0x24) 
The message which 

indicates the main program 
of the controlled side has 

been uninstalled 
GENIUS_DATA_BE_CLEARE

D_MESSAGE(0x25) 
The message which 

indicates the data of the 
main program on the 

controlled side has been 
cleaned 

 

TABLE IV.   
REQUEST CODE / RESPONSE CODE AND MESSAGE TYPE 

Request code / Response code Message Type 

APPLICATION_INTERCEPTIO
N_MESSAGE(0x0) 

ApplicationRestrictionInfo
(custom type) 

ADD_ALARM_MESSAGE(0x1) TipEvent 
(custom type) 

CHAT_MESSAGE(0x2) ChatMessage 
(custom type) 

UPDATE_NET_HOOK_KEYW
ORD_MESSAGE(0x4) 

String 
(Java API) 

RESPONE_GPS_INFO_MESSA
GE(0x6) 

GPSInfo 
(custom type) 

RESPONE_APP_INFO_MESSA
GE(0x8) 

ApplicationRestrictionInfo
(custom type) 

RESPONE_UDP_INFO_MESSA
GE(0x9) 

ParentCommunicationInfo 
(custom type) 

ASK_FOR_CONNECT_SERVE
R_MESSAGE(0x10) 

UserInfo 
(custom type) 

RESPONE_APP_NUM_MESSA
GE(0xe) 

Integer 
(Java API) 

RESPONE_APP_RESTRICTIO
N_TIME_MESSAGE(0x19) 

ApplicationRestrictionInfo
(custom type) 

RESPONE_CONTACT_MESSA
GE(0x1c) 

ContactContent 
(custom type) 

RESPONE_SMS_BLACK_NAM
E_MESSAGE(0x1d) 

ContactContent 
(custom type) 

RESPONE_SMS_WHITE_NAM
E_MESSAGE(0x1e) 

ContactContent 
(custom type) 

SEND_INTERCEPTED_SMS_M
ESSAGE(0x1f) 

SmsValues 
(custom type) 

RECOVERY_SMS_MESSAGE(
0x20) 

SmsValues 
(custom type) 

 

1936 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER



Figure 4  Message dispatching sequence diagram. 

Figure 5  The structural diagram of the control side. 

Figure 6  The interaction among the two clients and the saver. 

Figure 7  Setting the alarm clock event sequence diagram on the control 
side. 

the communication data. Figure 4 shows the message 
dispatching sequence diagram. 

 

VII.  THE SYSTEM IMPLEMENTATION 

A.  Control Side Structure 
The control side can manage and control the controlled 

side. Taking into account actual situation, the control side 
is designed with one-to-many control mode. Control 
functions provided by the control side and the monitoring 
modules of controlled side are one-to-one correspondence, 
respectively, GPS monitoring, alarm event setting, 
application running time monitor, network interception 
monitor, the SMS interception set and end-to-end 
chatting. Before running the above modules, the program 
of control side will let the user select the contacts which 
he wants to control. The structural diagram of the control 
side is shown in Figure 5.  

B.  The Controlled Side Structure 
The Controlled side is divided into two parts, the main 

program and the saver. When the main program opened, 
it will automatically start the saver. The main program is 

responsible for running online behavior management 
monitoring module, the saver is responsible for 

monitoring the running status of the main program. When 
the main program closes unexpectedly or is uninstalled, 
the saver will access the contact information through a 
shared file of the main program, and notify the running 
status timely to the control side program. The interaction 
among the two clients and the saver is shown in Figure 6. 
C.  Alarm Setting Implementation 

As a brief description of the one-to-many control mode 
on the control side, we show how to set alarm settings. In 
the control side, users can set the alarm clock event on 
the controlled side.  When setting the alarm event, users 
firstly select the contact who they want to add an alarm to, 

select the alarm time and set reminding text. The system 
will issue the instruction to add the alarm after 
confirmation. Setting the alarm event sequence diagram 
on the control side is shown in Figure 7.  

The controlled side will perform some operations such 
as adding alarm after receiving the instruction. The 
message dispatching module will dispatch the message to 
the TipEventManager module, this module will add an 
alarm event which described in the message, and update 
the alarm events list in the GeniusAlarmManager module. 

The GeniusAlarmManager module will add alarm intent 
to CallGeniusAlarm module which can be woke up on 
time by Android system, so that the user can get a alarm 
on the particular moment. At last, TipEventManager 
module updates the new alarm events on the user 
interface. Setting alarm clock events sequence diagram 
on the controlled side is shown in Figure 8. 

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 1937

© 2013 ACADEMY PUBLISHER



Figure 8 Setting alarm clock events sequence diagram on the controlled 
side. 

Figure 9  GPS request processing sequence diagram on the 
control side. 

Figure 11 GIS displaying sequence diagram on the control side.

Figure 10 GPS request processing sequence diagram on the controlled 
side. 

D.  Integration with GIS 
The control side can monitor the real-time position of 

the controlled side. First of all, the user interface class 
GPSInfoActivity will send a request for monitoring the 
position of the controlled side. After the controlled side 
receives the request, it will get its real-time position 
location information by GPS or network, and then return 
the message to the control side. When the control side 
receives the message which includes the GPS information, 
the message will be dispatched to the GPSInfoManager 
module. GPSInfoManager module will update the list of 
messages, and query the corresponding location name by 
using latitude and longitude in the GPS message. At last, 
GPSInfoActivity will be notified to initialize the map 
view and display the location of the controlled side on the 
map. The GPS request processing sequence diagram on 
the control side is shown in Figure 9.   

The GIS module uses the map API of the Baidu 
Company to locate and display the GPS information on 
the map. Firstly, some initialization operations are 
executed by using the GPS information and the system 
create a GeoPoint object to add to the 
CustomItemizedOverlay. The overlay calls the MapView 
to update its view, so that the map view calls its 
MapController to complete the display work.  The GIS 
displaying sequence diagram is shown in Figure 10.   

When the controlled side receives the GPS locating 
request, the message dispatching module dispatches the 
message to the GPS module. The LocationManager in 
GPS module gets the location manager of Android 
System to initialize itself, and initializes a location 
listener. The listener will monitor the mobile’s location 
change. When the listener gets concrete location 
information, it will create a GPSInfo object by this 

location information and send this message to the control 
side. The GPS request processing sequence diagram on 
the controlled side is shown in Figure 11.   

 

E.  Network Interception Module 
In this module of controlled side, coding the network 

interception driver is difficult, because of the security 
reasons on Android. The platform does not provide 
network interception in its API. Android operating 
system is written based on Linux; the kernel provides a 
framework-NetFilter in the underlying Linux. Using this 
framework, the problem of network interception modules 
can be solved [22-23]. 

NetFilter is a scalable framework of the Linux kernel; 
it allows developers to define the hook function in the 
middle of the Linux network protocol layers. When 
network data flow through the layers of the protocol layer 
in the kernel, the kernel will automatically call the 
appropriate hook function that specific statement and 
return value which indicates the packet processing results: 
through, discarded or taken over. Hook functions can be 
registered at any protocol layer in the kernel and listens 
the data flow, then return value NF_ACCEPT (go 
through, to pass on), NF_DROP (discard, no longer pass) 
and so on.  

The network interception module must be running in 
the Android kernel, but the system module is running in 
the upper layer of Android users, so they must have an 
interactive mechanism that makes other modules set and 
read the data of the network intercept module. Some 
operations of the interception module must require other 
modules to complete some work, such as the network 
interception keywords setting, installing and uninstalling 
module. So, in order to interact with other modules in 
convenience, the network module uses two files which 

1938 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER



Figure 12 Network interception sequence diagram on the 
controlled side. 

Figure 13 Keyword sequence diagram synchronization on the 
control side. 

Figure 14 SMS interception sequence diagram on the controlled 
side. 

are in the specific path. One is a log file recording the 
keyword interception history of the module, the other file 
is a keyword list file, which is a collection of keywords 
that module needs to intercept them. When other modules 
need to change the keyword, they only simply write the 
new keywords to this file, and reset the keyword of the 
network interception module. If other modules want to 
get the interception history, they only simply access the 
log file.  

During the interception process, the module reads the 
current data packet to judge that whether it contains the 
words which are needed to intercept, and then judges that 
whether it is a TCP packet to process further, otherwise 
return NF_ACCEPT to let the data go through. Because 
under normal circumstances, keyword searching function 
is completed in TCP request, so the system only needs 
intercepting TCP packets to be processed. 

After the TCP packet is intercepted, the system 
extracts the contents of the TCP packet and matches the 
keywords in the keyword table. If the match is successful, 
we believe that the message contains sensitive content 
and should discard this packet. A matching algorithm - 
KMP algorithm is used in the matching process. The 
algorithm limits the running time in linear time, this can 
improve the response time of the kernel module, and also 
be a great help to optimize the performance. 

Network interception workflow on the controlled side 
is shown in Figure 12. The network module has a 
network interception services unit; this unit will start the 
service when the program starts. After the start of the 
service, the network interception unit will be installed; 
this unit is the core of the entire module. After installing 
the unit, the system will launch network interception. The 
interception unit will start an interception log unit, this 
unit need to update the interception keyword list, so it 
will issue the request of the update keywords to the 
keyword Manager. The module also has a unit used to 
display an interface to show the search keywords, the 
interface will display by the trigger of users.  

On the control side, users edit keywords of network 
interception. Users call the UI-
NetInterceptionKeywordActivity first; the user interface 
class requests the recent keywords by calling the keyword 
manager-NetInterceptedKeywordManager. Users edit the 
keywords on UI. The NetInterceptionKeywordActivity 
updates the keywords in the manager, and the manager 
sends a request of keyword updating to the controlled 

side to complete keywords synchronization operation. 
The keyword synchronization sequence diagram on the 
control side is shown in Figure 13.   

F.  SMS Interception 
On the controlled side, SMS interception module 

registers a SMS listener, and realizes the SMS 
interception list management, contacts management and 
SMS backup functionality. When an SMS broadcast 
reaching, the listener will automatically be invoked by the 
system. The listener will extract the number of the SMS 
sender to submit to the interception name list 
management module, this interception name list 
management module requests the phone contacts to 
contacts manager and updates stranger List and 
interception name list. If the number is on the blacklist or 
a stranger, the intercept list manager returns the 
interception response to the listener. Received by the 
response of interception, the listener will notify the SMS 
backup module to back up the SMS which is going to 
intercept, and the broadcast is terminated. The SMS 
interception sequence diagram on the controlled side is 
shown in Figure 14[24-25].  

On the control side, users edit the name list of SMS 
interception and are notified when a SMS is intercepted 
by the controlled side. The user interface class-
MessageInterceptActivity requests the name list for a 
manager-MessageInterceptNameListManager and shows 
the name list on UI. If the name list is empty, the 
manager will send a message to the controlled side which 
requests the contacts information of the mobile. When 
users edit the name list, the program updates the data of 
the manager and notifies the controlled side to update its 

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 1939

© 2013 ACADEMY PUBLISHER



Figure 15 SMS interception sequence diagram on the control 
side. 

Figure 16 Application control sequence diagram on the 
controlled side. 

Figure 17 Setting application restriction information sequence 
diagram. 

Figure 18 The interaction among the server and the clients. 

name list in time. When the controlled side intercepts a 
SMS, the system notifies a manager-
InterceptedMessageManager on the control side, and it 
notifies users finally. The SMS interception sequence 
diagram on the control side is shown in Figure 15.  

G.  Application Control 
In order to achieve monitoring applications and limit 

running time of applications, the program of controlled 
side implements a Linux command module which is 
running on Android platform. This module uses 
commands to manage and limit the running time of 
applications. For behavior management software, which 
is a very important breakthrough, because Android has a 
series of security mechanisms, the Android top level API 
function never allows to force to shut down the top-level 
program, so the program only can monitor and manage 
the running time of the applications by using Android 
underlying mechanism.  
Application control flow is shown in Figure 16. 

 Application control services unit will be started at first, 
this service will get the information of applications at the 
top of phone screen regularly through the application 
information manager. Then it will request applications 
run time information to the application run-time manager 
by sending applications’ information. Service unit will 
further confirm whether the run time of top-level 
applications exceeds the pre-assigned run time. If that is 
true, the service unit will request the command line 
control tool to shut down the top-level program, and 
gives a user prompt. Finally, the application run-time 
manager will update the application run-time information. 

On the control side, users edit the application 
restriction information on the user interface. The interface 
class-ApplicationRestrictionActivity requests the 
application information for the manager-
ApplicationRestrictionTimeManager. If the data is empty, 
the manager requests the application for the controlled 
side, and then updates the user interface. When users 
select an application name, the interface jumps to the 
other interface-RestrictionApplicationTimeActivity. users 
can modify the restriction time span or restriction instants. 
The manager is notified and sends a message to update 
the application restriction information on the controlled 
side. The setting application restriction information 
sequence diagram is shown in Figure 17.  

 H.  Server Side Implementation 
The server side mainly controls the client side by 

online user management. It acts like an information 
transfer and processing media to achieve a reliable 
remote control function.  

The interaction among the server and the clients is 
shown in Figure 18.  

The control side sends the control information to the 
server, the server verifies the identity information, and 
finds the corresponding controlled side and send the 
control information to it. The controlled side will fetch 
instruction according to the control information, and then 
perform the appropriate action. If the control side needs 
feedback of any action, such as GPS cannot get the 
location information sometimes because of the network 
problems, the controlled side needs to send the 
appropriate message to the control side, informs the 
control side that the action executes failed, and then the 
control side can take some appropriate action to solve 
problems.  

1940 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER



 
Figure 19 The start interface of the control side. 

 
Figure 20 The start interface of the controlled side. 

G.  User Interface Implementation 
The control side and the controlled side have different 

functions, but the design of their user interface is similar, 
that can support the consistency of the user experience. 
The design of user interface is simple and clear, so that 
the user can get a better experience when using this 
software. The figure 19 and the figure 20 is some UI 
screenshots of this software.  

 

VIII.  CONCLUSIONS 

The Internet behavior management system provides a 
good functional support for parents to monitor children’s 
mobile phones. The system is designed within Android 
kernel deeply, and already implements the functions that 
the Android API cannot be completed, such as network 
data filtering, monitoring running time of applications, 
and also makes the software's performance be optimized 
on Android platform. To improve the functionality of the 
system, provide a complete server support and strengthen 
user authentication for security mechanisms will be the 
further research directions of the system. 

ACKNOWLEDGMENT 

The authors wish to thank Haojie Zhang, Xiaorui Xu, 
Zhongcheng Feng and Jihao Chen. They did a lot of work 
during the system testing. This work was supported in 
part by the National Natural Science Foundation of China 
under Grant No. 11271003 and Programs in higher school 
high-level talents of Guangdong Province. 

 

 
 

REFERENCES 

[1] Wookey Lee, Woong-Kee Loh, Mye M. Sohn, Searching 
Steiner trees for web graph query. Computers and 
Industrial Engineering. 62h ed., vol. 3, pp. 732-739, 2012. 

[2] Murat Gunestas, An evidence management model for web 
services behavior. Fairfax, VA USA: George Mason 
University; 2009. 

[3] Hayato Ohmura, Teruaki Kitasuka, and Masayoshi 
Aritsugi, Web browsing behavior recording system. 
Proceedings of the 15th international conference. In Berlin, 
Heidelberg, 2011, pp. 53-62.  

[4] Guo Danhua, Bhuyan Laxmi Narayan, Liu Bin, An 
Efficient Parallelized L7-Filter Design for Multicore 
Servers. IEEE-ACM TRANSACTIONS ON NETWORKING. 
Vol. 20, No. 5, pp. 1426-1439, 2012.  

[5] Garcia Kunzel, Adriana. An Android approach to the web 
services resource framework. Florida Atlantic University. 
ComputerScience. 2010. 

[6] Mohammad Nauman, Sohail Khan, and Xinwen Zhang, 
Apex: extending Android permission model and 
enforcement with user-defined runtime constraints. 
Proceedings of the 5th ACM Symposium. Suite 701 New 
York NY USA, 2010, pp. 328-332.   

[7] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel 
Haney, Erika Chin, and David Wagner, Android 
permissions: user attention, comprehension, and behavior. 
Proceedings of the Eighth Symposium. Suite 701 New 
York NY USA, 2012, pp. 1 -14. 

[8] Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul 
Potharaju, Cristina, Nita-Rotaru, and Ian Molloy, Android 
permissions: a perspective combining risks and benefits. 
Proceedings of the Eighth Symposium. Suite 701 New 
York NY USA, 2012, pp. 13-22. 

[9] Alexander Sirotkin, The Java API to Android's telephony 
stack. Linux Journal. 2009th ed., vol. 183, pp. 1, 2009. 

[10] Onur Cinar, Android Apps with Eclipse. First Edition. CA 
USA: 901 Grayson Street Suite 204 Berkely, 2012, pp. 20-
21. 

[11] Marko Gargenta, Learning Android. CA USA: O'Reilly 
Media Inc, 2011, pp. 28-32. 

[12] Victor Matos, and Rebecca Grasser. Building applications 
for the Android OS mobile platform: a primer and course 
materials. Journal of Computing Sciences in Colleges. 26th 

ed., vol. 1, pp. 23-29,  2010. 
[13] Jeff Friesen, Learn Java for Android Development. CA 

USA: 901 Grayson Street Suite 204 Berkely, 2010, pp. 65-
66. 

[14] Min Zhao, Tao Zhang, Fangbin Ge, and Zhijian Yuan, 
RobotDroid: A Lightweight Malware Detection 
Framework On Smartphones. Journal of Networks. Vol. 7, 
No. 4, 2012. 

[15] Min Zhao, Tao Zhang, Jinshuang Wang, and Zhijian Yuan, 
A Smartphone Malware Detection Framework Based on 
Artificial Immunology. Journal of Networks. Vol. 8, No. 2, 
2013. 

[16] Zhizhong Wu, Xuehai Zhou, and Jun Xu, A Result Fusion 
based Distributed Anomaly Detection System for Android 
Smartphones. Journal of Networks. Vol. 8, No. 2, 2013.  

[17] Lee Boon-Giin, Chung Wan-Young, A Smartphone-Based 
Driver Safety Monitoring System Using Data Fusion. 
SENSORS. Vol. 12, No. 12, pp. 17536-17552, 2012.  

[18] Payet Etienne, and Spoto Fausto, Static analysis of 
Android programs. INFORMATION AND SOFTWARE 
TECHNOLOGY. Vol. 54, No. 11, pp. 1192-1201, 2012.  

[19] Zhang Ying, Huang Gang, Liu Xuanzhe, Zhang Wei, Mei 
Hong, Yang Shunxiang, Refactoring Android Java Code 

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 1941

© 2013 ACADEMY PUBLISHER



for On-Demand Computation Offloading. ACM SIGPLAN 
NOTICES. Vol. 47, No. 10, pp. 233-247, 2012.  

[20] Njunjic, Ivan. Development Techniques for Android 
Platform Mobile Device Application. Eastern Michigan 
University.bComputer Information Systems. 
ComputerScience.  2012. 

[21] Lombera, Moser, Melliar-Smith, and Chuang, Mobile 
Decentralized Search and Retrieval Using SMS and HTTP. 
MOBILE NETWORKS & APPLICATIONS. Vol. 18, No. 1, 
pp. 22-41, 2013.  

[22] Brown Anthony, Mortier Richard, Rodden Tom. MultiNet: 
Usable and Secure WiFi Device Association. COMPUTER 
COMMUNICATION REVIEW. Vol. 42, No. 4, pp. 275-276, 
2012.  

[23] Elisa Bertino, Elena Ferrari, and Andrea PeregoA, General 
Framework for Web Content Filtering. World Wide Web. 
13th ed., vol. 3, pp. 215-249, 2010. 

[24] Ruining Huang, Lei Li, Yunjiang Lou, Research and 
Construction the Net Monitor System, Special Issue: 
Advances in Information and Networks. Journal of 
Networks. Vol. 7, No. 7, 2012.  

[25] Nuruzzaman M. Taufiq, Lee Changmoo, bin Abdullah 
Mohd. Fikri Azli, Choi Deokjai, Simple SMS spam 
filtering on independent mobile phone. SECURITY AND 
COMMUNICATION NETWORKS. Vol. 5, No. 10, pp. 
1209-1220, 2012.  

 
 

Miao Liu was born in Hubei Province, 
China on September 24, 1969, and received 
the B.Sc. degree, the M.Sc. degree in 
Computer Science from the Information 
Engineering University, China, the PhD 
degree in Computer Application 
Technologies from South China University 
of Technology China, in 1987, 1991, and 
2007, respectively. 

He is currently an associate professor at 
the computer science department of Guangzhou University, in 
Guangzhou, China, and has authored and co-authored over 30 
technical papers. His major research interests are: network 
security, artificial intelligence and e-commerce. 

 
Gengtong Hou was born in Guangdong 
Province, China on February 24, 1990, 
and is studying in Guangzhou University, 
China.  

Ying Gao was born in Hubei Province, 
China on June 1,1963, and received the 
B.Sc. degree in mathematics education 
from the Central China Normal 
University, China, and the M.Sc. 
degrees in computer science from 
Beijing University of Aeronautics and 
Astronautics and the PhD degrees in 
Communication and Information 
Systems from South China University of 

Technology China, in 1987, 1998, and 2002, respectively. 
He is currently a professor at the computer science 

department of Guangzhou University, in Guangzhou, China, 
and has authored and co-authored over 60 technical papers. His 
major research interests are: evolutionary multiobjective 
optimization, constraint-handling techniques for evolutionary 
algorithms. 

Prof. Gao is a member of the IEEE Guangzhou subsection. 
 
 

Chunming Tang was born on Jan 1, 
1972, in Hunan Province, China, and 
received B. Sc. Degree in mathematics 
education from Xiangtan Normal 
University, China, and the M.Sc. degree 
in Computational Mathematics from 
Xiangtan University, China, and PhD 
degree in Applied Mathematics from 
Chinese Academy of Science, China.  

He is a mathematics professor in 
Guangzhou University. His major research interests are 
Cryptography and Cloud Computing. 

 
 

Dongqing Xie was born in 1965, and 
received his PhD degree from Hunan 
University in 1999.  

He is currently a professor and PhD 
supervisor at the computer science 
department of Guangzhou University, 
China. His main research interests 
include algorithm analysis and design, 
information security. He is also a 

member of China Computer Federation. 
 
 
 

 
 

1942 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER




