

An MDA Based Modeling and Implementation

for Web App

Rongliang Luo
Department of Computer Science and Engineering, Zhejiang University City College, Hangzhou, P.R. China

Email: luorl@zucc.edu.cn

Xiao Peng
College of Computer Science and Technology, Zhejiang University, Hangzhou, P.R. China

Email: xiaopeng8754@zju.edu.cn

Qianxi Lv
College of International Studies, Zhejiang University, Hangzhou, P.R. China

Email: vera_lv52e@126.com

Minghui Wu*, Bin Peng, Shuoping Wang and Ming Guo
Department of Computer Science and Engineering, Zhejiang University City College, Hangzhou, P.R. China

Corresponding author email: mhwu@zucc.edu.cn

Abstract—Web App surges recently as the HTML

technology comes to be well-developed. The development

framework of existing platform demands the users’

attention directed towards technique details and duplicated

efforts. In order to save the developers’ efforts to the design

of App functions and its ease of use, the idea of Model

Driven Architecture (MDA) will be extended in the

development of Web App. This paper proposes a Web App

development framework based on MDA—Model Driven

Web App Development Framework (MDWAF). Based on

the MDWAF, the development of Web App will focus on the

software models. The comprehensive data management of

development and release process will be achieved by Cloud

Services, and the cross-platform local resources access of

Web App will be provided by mobile middleware.

Index Terms—Model Driven Development, Web App,

Platform Independent Model, Platform Dependent Model,

Model Transformation

I. INTRODUCTION

With Mobile internet being in full swings, App

development has become popular in various platforms as

iOS, Android, Windows Phone, Symbian. HTML5

technology has been optimized and adopted by major

investors, and quickly comes to be compatible with each

browser. As a result, the development of Web App is in

good momentum. It is possible that the function of Web

App will approach or even surpass Native App with the

standardization of HTML 5 technology and improvement

of hardware quality of the platforms [1]. The coming

years will certainly see the quick development of Web

App with the surge of mobile equipments, cloud

computing and the popularization of 4G networks. The

existing development platform of Web App, such as

jQTouch, Sencha Touch and jQuery Mobile are plug-ins

applied for mobile web, compatible with systems like iOS,

Android, and some other systems based on webkit. Based

on development framework of jquerycore, jquery UI and

Ext, they are expanded to provide developers with the

related component library and functions required for

commonly used mobile Web App. The development

framework of existing platform demands the users’

attention towards technique details and duplicated efforts.

In order to facilitate the design and development of App,

the idea of Model Driven Architecture (MDA) will be

extended in the development of Web App. An abstract

model framework without the involvement of hardware

platform, operating system or implementation language

of Web App will shift the code-centric software

development paradigm to the new model-centric software

development paradigm.

Model Driven Architecture (MDA) [2] is a framework

specification proposed by the OMG (Object Management

Group) in 2001. The main idea of MDA is to first

establish PIM (Platform Independent Model) according to

business logic independently of implementation

technology, which will be transformed into PSM

(Platform Specific Model) by mapping and finally

generate executable code for target platform [3]. MDA is

based on various standards proposed by OMG, separating

business logic and technology depending on certain

platform. Platform independent application established by

MDA and its related standards can be implemented in

CORBA, J2EE, .Net, Web services and other Web-based

platforms [4]. The transformation from PIM to PSM

through mapping and the transformation from PSM to

code is the key technology in MDA [5].

A better solution of problems arising during Web App

development will be achieved by adopting the MDA

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 1881

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.8.1881-1888

development framework. More specifically, developers

should first accomplish the business requirements by

building PIM, and then transform PIM into PSM and

code with model transformation engine of the

development framework and specific platform

configuration files [6]. Cloud service can provide

component model and related templates during this

process and publish the encapsulated executable files

afterwards. When the Apps are released, users can

download them in Web App Store which installed on the

mobile terminals. After being installed, the Web App can

be interpretively executed by Web App engines.

The rest of this paper is organized as follows: Section

2 introduces the architecture of MDWAF. Then the

development process of Web App based on the

architecture will be introduced in the order of

architectural establishment, architecture implementation

and transformation and generation of Web App in section

3. Section 4 describes the implementation of model

driven technology within the architecture. Finally, We

conclude in Section 5.

II. MDWAF ARCHITECTURE

MDWAF can be divided into three parts. The First part

refers to the local development environment in MDWAF,

which provides such supports as project management,

Model Driven Development, program preview and

program debugging, etc. The second part is provided by

the Cloud service, which includes developer account

management, version control, service management for

developers and user terminals, and services for Web App

Store. The third part is the Web App engine installed on

terminal devices, which serves as a local runtime

environment for users and provides accessibility to

services through Web App Store. The MDWAF

architecture is shown in Fig. 1.

IDE

Cloud Service

Mobile Terminal

On
li
ne
 c
om
pi
li
ng
,

en
ca
ps
ul
at
io
n
an
d

pu
bl
is
hi
ng

Mo
de
l
li
br
ar
y,

co
mp
on
en
t
li
br
ar
y

an
d
te
mp
la
te
 u
pd
at
e

Web App download and push

notifications

Terminal information

Deployment after local pack

Figure 1. MDWAF architecture

Development platform provides the Web App

Developer with an integrated development environment

which makes the rapid development of Web App possible

with model-driven architecture. Functions such as online

compiling, encapsulation and publishing of Web App are

achieved with cloud service. Besides, model library,

component library and template library files can be

downloaded and updated from the development

framework through cloud service to enrich the

development environment. Web App can be stored in the

cloud, from which the mobile terminal users can

download and deploy it in the middleware platform. And

push notifications are also provided by the cloud service.

A. Cloud Service Architecture

Fig. 2 illustrates the cloud service architecture in

MDWAF. The cloud service architecture mainly provides

the cloud services based interface for the Web App

developers and mobile terminal users, which facilitate the

Web App release and update as well as download and use

for end users. The cloud service architecture consists of

four layers: basic software support platform layer, basic

service layer, the integration and encapsulation service

layer and external interface layer.

Basic software support platform

Basic services

Developer interface
Official

websites

 Technology

forums Push

notifications

Web App Store

Terminal user interface

User

management

Data

management

Version

management
Help center

Compile Pack

Publish Download

Model &

component library

Template

library

Figure 2. Cloud service architecture

The basic software support platform integrates

technologies and frameworks such as, SQL Server,

MongoDB, Hadoop, J2EE, ASP.NET, etc, which provide

technical support and security for the basic data

processing and encapsulation. Technologies like Xfire are

used to publish data and business in the form of Web

Service based on SOAP protocol to facilitate the

invocation of upper layers.

Layer of basic services is built on the foundation of

basic software support platform layer. Small-grained

services provided by basic software support platform

layer was combined and encapsulated into large-grained

services here so as to provide the upper layers with access

to the data and business. Services provided by basic

services layer are user management services, data

management services, version management services and

help center. User management services refer to the

information management for developers to publish

projects in the Web App Store and users to download

them, including user login authentication, user rights

verification, user registration, recording of users’

distributing and downloading Web App. Data

management services are primarily responsible for the

integration of large-scale data and indexing structure to

achieve fast retrieval of existing data. Web App project

released version management service is responsible for

managing and publishing of multi-version Web App.

Help center services provides developers and terminal

users with development technology and instructions of

1882 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER

Web App, as well as online consulting on official

websites and forums.

The integration and encapsulation layer, official

websites and technology forums are built on the layer if

basic services. Visitors can have access to MDWAF

introduction and download support software from official

websites and technology forums which also provides the

existing developer or mobile terminal user with Web App

development or download information. The integration

service layer mainly consists of three parts. The first is

the service of model library, component library and

platform template library. This service is connected with

component model and template engine of the

development environment, which facilitates Web App

development by reuse of component model and templates

for different platforms. The second is the service of Web

App Store, which integrates the user management,

version management and data management services, and

also provides interface for publishing and downloading

respectively. The third is the service of Push notification,

which sends notification including version updates,

important news, weather alerts, and application released

information etc. to the Web App Engine of mobile

terminals.

The external interface layer is the top level of the cloud

services, which integrates the services of lower layers,

and provides interface to access cloud services for the

integrated development environment and the Web App

Engine of mobile terminals.

B. Mobile Terminal Architecture

The mobile terminal architecture is shown in Fig. 3. It

consists of the operating system of mobile terminal, the

browser kernel based on webkit, the platform API plug-

ins and its management, integrated services of the Web

App Store, Web technology framework, JavaScript plug-

in extensions, and Web App.

iOS、Android、WinPhone Operating System

Browser kernel based on webkit

HTML5

JavaScript

CSS

Web App

Plug-in

management

Platform API

JavaScript

plug-in

Web App UI framework（CSS UI component library）

Web App

Store Service

Figure 3. Mobile terminal architecture

Other modules and services are deployed on the

operating system of mobile terminal. Operating systems

of the mobile terminal such as iOS, Android, WinPhone

offers an integrated management of underlying hardware

of mobile terminals and interfaces for upper software.

Middleware engine of the mobile terminal, built on the

basis of operating system, is primarily responsible for

loading and running Web App. The core of the mobile

terminal middleware engine is a webkit-based browser

kernel, which can render the common code of web

standards and interpretively execute the framework. The

platform API plug-ins and plug-in management module

intercept the platform API invoking events. Access to

local resources and external services based on JavaScript

was enabled by invoking Operating System APIs

supported by the mobile terminal device. Web App Store

service takes charge to manage local Web App, and the

inquiry and download of Web App are achieved through

the interaction with the cloud services.

Above the mobile terminal middleware engine is the

common web development standards such as HTML5,

JavaScript and CSS3 and JavaScript plug-in library

extended for operating system of mobile terminals.

HTML5, JavaScript and CSS3 are the key technology in

Web App development [7]. Web App can access local

resources and external services through interaction

between JavaScript and middleware engine of the mobile

terminal by Defining the mapping between JavaScript

APIs and native APIs of mobile platform [8].

On the top of the architecture is Web App. A Web App

UI framework is also included as componentized Web

App are achieved though HTML5 and JavaScript

components encapsulation.

C. Development Environment Architecture

Development Environment Architecture is the core of

MDWAF architecture, functions of which are project

management, model-driven development, code file

editing, platform simulator and project release.

The developer starts a new project in the project

management module which will deploy the project

structure and related file automatically, followed by the

establishment of the model according to the Web App in

the graphical interface of the MDA module and

deployment of the related platform template; and finally

ended with the transformation to HTML5 and JavaScript

codes with MDA module. Developer could modify

generated code in the environment provided by code edit

module to complete complex component and business

logic. Compiled code can be performed on Platform

Emulator so that developers can preview or debug the

program. The project can be encapsulated and released to

the cloud services of Web App Store through the project

release module. The development environment should

have access to cloud services where various component

models and platform template models can be downloaded

to implement more model functions and support variant

platforms and standards.

The Integrated development environment of MDWAF

is implemented based on the Eclipse Extension

Mechanisms, and it integrates techniques supported by

OMG such as Meta Object Facility (MOF), Unified

Modeling Language (UML) and Common Warehouse

Metamodel (CWM), as well as Eclipse Modeling

Framework (EMF) [9] and Velocity Template Technique

to implement relevant functions. Its architecture is shown

in Fig. 4 as below.

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 1883

© 2013 ACADEMY PUBLISHER

E
clip

se P
latfo

rm

E
clip

se E
x

ten
sio

n
 M

ech
an

ism
s

Controller

Model Process
Model Transform

Extension

Platform/Standard

Configuration

Interlayer

Model

Repository

Interface

Encapsulation

Model

Interface

Encapsulation

Template Engine

Velocity

Model Transformation

Language

Infrastructure

Model Repository

Interface

CWM EMF

JavaScript

Library
Other Libraries

Editor

Model Editor WYSIWYG View Editor JavaScript Editor

XSLT

P
latfo

rm
 S

im
u

lato
r

Figure 4. Development environment architecture

The Integrated development environment of MDWAF

mainly contains six parts. As illustrated in the Fig. 4,

MDWAF was integrated in the Eclipse platform and its

extension mechanism as a plug-in to achieve the

capabilities of extension and maintenance. In the four-

layer architecture of MDWAF, the Infrastructure contains

the specific implementation of MDA standard which

enables us to access the model and modify it. Object

Constraint Language (OCL) is too complex to satisfy the

flexible and simple development requirement in widget

development. So here we use JavaScript to describe

model behavior, with involvement of some other libraries

are contained in this layer [7].

The interlayer mainly serves to implement interface

encapsulation for infrastructure devices, such as model

repository interface encapsulation. And model

transformation such as model-to-model transformation

and model-to-code transformation are also involved as

the former one can use the self-defined transformation

rules.

The control later is responsible for controlling the

development process, such as platform reconfiguration,

system engine invocation for the processing of models

and the defined model transformation and extension.

On the top of Fig. 4 is the developers interface,

including a graphic-based model editor, WYSIWYG

（What You See Is What You Get）and an open-source

JavaScript editor.

As shown in the left of the MDWAF architecture, a

run-time engine, or may be referred to as platform

simulator was set where the generated code can be

previewed. Besides, component model and template

functions should be updated through cloud services to

gradually enrich and improve the model and template

library of development environment.

In addition to what is shown in the figure, other

functions are provided in the MDWAF architecture for

the ease for developers, such as the project and model

files starting guide, MDWAF-specific perspective,

property interface displaying the component properties,

as well as a configuration wizard running the model

transformation engine.

Various functional modules of the MDWAF are

closely linked and provide a complete model-driven

development support altogether. Taking form as an

Eclipse plug-in, it can be easily installed or uninstalled,

which can take full advantage of the Eclipse extension.

Other MDWAF modules are also plug into the Eclipse

platform, improving the development efficiency and

flexibility.

III. MDWAF DEVELOPMENT PROCESS

MDWAF development is a process that builds PIM

and then uses model transformation to generate code,

which is stared with the establishment of PIM irrelevant

of specific platform or specific and followed by the

transformation from PIM to PSM and codes. Fig. 5

describes the MDWAF development process of Web App

based on MDA.

PIM
UML

Class Diagram

State Diagram

Model
Transfomat

ion
PSM

Business
Mapping

UI Mapping
Web App

Publish

Code Template

HTML5

JavaScript

CSS

Mobile Domain
Ontology Library

Provide

Cloud Services

Script WADDF

Platform
Specific
Template

Figure 5 MDWAF development process

PIM is described in UML, which is developed by

Eclipse Modeling Framework and used to illustrate the

Class Diagram and State Diagram. The Class Diagram is

used to present data and the State Diagram is used to

present business process in PIM. UML is stored in the

form of XML, because of UML model is not suitable for

model transformation. In MDWAF we use XSLT to

transform UML model to XML document which is

suitable for model transformation in Web App

development. The product is called Web App Domain

Description File (WADDF). In the meantime, an

operation script generated by JavaScript Editor which

extends the mobile domain ontology library is added to

MDWAF. WADDF can be used as PIM model file and

the input of PIM to PSM model transformation.

According to the chosen Platform Specific Template

PSM is created. In the PIM transformation, operation

scripts specified in the service ontology are integrated

into JavaScript codes. And PSM can be mapped into Web

App under the restriction of the Code Template. In the

development process, both the Platform Specific

Template and Code Template are provided by Cloud

Services, so does the complete Web App.

1884 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER

User
requirement

Requirement
analysis
Domain

modeling

PIM

Model

verification

Component

models, templates,

platform

PSM
Model

transform

HTML5
Code

Code generation

Add

custom

code

Test

Cloud Service

Mobile
Terminal

Publish

Download

Debug

Change Requirement

Figure 6 Life cycle of Web App developed in MDWAF

The life cycle of Web App developed in MDWAF can

be concluded according to the above mentioned

development process as Fig. 6. The Web App

development in MDWAF starts with user demands.

Based on the requirements documents upon user

requirements, requirements analysis and domain

modeling are done to achieve the PIM in MDWAF. After

that, the PIM will undergo the model verification. If the

PIM meets the requirement and MDWAF specifics, the

developers will select component models, templates, and

the terminal platform. Otherwise domain modeling

should be done again. PIM will be transformed into PSM

after the selection of component models, templates and

terminal platform. HTML5 code framework and

operation script based on the service ontology library in

mobile domain can be generated based on the selected

template.

But the degree of automation of code generation is not

necessarily perfect, which requires developers to add

custom code to generate code based on demand. In

modifying the process, a WYSIWYG view editor and a

JavaScript script editor was provided to facilitate

development. The code being modified, developers can

encapsulate and test the code, and modify the bugs. Web

App will be released to the cloud services after test.

Cloud services provide mobile terminal users with a

service interface with Web App Store to download Web

App. Users who download Web App can make comments,

and developers can modify the existing bugs or establish

new user requirements document and release new

versions of the Web App.

IV. KEY TECHNOLOGIES

A. The Establishment of Business Model

Demand models in MDWAF are built based on EMF

modeling technology. EMF implements the OMG MOF

specification, by extracting the core element set of MOF

achieve meta-model concept called Ecore which belongs

to the M3 layer, describing UML modeling language

meta-model [10]. In the integrated development

environment supported by EMF, the model persistence is

achieved by XMI. XMI uses the standardization of the

XML document format and DTD provides a MOF model

and other model defines an xml-based data interchange

format. By using XSLT technology can transform ecore

files based on UML described in XMI into easy to be

understood and implementation platform related model

XML document [11].

 Fig. 7 illustrates the transformation of business model

described in UML from XMI definition to XML.

XMI XML

· DTD

· XML Schema

· XML Document
Define

Transformation rules

UML

MOF

Transform

Figure 7 Transformation of business model

Simplified UML class diagram meta-model and state

diagram meta-model based on the functional

requirements in MDWAF Web App development is

shown in Fig. 8.

According to the meta-model definition of MDWAF,

the concept of MDWAF requirements modeling is

simplified and adapted compared to OMG's UML meta

model in order to meet the needs of ease of use and quick

development of Web App Development. Annotation was

added to UML class diagram meta-model to bind each

Class or Attribute into a corresponding component, which

facilitate the generation of views in model transformation

[12]. Analysis of these two meta models shows the

concepts involved in the use of UML class diagrams and

UML state diagram are class, association, association

class, attribute and operation in class diagram model, as

well as state, transition, action and trigger events in the

state diagram. Based on these concepts extracted from the

class diagram model and the state diagram model,

description document WADDF, i.e. the PIM of MDWAF

can be established. WADDF will be defined in the

following subsection.

B. The Establishment of PIM

In the field of Web App development, every screen

interface of mobile terminal can achieve MDWAF PIM

in accordance with the MOVE (Model Operation View

Event) mode, and the definitions are shown as follows.

Definition 1：A screen of MDWAF can be defined as

a quintuple:

SP = (Id, Models, Operations, Views, Events) (1)

Id is used to identify a mobile terminal screen. Models

here refer to the model of the current status of a mobile

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 1885

© 2013 ACADEMY PUBLISHER

terminal within the screen. Operations are the collection

of operations of the mobile terminal screen. Each Op in

Operations will be described in detail in Definition 2.

Views are on behalf of the all the view elements in the

mobile terminal screen, including the component

elements and page layout. Events are the collection of

events triggered by the operation in the mobile terminal

screen. Each event in Events will be described in detail in

Definition 3.

Classifier
-name : string

Typed
-name : string

DataType

Set

Class

Attribute Operation

Feature
-visibility

Association

AssociationEnd
-lower
-upper
-composition : bool

Parameter

0..1 *

1

*

-class1

-feature*

2..*

1

0..1

-operation 1

-parameter *

Annotation

1

0..1

1

0..1

Component

(a).Class diagram meta-model

(b).State diagram meta-model

ModelElement

Event

Action

StateCompositeState

Pseudostate

TransitionStateVertex

Guard

StateMachine
0..1 *

1

0..1

0..1
*

1 *

1 *

0..1

*

0..1

1 0..1

* 0..1

0..1

0..10..1

* *

*

0..1

Figure 8 meta-model in MDWAF

Definition 2: Op involved in a mobile terminal screen

can be defined as a quintuple:

Op = (Id, TargetPage, Parameters, Return, Action) (2)

Each Op has a unique Id to identify the present

operation. TargetPage shows transitions of the mobile

terminal screen. The transition from current page to

targetPage is equivalent to SP->SP ∪ SP’, but can

different operations can be edited for different transitions.

Parameters are the collection of input parameters in the

mobile terminal screen. Return refers to the result of the

execution of the mobile terminal screen. Action is the

specific operation;

Definition 3: the event triggered by operations in a

mobile terminal screen interface can be defined as a

triplet:

Event = (Dispatcher, EventDescription, EventHandler) (3)

Dispatcher means the event trigger, and composes a

complete description of an event with EventDescription.

The EventHandler is the process and operation of the

current event, generally corresponding to an Op.

According to the above definition, the general

WADDF document structure is shown as follows:

Figure 9 WADDF Document Structure

xmlns: wmodel, the xmlns: woperation, the xmlns:

wview and the xmlns: wevent in the Fig. 9 is

correspondent with the four XML Schema document that

defines the meta-model of data, operation, views and

events. The elements of WADDF file should observe the

Schema definition.

C. Model Transformation and Code Generation

The PIM of WADDF can be transformed into PSM of

Web App through the model transformation engine based

on XSLT [13]. javax.xml.transform.Transformer supports

the XSLT transformation. Completely absorbed the

XPath syntax and rules, the XSLT resolve WADDF and

build XML node tree and transform the PIM element into

PSM elements according to the corresponding XML

Schema file, which will be put into the platform model

files. These XML-based PSM files describing the

structure of the final code are input files of the code

generation. The transformation process is shown in Fig.

10, where WADDF document enters into the model

transformation engine as the input of the entire model

transformation. First, the XSLT-based model

transformation engine transforms the WADDF document

into a node tree. Elements of WADDF were extracted

from the document through component model library

supported by cloud and four XML Schema documents

defined by PIM. Nodes of the source tree are used to

create a result tree fragments according to XSLT template

rules. In creating result document, node lists including the

root node of the source tree undergo matching, processing

and selection recursively and the result tree fragments

will be added to the existing result tree. Each node should

go through all the matching node template, and then

1886 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER

processed according to platform template file and rules of

the transform rule base. That node will be regarded as the

current node, and the source node list as the current node

list. Finally, the results tree will be generated as PSM

files.

Transformation
rules

Transformation

Schema node
match

XML node tree

Rule library

Component model library

XML Schema

model.
xsd

opertio
n.xsd

view.x
sd

event.
xsd

Platform
template

WADDF

PSM

Figure 10 Transformation process

In the generation of PSM files, Model in the WADDF

are transformed into data components according to its

type ; View into view components according to its

description and the corresponding event trigger behavior,

and being bound to its corresponding data components;

Operation into function of script tag according to

properties as the type of parameter return value; Event is

bound to corresponding component properties according

to its Dispatcher and Description, script of the behavior

of the components should be in accordance with the

function generated in Operation corresponding to the

EventHandler in Event.

In code generation process, the data component should

be transformed recursively into corresponding XML

description or Jason description in accordance with its

data structure, which will be associated with the

corresponding view components [14]. The relationship

among view components of the PSM file are described in

nested form. The generated interface first renders the

root view tab, and then recursively render the view

contained. The rendered view is an HTML document

fragment, whose "hook" position is specified by the

parent view. In the generated HTML document, the

parent view will create the DIV element for the child

view in its rendering. If the child view is defined HTML5

tags, its corresponding HTML document fragments will

be hooked directly to the DIV element specified by the

parent view. If the child view remains to be complex type,

the entire process should be done recursively. The view

components belonging to html.dtd files will be mapped to

the corresponding components of HTML5 and set its

properties according to the component model and existing

property values [15]. The components exclude the

html.dtd file will be mapped into div tag and generate

corresponding JavaScript file according to the settings of

its component model, which will be bound according to

its Id. The structure of components should maintain

unchanged in the mapping process. The transformed view

components will be collected in the body labels. The

transformation of components exclude the html.dtd file

into JavaScript includes four steps. First, the class tag will

be mapped into a closure, and then the properties of class

tag and attribute tags will be injected into corresponding

objects through setAttribute; after that function under

method label will be extracted and put into the closure;

and finally a transformation of view label similar to

viewComponent will be done, where tags belonging to

HTML definition will be transformed into corresponding

components while others into div tags. Compared with

the above mentioned components mapping, the mappings

and combinations here are implemented with

getElementById or appendChild function in JavaScript.

The code generation ends the model-driven Web App

development of MDWAF. The existing framework

cannot cover all aspects of Web App development,

developers need to modify and debug the generated files

and improve the interface. The refined projects will be

released to the Web App Store through cloud.

V. CONCLUSION

The development framework of existing platform

demands the users’ attention towards technique details

and duplicated efforts. In order to improve the efficiency

of the developers in the development of cross-platform

App, the paper proposes an MDA-based Web App

development Framework MDWAF. Adopting the idea of

MDA into Web App development of Mobile devices, the

framework mainly focuses on models in the development.

The development starts with the establishment of models

based on user requirements and then make progress by

model transformation and code generation. Besides, this

approach ensures the Web App reusability and extension.

In addition, an integrated data management of

development and release through cloud services, various

middleware for different mobile platforms, and

JavaScript plug-ins extended and unified through

different platform API, the Web App development can be

deployed to multiple platforms. However, the present

MDWAF lacks of the model verification function, the

support for complex modeling, and some component

libraries. We will improve it in the future work.

ACKNOWLEDGMENT

This work is partly supported by the Science

Foundation of Zhejiang Province under Grand No.

2010R50009, People's Republic of China.

REFERENCES

[1] David M,“Building Websites With HTML5 to Work With

Mobile Phones,” HTML5 Mobile Websites, 2012:3-53.

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 1887

© 2013 ACADEMY PUBLISHER

[2] Miller J M J. MDA Guide Version 1.0.1[EB/OL].

http://www.omg.com/mda.

[3] Frankel D. Model driven architecture: applying MDA to

enterprise computing[M].Wiley, 2003：328.

[4] Pahl C., Zhu Y., “Model-driven Connector Development

for Service-based Information System Architectures,”

Journal of Software, Vol 4, No 3 (2009), pp. 199-209, May

2009.

[5] James H. Hill, Aniruddha Gokhale,”Model-driven

Engineering for Early QoS Validation of Component-based

Software Systems,” Journal of Software, Vol 2, No 3

(2007), pp. 9-18, Sep 2007.

[6] Bragança A, Machado R J,”A model-driven approach for

the derivation of architectural requirements of software

product lines,” Innovations in Systems and Software

Engineering, Vol 5, No 1 (2007) , pp. 65-78

[7] David M. HTML5 JavaScript Model[J]. HTML5,

2010:209-240.

[8] Shi W, Wu M, Wang S. et al,” Local resource accessing

mechanism on multiple mobile platform”, Proceedings of

the 9th IEEE International Conference on Embedded

Software and Systems, ICESS-2012, pp. 1716-1721

[9] Westfechtel B,”Merging of EMF Models ,” Software &

Systems Modeling, 2012.

[10] Steinberg D.,”EMF: Eclipse Modeling Framework[M],”

Addison-Wesley, 2009：704.

[11] Mattsson A, Beekveld M.,”Simplifying maintenance by

using XSLT to unlock UML models in a distributed

development environment,” Software Maintenance(ICSM),

2007.

[12] Fouad A, Phalp K, Kanyaru J M, et al,”Embedding

requirements within Model-Driven Architecture ,”

Software Quality Journal, Vol 19, No 2 (2011) ,pp. 411-

430.

[13] Groppe S, Groppe J, Böttcher S, et al,” Optimizing the

execution of XSLT stylesheets for querying transformed

XML Data ,” Knowledge and Information Systems, Vol 18,

No 3 (2009) ,pp. 331-391.

[14] Kuntsche S, Barz T, Kraus R, et al. “MOSAIC a web-

based modeling environment for code generation,”

Computers & Chemical Engineering, Vol 35, No 11

(2011) ,pp. 2257-2273.

[15] Marco Casario P E C B. “HTML5 Solutions: Essential

Techniques for HTML5 Developers[M],”2011

Rongliang Luo received the BS degree in Automation from

Zhejiang University Technology in 1997 and MS degree in

Computer Science and Engineering from Zhejiang University in

March 2003. His major interests include Software Engineering,

Software Development Methodology.

Peng Xiao received the BE degree in Software Engineering

from Zhejiang University in 2010 and MS degree in Computer

Science and Technology from Zhejiang University in March

2013. His research interests include Software Engineering,

Model Driven Architecture.

Qianxi Lv is a master degree candidate in Translation and Inter

pretation from Zhejiang University, China, from 2011 to 2013.

Her current research interests include Translation Studies Based

 on Practice.

Minghui Wu obtained the M.S. and PhD. Degrees in Computer

Science and Technology from Zhejiang University, China, in

2000 and 2011, respectively. Since Dec. 2011, he is a Professor

in Computer Science and Technology, Zhejiang University City

College. His current research interests include Software

Engineering and Network Application.

Bin Peng obtained the M.S. degree in Computer Science and

Technology from Zhejiang University, China, in 2003.He is an

instructor of Computer Science and Technology, Zhejiang

University City College from 2005.His current research

interests include Business Automation, SOA and mobile

Internet.

Shuoping Wang obtained the M.S. Degree in Computer

Science and Technology from Zhejiang University, China,

in1996. Since Dec. 2011, she is an Associate Professor in

Computer Science and Technology, Zhejiang University City

College. Her current research interests include Management

Information System and Network Application.

Ming Guo obtained PhD. Degree in Computer Science from

Zhejiang University, China, in 2004. Since Dec. 2008, he is

Associate Professor in Computer Science and Technology,

Zhejiang University City College. His current research interests

include Mobile Computing, Cluster Computing, Programming

Language.

1888 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER

