
Extracting Feature Sequences in Software 
Vulnerabilities Based on Closed Sequential 

Pattern Mining 
Qunhui Wu 

State Key Lab of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing, 
P.R.China 

Email: wuqunhui126com@126.com 
 

Shilong Ma 
State Key Lab of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing, 

P.R.China 
 

Hao Wang 
NARI Group Corporation, State Grid Electric Power Research Institute, Beijing,  

P.R.China 
 
 
 

Abstract—Feature Extraction is significant for determining 
security vulnerabilities in software. Mining closed sequential 
patterns provides complete and condensed information for 
non-redundant frequent sequences generation. In this paper, 
we discuss the feature interaction problem and propose an 
efficient algorithm to extract features in vulnerability 
sequences. Each closed sequential pattern represents a 
feature in software vulnerabilities. We explore how to 
efficiently maintain closed sequential patterns in 
vulnerability sequences. A compact structure WClosedTree 
is designed to keep closed sequential patterns, and its nice 
properties are carefully studied. Two main pruning 
strategies, backwards super pattern condition and 
equivalent position information condition, are developed to 
remove frequent but non-closed sequential patterns in 
WClosedTree. During the process of maintaining 
WClosedTree, the weight metric of each feature sequence is 
calculated to better meet the needs of decision makers. Thus, 
the proposed algorithm can efficiently extract features from 
vulnerability sequences. The experimental results show that 
the proposed algorithm significantly improves the runtime 
efficiency for mining closed sequential patterns, and the 
feature interaction framework implements feature 
extraction in software vulnerabilities. 
 
Index Terms—feature extraction, closed sequential pattern, 
vulnerability sequence, software vulnerability 
 

I. INTRODUCTION 

With the ever-increasing number of hacker attacks and 
the spread of the worms on the Internet, information 
security now becomes the hot topic within both research 
and industry fields. The software vulnerabilities existing 
in the computer systems are the most important core issue 
of information security, which a malicious attacker can 
use to enhance competence, visit unauthorized resources, 
or even destroy sensitive data. So analyzing software 
vulnerabilities is critical for information security. 

Otherwise, feature extraction is an important element 
when analyzing software vulnerabilities [1, 2, 3, 4]. 

In order to make the complexity of modern software 
systems manageable their functionality is increasingly 
being decomposed into features. Feature extraction is an 
effective method for fault diagnosis. M. Pistoia [5] 
described static analysis methods to identify security 
vulnerabilities in software systems, which summarized 
security features, libraries and interfaces among various 
typical systems. A. Nhlabatsi [6] concluded the feature 
interaction problem and its possible implications for 
security requirements. In process planning (MASCAPP) 
systems [7], A. Nassehi discussed some simple types of 
feature interactions, though STEP-NC data are not 
considered in its final process plan. Moreover, feature 
interactions are considered in two different categories, 
geometric and technological interactions in Liu and 
Wang’s work [8]. Otherwise, the feature interaction 
method was presented in both 3D and feature interaction 
graph format in a developed software system [9]. G. C. 
Rui [10] generated hypothetical features for feature 
interaction detection, which is supported by sets of all 
possible events, predicates and inconsistent behaviors. 

Vulnerability is the weakness in a software system that 
can be exploited to compromise system’s security. The 
mechanism of extracting the feature sequence of the 
software vulnerability can be described as a process. First, 
vulnerability models are loaded into memory and the data 
structures of these models are established. Second, 
operation sequences of vulnerability models are extracted 
through abstracting software vulnerabilities and filtering 
independent operations. Finally, feature sequences are 
extracted according to the information of operation 
sequences. In this paper, when extracting operation 
sequences of vulnerability models, each program module 
is defined as fundamental function units. Consequently, 
the operation sequences of program modules are 

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 1809

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.8.1809-1817



considered as the process of invoking software 
vulnerabilities. An operation sequence is denoted 
formally as a sequence of strings. 

According to the above presentation, we introduce the 
method of mining closed sequential pattern to extract 
features of software vulnerabilities. So mining closed 
sequential patterns becomes a crucial task in feature 
sequences extraction. There exist many algorithms for 
mining closed sequential pattern, such as CloSpan [11], 
BIDE [12], CMP-Miner [13], BIDE-Margin [14], 
Stream_FCI[15], IWFPWA and IWFPFD [16] and so on. In 
CloSpan, it first generates a set of closed candidates 
stored in a hash indexed tree and then performs post-
pruning on it. Because CloSpan needs to maintain the set 
of closed candidates, it will consume a large amount of 
memory for closure checking. In BIDE, this mines closed 
sequential patterns without maintaining candidates, which 
adopts forward and backward directional extension 
checking to perform closure checking and to prune the 
redundant patterns in the mining process. The CMP-
Miner enumerates the frequent patterns by a frequent 
pattern tree in a depth-first search manner. In addition, 
CMP-Miner adopts closure checking and pruning 
strategies to accelerate the mining closed patterns process 
in a multi-sequence time-series database. In BIDE-
Margin, a new constraint is presented for reducing the 
output of sequential pattern mining, the changes are 
required to enforce margin-closeness in BIDE, the flag 
margin-check is used in back-scan function instead of 
closed-check. Stream_FCI detects the frequent closed 
itemsets in each sliding window using a DFP-tree with a 
head table, and adopts a table to store the frequent closed 
itemsets so as to avoid the time-consuming. IWFPWA and 
IWFPFD are the incremental and interactive WFP mining 
using a single database scan. When a database is updated 
or a minimum support threshold is changed, IWFPWA and 
IWFPFD are effective for incremental and interactive 
mining to utilize the current tree structure and to use the 
previous mining results. To our knowledge, this paper is 
the first one to apply the closed sequential pattern mining 
theory to feature extraction in software vulnerabilities 

In this paper, we propose an efficient algorithm called 
WCSMining (Weighted Closed Sequential pattern Mining) 
to extract features in vulnerability sequences where each 
closed sequential pattern represents a feature. To 
maintain closed sequential patterns incrementally, 
WClosedTree is proposed to keep the closed sequential 
patterns and other auxiliary information, and the nice 
properties of WClosedTree are investigated. Moreover, 
we apply two closure checking strategies to update node 
information during the mining process, and the weight 
metric of each feature sequence is calculated to meet the 
needs of decision makers more closely. 

The remaining of the paper is organized as follows. 
Section II describes the problem definitions. The feature 
extraction model and our proposed algorithm are 
discussed in detail in Section III. Section IV illustrates 
experimental results and performance analysis. Finally 
conclusion will be given in Section V. 

II. PROBLEM DEFINITION 

In order to better extract feature sequence, the 
software vulnerabilities are denoted formally as 
sequences of strings as follows: Let L = {l1, l2, ..., lm} be a 
set of literals called items. A sequence S = <a1, a2, ..., an > 
is an orderly list of items, such that each item ai L∈ . Let 
the sequences database SDB be a set of operation 
sequences. 

In a sequence S, each item ai represents a fundamental 
function operation of software vulnerability. Sequence S 
stands for an operation sequence of vulnerability model, 
and the sequences database SDB = {S1, S2, ..., Sm} is a set 
of all operation sequences. Each operation sequence in 
sequences database SDB includes a sequence identifier 
(Sid) and a vulnerability sequence. 

We say that the sequence S1 = <a1, a2, ..., an > supports 
the sequence S2 = <b1, b2, ..., bm > if there exist integers 
1=i1<i2<…<in=m, such that a1 = bi1, a2 = bi2, …, an = bin, 
then S1 is called a sub-sequence of the sequence S2 or S2 
is super-sequence of sequence S1. The support of 
sequence Si is denoted by sup(Si), it is the number of 
sequence in SDB that contain Si. Given a support 
threshold min-sup, a sequence Si is a frequent sequence in 
SDB, then sup(Si) ≥ min-sup. If a sequence Si is frequent 
and there exists no proper super-sequence with the same 
support, we call it a frequent closed sequence. 

Definition 1. Item position (IPos). The positional 
information of each item ai in vulnerability sequence S= 
<a1, a2, ..., an > is denoted as IPos (Sid, itemID), where 
Sid is the sequence identifier, itemID is the position 
identifier. 

Definition 2. Backwards super pattern. Given two 
sequences S1 and S2, if S2 is a super-sequence of S1, i.e. S1 
is generated before S2, otherwise S1 and S2 have the same 
hash key and the last item, then S2 is backwards super 
pattern of S1, where hash key is composed of the support, 
the total number of Sids and the total number of itemIDs. 

Definition 3. Equivalent position information. Given 
two sequences S1 and S2, except for the same hash key 
and the last item, and there exists no inclusion relation 
between S1 and S2, then S1 and S2 have the equivalent 
position information. 

Definition 4. The weight for item ai is defined as 

( ) ( )

( )( )
( )

( )( )1

1 1

totalSid
i i i i

i i i
i

i i i i
j j

weight S a weight S a
weight a log

weight S a weight S a=

= =

⎡ ⎤
⎢ ⎥∗ ∗⎢ ⎥= − ∗
⎢ ⎥∗ ∗⎢ ⎥
⎣ ⎦

∑
∑ ∑

. 

The details for these entries are as follows: 
ia  is the number of item ai in sequences Si. {a1, a2, ..., 

am} is a set of items, each item ai of sequences Si∈{a1, 
a2, ..., am}. 

weight(Si) is the weight of sequence Si, where 
( ) ( )

i i

i i
a S

w eight S w eight a
∈

= ∑ . The greater the value of 

weight(Si) is, the greater the representation degree is for Si. 
totalSid  is the total number of sequences Si in sequences 

database SDB. 

1810 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER



 
Figure 1. WClosedTree with 1-fresequences. 

Definition 5. Each node of multi-branches tree 
WClosedTree is defined as a tuple, Tnode = [ai, sup(Si), 
weight(Si)]. The details for these entries are as follows: 

ai is an item which constitutes prefix of closed 
sequence. 

sup(Si) is denoted as the corresponding closed 
sequence in the frequency of sequences database SDB. 

weight(Si) is the weight of closed sequential pattern, 
where Si is denoted as the path from root node to the 
current node, if sup(Si) is greater than 0, Si is a weighted 

closed sequential pattern. 
Example 1. Assume that software vulnerabilities have 

been denoted formally as sequences of strings, given 
sequence identifier Sid to each vulnerability sequence, 
these vulnerability sequences are deposited in the 
sequences database SDB, as shown in Table I. The 
position information IPos of each item in sequences 
database SDB are as shown in Table II. In sequence S1, 
item C appears at position 0, so its position information is 
(1, 0), position information for other items can be 
obtained in the same way. Otherwise, according to 
definition 4, the corresponding weights for items are 

shown in the third column of Table II. 
Frequent sequences of length one (1-fresequences) are 

inserted into WClosedTree as shown in Fig. 1. 1-
fresequences can be calculated simply by comparing the 
support threshold min-sup with the number of position 
information for sequences of length one (1-sequence), 
where min-sup is set to 2, min-sup is a user specified 
support threshold. 

III. DESIGN OF WEIGHTED CLOSED SEQUENTIAL PATTERN 
MINING ALGORITHM 

In this section, we first discuss the method 
WCSMining (Weighted Closed Sequential pattern Mining) 
which is used to extract features in vulnerability 
sequences. Then an example is given to demonstrate the 
execution process of our method. 

A.  The Description of Algorithm  
For the process of mining weighed closed sequential 

patterns in our method, firstly, the weighted measure 
factor and the positional information are introduced to 
calculate each item in vulnerability sequences. After 
obtaining the frequent sequences of length one (1-
fresequences), frequent sequences of length two (2-
fresequences) and corresponding position information can 
be generated simply through matching the position 
information of 1-fresequences with each other. Then 2-
fresequences are implemented to closure-check whether 
conditions for pruning strategies are not met. Finally, we 
utilize the above procedure to generate weighted closed 
sequences, whose lengths are gradually increased.  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE I.  
SEQUENCE DATABASE SDB OF SOFTWARE VULNERABILITIES 

Sid vulnerability sequence weight of sequence SSid 

S1 C A A B C D 0.5 

S2 A B C B D 0.2 

S3 C A B C 0.2 

S4 A B B C A 0.1 

TABLE II.  
POSITION INFORMATION OF ITEMS IN SEQUENCE DATABASE SDB  

item position information weight of item 

<A> (1,1) (1,2) (2,0) (3,1) (4,0) (4,4) 0.467 

<B> (1,3) (2,1) (2,3) (3,2) (4,1) (4,2) 0.559 

<C> (1,0) (1,4) (2,2) (3,0) (3,3) (4,3) 0.465 

<D> (1,5) (2,4) 0.259 
Algorithm: WCSMining 
Input: SDS = {S1, S2, ..., Sm}: the vulnerability sequences database 

weight (Si): weight of sequence Si 
min-sup: the threshold for the minimal support  
WClosedTree: the null tree for weighted closed sequential 

tree 
Output: the weighted closed sequential patterns 

1:  scan sequences database SDS once, calculate the weight of 
each item ai in SDS according to definition 4; 

2:   calculate the position information IPos of each item ai; 
3:  obtain frequent sequences of length one 1-fresequences, and 

insert 1-fresequences into WClosedTree; 
4:   for (each 1-fresequence <ai> of 1-fresequences) { 
5:     match IPo of <ai> with each IPos of 1-fresequences, and 

generate 2-fresequences and the corresponding IPos; 
6:     perform the closure check, and insert 2-fresequences into 

WClosedTree; 
7:   } 
8:   set null sets P and P’; 
9:   for (each 2-fresequence <ai, aj> of 2-fresequences) { 
10:     for (each 1-fresequence <ak> of 2-fresequence <ai, aj>) { 
11:         if (exist backwards super pattern || exist same positional 

information)) 
12:                 set sup(<ak>) = 0 in WClosedTree; 
13:         else 
14:                 add <ai, aj> to set P; 
15:     } 
16:  } 
17:   if (P = null) 
18:       Exit; 
19:   else { 
20:       for (each sequence Sj of P) { 
21:        match Sj with each of the 1-fresequences, and generate 

sequence set PS; 
22:          for (each sequence Sk of PS) { 
23:              if (Sk is frequent)

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 1811

© 2013 ACADEMY PUBLISHER



Figure 3. WClosedTree with 2-fresequences. 

 
 
 
 
 
 
 
 
 
 

 

Figure 2. The Weighted Closed Sequential pattern Mining method. 

Fig. 2 shows the algorithm to compute the complete 
set of weighted closed sequences. In our algorithm, the 
sequence information is completely reserved by position 
information. Sequence connection IPoi◇IPoj is proposed 
to match the position information between IPoi and IPoj, 
i.e., if Sidi = Sidj and itemIDi ≤ itemIDj, then the position 
information of IPoi◇IPoj = (Sidj, itemIDj), where IPoi = 
(Sidi, itemIDi) and IPoj = (Sidj, itemIDj) denotes as 
position information of item ai and aj respectively. For 
example, position information of item A is (1, 1), position 
information of item B is (1, 3), then position information 
of sequence S = <A, B> is IPoS = IPoA◇IPoB = (1, 3). 
The process of performing the sequence connects in such 
a way that the position information for sequences is 
simply calculated. Backwards super pattern and same 
positional information are utilized to implement the 
closure check, if two sequences have the same positional 
information, they also have the same projection database. 
We adopt the WClosedTree structure to store closed 
sequences discovered so far, and detection of backwards 
super pattern technology to accelerate the closure check. 
Otherwise, the measurement of weight for each closed 
sequence ensures that feature sequences with 
comparatively great values are more valuable to future 
speculation. 

B.  The Example of Algorithm 
Given an example to illustrate the algorithm 

WCSMining, sequences and their corresponding 
identifiers Sids in sequences database SDB are shown in 
Table I. SDB has totally 4 unique items. The position 
information IPos of each item in sequences database 
SDB are as shown in Table II. Suppose that min-sup is set 
to 2, the whole set of 1-fresequences and their weights are 
{<A>: (4, 0.467); <B>: (4, 0.559); <C>: (4, 0.465); <D>: 
(4, 0.259)}, which are inserted into WClosedTree as 
shown in Fig. 1.  

By employing the sequence connection, position 
information is matched between 1-fresequences. So 2-
fresequences, positional information and their 
corresponding weights are generated and shown in Table 
III. The whole set of 2-fresequences consist of eleven 
sequences, that is {<A, A >: (2, 0.934); <A, B>: (4, 1.026); 
<A, C>: (4, 0.932); <A, D>: (2, 0.726); <B, B>: (2, 1.118); 
<B, C>: (4, 1.024); <B, D>: (2, 0.818); <C, A>: (3, 0.932); 

<C, B>: (3, 1.024); <C, C>: (2, 0.930); <C, D>: (2, 
0.724)}. Through referring to Table III, performing the 
closure check, we insert the closed 2-fresequences, their 
support and their corresponding weight into WClosedTree 
structure as nodes in Fig. 3. For each 2-fresequence in 
WClosedTree, we implement the backwards super pattern 
and same positional information checks. If there exists 
any pruning strategies, the node information is updated, 
i.e. sequences {<A>: (4, 0.467); <B>: (4, 0.559); <C>: (4, 

TABLE III.  
POSITION INFORMATION OF 2-FRESEQUENCES  

2-fresequence position information weight of  
2-fresequence 

<A, A> (1,2) (4,4) 0.934 

<A, B> (1,3) (2,3) (3,2) (4,2) 1.026 

<A, C> (1,4) (2,2) (3,3) (4,3) 0.932 

<A, D> (1,5) (2,4) 0.726 

<B, B> (2,3) (4,2) 1.118 

<B, C> (1,4) (2,2) (3,3) (4,3) 1.024 

<B, D> (1,5) (2,4) 0.818 

<C, A> (1,2) (3,1) (4,4) 0.932 

<C, B> (1,3) (2,3) (3,2) 1.024 

<C, C> (1,4) (3,3) 0.930 

<C, D> (1,5) (2,4) 0.724 

24:                  insert Sk into WClosedTree; 
25:              else 
26:                  delete Sk from PS; 
27:           if (exist backwards super pattern || exist same positi-

onal information)) 
28:                  update node information and the connections; 
29:                  add Sk to P’; 
30:          } 
31:          P’ = P, P’ =∅ ; 
32:      } 
33:   } 
34: implement depth first search WClosedTree, identify 

sequences that supports are not 0 
35:    Exit. 

1812 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER



 
Figure 5. WClosedTree with final weighted closed sequences. 

Figure 4. WClosedTree with 2-fresequences after updating operation.

0.465)} in WClosedTree are updated with set support to 0, 
which is denoted as the corresponding sequences are not 
closed, as shown in Fig. 4. 

Fig. 5 shows the final WClosedTree structure, the 
complete set of weighted closed sequential patterns is 
obtained, that is {<A, A >: (2, 0.934); <A, B, B>: (2, 

1.585); <A, B, C>: (4, 1.491); <A, B, C, D>: (2, 1.750); 
<C, A>: (3, 0.932); <C, A, B, C>: (2, 1.956); <C, B>: (3, 
1.024)} through implementing depth first search 
WClosedTree structure and identifying the sequences 
whose supports are not 0. 

C.  The Process to Extract Feature Sequences in Software 
Vunerabilities 

The process of extracting feature sequences in software 
vulnerabilities is shown in Fig.6. The function of each 
module is explained as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. Obtain software vulnerability models 
The existing software vulnerability models are 

collected and loaded in memory, which sent to next step 
for further treatment. 
b. Perform preprocessing 

The irrespective functions and program sentences are 
filtrated, e.g., the path of database, the list of the calling 
functions, a variety of string information and so on. 

 
 

 
c. Extract operation sequences After pretreatment processing, the data structures for 

vulnerability models are established. We utilized the 

Obtain software vulnerability models 

Perform preprocessing

Extract operation sequences

Generate feature sequences of software 
vulnerabilities

Incremental update operation sequences of 
software vulnerabilities

 
Figure 6. WClosedTree with final weighted closed sequences. 

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 1813

© 2013 ACADEMY PUBLISHER



control flow extraction algorithm to process the above 
models, and the corresponding control flow graphs are 
converted. Moreover, we extract function relationships in 
creating medium file, the call graphs can be constructed 
for vulnerability models. The operation sequences are 
obtained by carrying on the control flow graphs and 
calling graphs depth first path traversal. Otherwise, each 
operation sequence is denoted formally as sequence of 
strings, which is given a unique identification Sid in 
sequences database SDB. 
d. Generate feature sequences of software 

vulnerabilities 
We adopt WCSMining algorithm proposed in this 

paper to mine the closed sequential patterns, and each 
closed sequence as a feature sequence of software 
vulnerability. In addition, the frequencies for 
vulnerability models are diverse, i.e. some of software 
vulnerabilities appear frequently and some appear rarely, 
we introduce the weight to meet the needs of decision 
makers more closely. 
e. Incremental update operation sequences of software 

vulnerabilities 
When the new operation sequences of software 

vulnerabilities generate, the new operation sequences are 
combined to incremental update sequences database SDB, 
based on the discussion of existing operation sequences. 

IV. EMPIRICAL RESULTS 

In this section, we perform a thorough evaluation of 
WCSMining on various kinds of datasets, compared with 
two closed sequence mining algorithms CloSpan and 
BIDE. CloSpan and BIDE were provided as source code. 
We perform all the experiments on a 2.8GHz processor 
computer with 2GB memory and running on Windows 
XP professional. In addition, all the proposed techniques 
are implemented in Java. 

A.  Datasets 
Synthetic datasets, the datasets were produced from the 

well-known IBM synthetic dataset generator 

(http://www.almaden.ibm.com/cs/quest), which has been 
used in the evaluation of almost all sequence mining 
algorithms in data mining literature. The generator 
simulates a set of user product buying sequences. A user 
sequence is a list of transactions in the purchase order. 
The parameters and their value ranges are shown in Table 

IV. For example, D100C10T5N20 means there are 100K 
sequences, each sequence has about 10 transactions, each 
transaction has about five items and the dataset has 20K 
distinct items. 

Gazelle is a sparse dataset, but it contains some very 
long frequent closed sequences with low support 
threshold. This dataset was originally provided by Blue 
Martini Company. It contains totally 29369 customers’ 
Web click-stream data. For each customer there is a 
corresponding series of page views, and we treat each 
page view as an event. This dataset contains 29369 
sequences (i.e., customers), 87546 events (i.e., page 
views), and 1423 distinct items (i.e., web pages). The 
average length and the maximal length of this dataset is 3 
and 651, respectively. 

In order to test all algorithms, two datasets are 
employed. One is the Synthetic datasets; the other is the 
Gazelle dataset. The sequences in Synthetic datasets are 
generated by the input parameters, and Gazelle dataset is 
randomly selected. When testing WCSMining, we use 
D10C10T2.5N10, D10C15T2.5N10, D10C5-20T2.5N10 
and D10C6T1-10N10 as the Synthetic databases. 

B.  Comparison of WCSMining with other Algorithms 
Fig. 7 shows the running time of WCSMining, BIDE 

and CloSpan when min-sup is varied from 0.02% to 0.1% 
on D10C10T2.5N10.  

On average, closed sequence mining algorithms are 
faster than algorithms which mine the complete set of 
frequent sequences from scratch. In comparison with the 
closed sequence mining algorithms BIDE and CloSpan, 
WCSMining is about 4 or more times faster than others. 
When min-sup is low, the gap between WCSMining and 
other algorithms is much more obvious. For instance, 
with min-sup = 0.02%, WCSMining completes in 9.27s, 
while BIDE and CloSpan completes in 44.29s and 
102.55s, respectively. It is because at the extremely low 
support, there are too many non-closed patterns generated; 
WCSMining can successfully prune the non-closed 
sequences. Another main reason is that WCSMining starts 
its performance from calculating position information, 
using the nice properties of WClosedTree to extend the 
nodes and to update the support states of only a few 
nodes in the WClosedTree.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE IV.  
PARAMETERS OF THE DATA GENERATOR 

parameter description value range 

D Number of sequences in the datasets 10-1000 
(*1000) 

C Average number of transactions per 
customer 5-20 

T Average number of items per 
transaction 1-10 

N Number of distinct items in the 
datasets 10-100(*1000)

Other Other parameters Default 

Figure 7. Running time on D10C10T2.5N10. 

1814 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER



To test whether the algorithms perform unstably in 
different runs, we implemented the three algorithms 15 
times, and the average running time is illustrated in Fig. 8. 
It can be shown that the running time of the three 
algorithms displays little variations in different runs. 

The running time of all the algorithms on dataset 
D10C15T2.5N10 is given in Fig. 9. Fig.9 displays the 
same trend as Fig.7. The only difference between dataset 
D10C15T2.5N10 from D10C10T2.5N10 is the average 
number of transactions per customer. For this reason, the 
running time of each algorithm in Fig.9 is slightly higher 
than the running time of each algorithm in Fig.7. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 10 and Fig. 11 depict the comparison results 

among CloSpan, BIDE and WCSMining for Synthetic 
datasets D10C5-20T2.5N10 (the number of transactions 
per customer is increased from 5 to 20) and D10C6T1-
10N10 (the number of items per transaction is increased 
from 1 to 10), where min-sup is fixed at 0.05%. When the 
number of transactions per customer or the number of 
items per transaction is increased, the average length of 
sequences is also increased. Thus, the datasets become 
much denser and there are more closed sequential 
patterns. This results in the significant increase of the 
running time of all the three algorithms. We can see from 
the figures that WCSMining still outperforms BIDE and 
CloSpan by a large margin. 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
In Fig. 12, the running time of the three algorithms on 

the real dataset Gazelle is illustrated. The support 
threshold is varying from 0.04% to 0.02%. The average 
length of this dataset is shorter than that of Synthetic 
datasets, so it is sparser than Synthetic datasets. Form 
Fig.12 we can see that when the support is greater than 
0.025%, WCSMining show better performance than BIDE 
and CloSpan, especially when we continue to lower the 
support threshold, WCSMining algorithms will 
outperform a lot the two algorithms. On this sparse 
dataset, an explosive number of non-closed sequences are 
generated, BIDE and CloSpan cannot prune the 
redundancy sequences in a relatively short time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Mean running time on D10C10T2.5N10. 

Figure 9. Running time on D10C15T2.5N10. 

Figure 10. Varying the number of transactions per customer. 

Figure 11. Varying the number of items per transaction. 

Figure 12. Running time on Gazelle. 

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 1815

© 2013 ACADEMY PUBLISHER



Overall, the WCSMining algorithm runs faster than 
BIDE and CloSpan algorithms in five different types of 
experimental datasets, and there are different levels of 
improving performance. In other words, the overall 
performance of WCSMining algorithm is significantly 
reduces the time consumption. 

C.  Representing Feature Extraction in Software 
Vulnerabilities 

A feature extraction system has been developed based 
on the above mentioned methodology. Java is the main 
program development environment. The existing 
software vulnerability models have been used as the 
underlying modeling kernel. The filtrate task is 
considered indispensable as the pretreatment processing 
to be carried out. Operation sequences are obtained from 
the data structure for vulnerability models. Alongside the 
complete closed sequential patterns as feature sequences 
generated, WCSMining also offers the weight of each 
feature sequence for displaying weightiness. In a word, 
the method of mining closed sequential patterns is 
introduced to extract feature sequences in software 
vulnerabilities is unprecedented and effective. 

V. CONCLUSION 

The rapid development of Internet and the extensive 
applications of software in many key domains bring a 
new challenge in software security, so feature extraction 
of software vulnerability has aroused a deep concern 
increasingly. In this paper, closed sequences mining 
technology is introduced to extract feature of software 
vulnerability. Aiming at the problem of varying 
frequencies for software vulnerabilities, we present an 
effective algorithm WCSMining for mining weighted 
closed sequences as feature sequences. WCSMining 
utilizes position data to reserve sequence information in 
order to reduce the search space and degraded the time 
complexity. Moreover, WClosedTree is defined to keep 
the closed sequential patterns and other auxiliary 
information, and two main pruning strategies are 
developed to remove frequent but non-closed sequential 
patterns in WClosedTree. In addition, WCSMining 
accelerates the process of extracting features; this method 
overcomes the disadvantages of including a great deal of 
repetition works, and improves the efficiency of the 
whole extractive process. 

ACKNOWLEDGMENT 

The authors thank Jiadong Ren, who is a PhD 
candidate supervisor of Yanshan University for his 
careful review and detailed guidance. The authors also 
gratefully acknowledge the helpful comments and 
suggestions of the reviewers, which have improved the 
presentation. 

REFERENCES 

[1] R. E. Crossler, A. C. Johnston, P. B. Lowry, “Future 
directions for behavioral information security research,” 
Computers & Security, vol. 32, 2013, pp. 90-101. 

[2] N. C. Patterson, M. Hobbs, “Virtual World Security 
Inspection,” Journal of Networks, vol. 7, no. 6, 2012, pp. 
895-907. 

[3] S. Sun, Y. Wang, “Research and application of an 
improved support vector clustering algorithm on anomaly 
detection,” Journal of Software, vol. 5, no. 3, 2010, pp. 
328-335. 

[4] G. X. Yao, Q. L. Guan, K. B. Ni, “Test Model for Security 
Vulnerability in Web Controls based on Fuzzing,” Journal 
of Software, vol. 7, no. 4, 2012, pp. 773-778. 

[5] M. Pistoia, S. Chandra, S. J. Fink, E. Yahav, “A survey of 
static analysis methods for identifying security 
vulnerabilities in software systems,” IBM Systems Journal, 
vol. 46, no. 2, 2007, pp. 265-288. 

[6] A. Nhlabatsi, R. Laney, B. Nuseibeh, “Feature interaction: 
the security threat from within software systems,” Special 
issue: The future of software engineering for security and 
privacy, Progress in information, no. 5, 2008, pp. 75-89. 

[7] A. Nassehi, R. Liu, S. T. Newman. “A new software 
platform to support feature-based process planning for 
interoperable STEP-NC,” International Journal of 
Computer Integrated Manufacturing, vol. 20, no. 7, 2007, 
pp. 669-683. 

[8] Z. Liu, L. Wang. “Sequencing of interacting prismatic 
machining features for process planning,” Computers in 
Industry, vol. 58, no. 4, 2007, pp.295-303. 

[9] D. Tobias, X. Xun, K. Peter, “Defining, recognizing and 
representing feature interactions in a feature-based data 
model,” Robotics and Computer-Integrated Manufacturing, 
vol. 21, Issue 1, 2011, pp. 101-114. 

[10]  R. G. Crespo, “Predicting feature interactions by using 
inconsistency models,” Computer Networks, vol. 54 Issue 
3, 2010, pp. 416-427. 

[11] X. Yan, J. Han, R. Afshar, “CloSpan: mining closed 
sequential patterns in large databases,” In: Proceedings of 
the SIAM International Conference on Data Mining, San 
Francisco, CA, 2003, pp. 166–177. 

[12] J. Wang, J. Han, “BIDE: efficient mining of frequent 
closed sequences,” In: Proceedings of the 20th 
International Conference on Data Engineering, 2004, pp. 
79–90. 

[13] A. J. T. Lee, H. W. Wu, T. Y. Lee, Y. H. Liu, K. T. Chen, 
“Mining closed patterns in multi-sequence time-series 
databases,” Data & Knowledge Engineering, vol. 68, Issue 
10, 2009, pp. 1071-1090. 

[14] D. Fradkin, F. Moerchen, “Margin-Closed Frequent 
Sequential Pattern Mining,” In: Proceedings of the ACM 
SIGKDD Workshop on Useful Patterns, New York, NY, 
2010, pp. 45-54. 

[15] K. Tang, C. Dai, L. Chen, “A Novel Strategy for Mining 
Frequent Closed Itemsets in Data Streams,” Journal of 
Computers, vol. 7, no. 7, 2012, pp. 1564-1573. 

[16] C. F. Ahmed, S. K. Tanbeer, B. Jeong, “Single-pass 
incremental and interactive mining for weighted frequent 
patterns,” Expert Systems with Applications, vol. 39, Issue 
9, 2012, pp. 7976-7994. 

 
 
 
 
Qunhui Wu She is a doctor candidate at state key lab of 
software development environment, school of computer science 
and engineering, Beijing University of Aeronautics and 
Astronautics. She was born in 1984. Her main research interests 
include data mining and software engineering. 
 
 

1816 JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER



Shilong Ma He is a doctor supervisor at school of computer 
science and engineering, Beijing University of Aeronautics and 
Astronautics. He was born in 1953. His main research interests 
include calculating model on the network environment, dynamic 
statistic behavior of logic and computation, calculating model of 
massive data process, grid computing technology and 
application. 

Hao Wang He is a master, who now works at NARI group 
corporation, State Grid Electric Power Research Institute. He 
was born in 1978. His main research interests include 
information security and software engineering. 
 
 
 
 

 

JOURNAL OF SOFTWARE, VOL. 8, NO. 8, AUGUST 2013 1817

© 2013 ACADEMY PUBLISHER




