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Abstract— Accurate state graph is important to static pro-
gram analysis. In order to extract reliable state graphs from
programs, which contains function pointers, for model anal-
ysis in software engineering, we proposed a field-sensitive
may-alias analysis using field propagation, which tries to
discover deeply implied aliasing relations by propagating
the aliases to variables from their nested structures. For the
high complexity of alias analysis, several optimizations are
proposed for performance with the price of potentially losing
few aliases. Unlike Most previous works which adopted
various kinds of approximations that would compromise
the reliability of the results, our field-propagation analyzer
makes sure that the solutions of queried pointers are sound
in a flow-insensitive manner, because none of our adopted
optimizations would bring in approximation to the results.

Index Terms— Function Pointer Analysis, May-alias, De-
mand Driven, Field Propagation

I. I NTRODUCTION

In model checking or software verification, state graph
extraction, which aims to build state graphs that reflect
the control flows of the programs, is needed for those
works based on automaton models. There are mainly two
methods of call graph extraction: dynamic extraction and
static analysis. In dynamic extraction, programs are learnt
by run-time study [1], [2], in which the behaviors are
sampled and recorded. In static analysis, which is the
concentration of our work, the source codes of programs
are formally studied to extract the invocation relations in
every function call.

In C programs, the key problem of static call graph
extraction is the existence of function pointers, which
hinders the analyses to determine which functions are
actually called. For dynamic binding of function pointers,
static analysis needs to scan over the whole program
and tries to find all those potential referenced functions.
Function pointer analysis is a special case of pointer
analysis, which could be classified into two categories:
point-to analysis and alias analysis. Point-to analysis con-
cerns about the point-to sets of pointers, which would be
propagated and accumulated in every pointer assignment.
Alias analysis concerns about the transitivity of values or
relation of memory locations between the pointers and/or
other variables. Unlike point-to analysis which requires
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every pointer must points to a memory block explicitly in
the analyzing scope, alias analysis can make decision on
only pointer aliases, so that it is able to find the relations
between pointers and their solutions with incomplete
program source code. This kind of characteristics of alias
analysis is useful when analyzing those programs which
contains third party libraries.

In point-to analyses, Andersens algorithm [3], and
Unification-based algorithm [4], [5] are the representative
early works in pointer analysis. Andersen proposed a
complete solution of program analysis in C language,
including a point-to analysis, which contains an inference
system based on language semantics. Steensgaard [4]
improved the Andersens algorithm to nearly linear time
by unifying the locations that pointed by aliasing pointers,
so as to reduce distinguishable locations considerably,
but losing the precision in the result. Das et al. [5]
changed Steensgaards unification by one level unification,
and consequently their analyzer could finish analysis
with the accuracy of Andersens and the performance of
Steensgaards experimentally. Unlike these three analyses
that treat different fields of aggregate types in a field-
based manner, Pearce et al. [6] proposed a complete
solution of field-sensitive inter-procedural analysis forthe
first time with the discussion of the complexity of their
algorithms.

As for alias analysis, Horwitz and Susan [7] point out
that in flow-insensitive may alias analysis, it is NP-hard
to find out whether two arbitrary expressions may alias.
To make alias analysis applicable, we usually need some
approximations for a compromise with the performance
and precision. Jones et al. [8] proposed a k-limiting
method which limits the length of expressions under
k, limiting the upper bound size of the expression set
under a polynomial scale to the size of the variable
set. Deutsch and Alain [9] proposed Symbolic Access
Path (SAP), a structure which uses one of the repeti-
tion parts and its repeating count to represent a whole
expression, so that a short SAP could represent a long
expression with repeating sub-structures. But it has no
help to those expressions without repeating sub-structure.
Milanova et al. [10] proposed a flow-insensitive alias
analysis, in which the directional relation alias is regarded
as bidirectional relation equivalence. As the result, all
the variables could be separated into different disjoint
equivalence sets, where pointers could be solved within
them. However, irrelative pointers would be put into one
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set by the bidirectional transitivity of equivalence relation,
leading to imprecisions.

Besides the analyses above, demand-driven analysis
is grouped by the demand-driven characteristics. In this
kind of analyses, pointer analysis procedures are driv-
en by queries, and during the procedure, the analyzer
could skip irrelative parts of program to avoid useless
processes and to obtain better performance empirically,
without any change to the theoretical complexity of
problem. Heintze and Tardieu [11] proposed a demand-
driven point-to analysis, which repeatedly applies a sort
of rules until the point-to sets of queried variables are
built. In these processes, new variables will be created for
different fields of structure, and the location relation of the
fields and their structures are ignored. Zheng and Rugina
[12] proposed a demand-driven alias analysis, in which
the alias relation is attached with semantics, converting
the May-alias problem into CFL reachability problem.
However, it cannot reduce the complexity theoretically.
So the authors use some techniques, such as gradual
exploration, concurrent exploration, tuning for queries,
etc., for a better performance.

Most of the previous works adopted approximations
which would compromise the accuracy of the result. This
article presents a field-sensitive flow-insensitive function
pointer alias analysis, called Field Propagation Analysis.
Our analysis is applied in another project to help users
construct accurate and reliable state graphs of programs
for further studying. In II, Unified Access Path and
Acyclic Constraint Graph, are introduced. The former one
forms our language of alias analysis, and the latter one
is the basic structure of our analysis algorithm. In III,
the algorithms of field propagation analysis are entirely
illustrated. And in following sections, experiment results
are studied and discussed.

II. A NALYSIS LANGUAGE AND DATA STRUCTURE

A. Unified Access Path

Access Path [9], [13], [14] is a notation of variables,
which is usually used in field-sensitive analysis. Every
access path consists of a list of variables, reference
expressions or components separated by dots. For ex-
ample,p → field in C language is denoted by access
path *p.field. In access paths, there exist at least two
indirect relations: component relation denoted by dots,
and reference relation denoted by asterisks. To make
it simpler, a unified access path or UAP notation is
introduced in our analysis algorithm to denote different
language elements, which include variables, pointers and
functions, respectively. In the analysis algorithm, each
element is denoted by one or more strings concatenated
with one or more dots .. There are 4 types of compositions
considered as follows.

• Pointer reference: if variable p is a pointer, then UAP
p.∗ denotes variable∗p, which stands for the variable
that pointed by the pointer p.

• Fields: if b is a field of a structure, UAPa.b denotes
a.b in source code, and UAPp. ∗ .b denotesp → b.

• Function parameters: if a functionf hasN param-
eters, thenf.ρi denotes the i-th parameter of the
function f , while i ∈ [0, N).

• Return Value: if a functionf has return value, then
f.γ denotes the return value of the functionf .

Finally, every UAP has a syntax shown in Fig.1.

<UAP> ::= ID | ID.<part-list>  

<part-list> ::= <component> 

 | <part-list>.<component> 

<component> ::= ID | * |  |  

Figure 1. Syntax of UAPs: ID refers to the name of a variable, field or
function. Since components are concatenated with dots, each UAP has
a separation set P, whereP (a) = (p, s)|p.s = a

Especially,P (a) = ∅ when the UAP a is simply an
ID. In each separation(p, s) ∈ P (a) of UAP a, p is one
of prefix UAP of a, and denotes a pointer or a variable
of aggregate type; s is one of the suffix fields of a,
and represents the field that resides in p. By introducing
UAP, all forms of variables can be uniformly denoted,
avoiding distinguishing different levels of pointers and
normal variables, so that we can analyze pointers with a
very simple language as follow.

a ⊇ b

We use = to represent mutual constraint, such thata =
b ⇔ a ⊇ b ∧ b ⊇ a. So the constraint relation is formally
reflexive. Considering its transitivity, the UAPs can be
stored in a structure of Acyclic Constraint Graph, whose
topological ordering could help to sort those UAPs in right
order for analysis

B. Acyclic Constraint Graph

Acyclic constraint graph (ACG) is an improved con-
straint graph by adding a layer facility to sort all the
variables into a specific topology.

Common constraint graph is defined as directed graph,
2-tuple (V, E), where V is the set of vertices or variables,
and E is the set of directed edges or constraints.

ACG is a 4-tuple (V, X, E, F), where V is the set of
variables, the same as its definition in constraint graph;
L is a layer mapping that maps each variable to a layer;
X is the set of vertices; E is the set of edges, and F is a
mapping that helps to find the vertex in which any given
variable lies. Formally

X ⊆ 2V ∧ (∀s, t ∈ X)(s ∩ t = ∅) ∧
⋃

X = V

F = {v 7→ s|s ∈ X ∧ v ∈ s}

E = {(s, t)|s, t ∈ X ∧ (L(s) < L(t))}

The vertices of ACG are sets of variables, in which
variables are in the same layer. Edges of ACG must direct
from vertices in lower layers to those in higher layers.
Fig.2 shows an example of ACG that used in graph based
analysis.

An ACG can be transformed into common constraint
graph by replacing each vertex by the complete graph of
variables. Contrarily, a common constraint graph can be

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1593

© 2013 ACADEMY PUBLISHER



 

{a, b, c} {d, e} 
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{o, p} {q} 

Figure 2. An Example of ACG, the dashed edge means it is implied
by transitivity of other edges

transformed into ACG by merging every directed cycle
into one vertex, which is also the essential idea of ACG
construction.

In fact, ACG is a kind of Directed Acyclic Graph
(DAG), whose topological ordering represents a corre-
sponding partially ordered set (or poset). Since each ACG
contains two sets, variable set V and vertex set X, and
their correspondent relation, however, there must be two
posets in every ACG: posets(X,⊃) and (X,⊇). ACG
sorts variables and vertices by constraints, a kind of partial
ordering, leading two effects that help analysis. Firstly,
ACG implies the constraint sets of variables within its
poset(V,⊇). Secondly, we can build a fix point of ACG
in a constraint order, which is one of the key points of
our analysis algorithm.

ACG can be constructed by constraint insertions. After
each common graph edge insertion, cycles can be col-
lapsed by merging all the variables on the cycle into
one vertex. From a point-to perspective, all pointers on
the same cycle shares the same point-to set [15], [16];
from a graph perspective, constraint cycle could deduct
complete component by the transitivity of constraint,
leading all variables aliasing to each other. The canonical
algorithm of online cycle elimination travels the edges
from a specific node to find collapse the cycles, which
needs O(V+E) visits, where V and E are the count of
vertices and edges of the graph respectively. Considering
to the complexity of analysis is measured with variables
and constraints, let v stands for the number of variables,
and V stands for the number of vertices in ACG; let t
stands for the number of constraints, and T stands for the
number of edges in ACG. We can easily get thatV ≤ v

andT ≤ t. So the complexity could be expressed with v
and t. The insertion of a constraint to ACG has two steps:
cycle detection and cycle decomposition. The former step
is essentially a depth first searching with O(t) times visits.
And in the later step, all vertices are merged together with
O(v) times visits. So eliminating a cycle could finish in
O(v+t) times visits.

III. A NALYSIS FRAMEWORK OF FIELD PROPAGATION

Our analysis framework consists of two major steps:
Constraint Extraction and Field Propagation. At first, all
assignments are filtered by our analysis module of GCC,
from which the original constraints are extracted and
stored into a specified text file. And then an individual

program, which contains the field propagation algorithm,
analyzes the original constraints in the text file, tries to
solve all the function pointers in order to generate a
complete call graph.

A. Constraint Extraction

Constraint extraction is a mechanism that extracts
constraints from various types of the assignments. In C
programs, there are at least 4 types of assignment should
be taken into consideration:

• Explicit equation assignment: The characteristic of
this form is the equation operator =, with two
operands: the left hand side and the right hand side.
Especially, the right hand side can be an address
expression like &x, or reference expression like *x.

• Argument to parameter assignment: In function calls,
arguments are passed into functions as parameters,
while both arguments and parameters are semanti-
cally variables. So there are implicit assignment in
every function calls with arguments.

• Return value assignment: This form of assignment
can be treated as a special case of equation assign-
ment, in which the right hand side is a function call
expression. In GCC, it is another kind of statement
distinguished from equation assignment statement.

• Specialized assignment: C programs usually con-
tain memory operations, which semantically act like
assignment. For example, thememcpy(arg1, arg2,
arg3) function call implies an assignment of∗arg2
to ∗arg1. And the pthreadcreate(arg1, arg2, arg3,
arg4), for another example, will passarg3 as the
argument to the thread routine pointed byarg2. If the
source codes of such functions are included in the
project, our pointer analysis should correctly deduce
the implied constraints, otherwise, our analysis need
manual helps to point out their implications.

When the compiler scans through the program, vari-
ables and functions are represented by unique UAPs
in Constraint Extraction module. And each assignment
related statement is parsed into constraint, a form of
asymmetric binary relation, written as ordered pair ,
which means that the constraint set of variable a includes
that of b. In summary, the constraint extraction rules are
listed in Table.I.

TABLE I.
RULES OF CONSTRAINT EXTRACTION

Program Constraint

1 a=b a ⊇ b

2 a=&b a.∗ = b

3 return a f.γ = a

4 f(a1 , a2 , ...) f.ρ1 ⊇ a1, f.ρ2 ⊇ a2, ...

B. Field Propagation

After scanning through a translation unit, all the o-
riginal constraints form an initial ACG. The originality
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means that these constraints are discovered directly by
the source code of the program. Next, we will try to
find out all the implicit constraints and add them to the
ACG to form a complete solution for pointer analysis.
An inference system is introduced to help to discover
the implied relations between function pointers and their
pointed functions. The inference system consists of three
rules stated below:

[trans]
a ⊇ b ∧ b ⊇ c

a ⊇ c
[alias]

a ⊇ b

a.∗ = b.∗
[field]

a ⊇ b

a.µ ⊇ b.µ

The transitive rule shows the transitivity of constraint
relation on UAP set; the alias rule demonstrates that point-
er constraint implies mutual constraints between the val-
ues that the pointers point to; and the field rule illustrates
the field constraints implied by other constraints. The
alias rule can be applied along with constraint extraction;
transitive implication lies in the ACG with its reachability,
and the field rule is applied in a form of a series of graph
operations, called field propagation.

As our analyzer runs in a demand-driven way, before
the analysis starts, a set of queried UAPs should be
provided. Unlike some demand-driven analyses [11], [12],
which could skip some parts of program in demand,
however, our analysis still need to scan through the
program and analyze every part in constraint extraction.
That is why we say our analysis is semi-demand driven.
The complexity of constraint extraction is much less than
that of field propagation which constitutes the main body
of the analysis. So a complete scan makes limited effect
to the performance, and does not change the complexity
of the whole analysis procedure.

The field rule in the inference system above expands
and propagates the field constraints from one UAP to
others in order to discover implied constraints. Fig.3
depicts a simple example, in which, the constraints of
queried UAPq.∗ .pv.∗ is discovered by field propagation.

 

p.*.pv.* 

a 

q 

p 

q.*.pv.* 

struct data_t 

{int *pv;}; 

int a = 0, b; 

struct data_t *p,*q; 

//… 

p->pv = &a; 

q = p; 

FP 
p.*.pv.* 

a 

C
E

 

*.pv.* 

CE:   Constraint Extraction 

FP:    Field Propagation 

           direct constraint 

           implied constraint 

Figure 3. An example of implied constraint

A key issue is then followed, that is how the fields are
propagated to other concerning UAPs, making the queried

UAPs could reach their constraint variables with the edges
of ACG. The value of a UAP, or a variable, depends on
not only the UAP itself, but also the prefix UAPs (see
introduction of separation of UAP in section 2.1) in which
it resides. Fig.4 shows an indirect prefix constraint of this
kind. Recursively, the prefix UAPs also have their indirect
constraints depending on their prefix UAPs. Formally, L
represents the UAP set of a program; A: L2L maps UAPs
to their constraint sets, which is defined as

A(a) =D(a) ∪ I(a)

D(a) ={b ∈ L|a ⊇ b}

I(a) ={p.s ∈ L|p ∈ A(p′) ∧

(p′, s) ∈ P (a′) ∧ a′ ∈ D(a)}

D(a) represents the direct part of the constraint set of
UAP a, which is generated in the constraint extraction,
and is equivalent to the initial ACG. AndI(a) represents
the indirect part, which is implied by the rules of transi-
tivity and field implication.

Given an initial ACG G and a UAP a,D(a) represents
the sub-graph rooted from a. To demonstrateI(a) with
graph, an example is provided in Fig.4, which depicts
how the sub-graph rooted by queried UAPp. ∗ .f is
generated. The UAPs without square and solid edges are
elements contained in initial graph. Those dashed UAPs
edges are new elements created in the field propagation
for resolving the queried UAP. The doted ellipses and
arrows illustrate the effected sub-graphs and direction of
field propagation. After three steps of propagation, UAP
f andg are included inA(p. ∗ .f).

SinceA is recursively defined, the constraint sets need
to be generated in a reversed order of the topology of
constraint graph, because constraint set of each UAP
depends on the ones of successive UAPs. The basic field
propagation algorithm is provided in Fig.5.

In the field propagation algorithm, reach(p) represents
the set of UAPs and edges in the reachability topology
from UAP p, and the set is generated before further
calculation. And K is a limit of K-limiting [13] to prevent
recursive UAPs from exploding the UAP space. So the
Propagate process will definitely stop after propagations
of all original UAPs finish, or the UAP set contains all
UAPs that isnt longer than K.

To discuss the complexity of the recursive field propa-
gation algorithm above, we should clarify the propagation
sequence first. For each queried UAP, all its prefix parts
are visited and propagated (in line 7), as well as their
successors in ACG. As the result, all UAPs in ACG would
be visited in the worst cases. The actual propagation for
each separation is an edge traversal from the prefix part
(in line 8 through 10), in which the whole sub-graph is
copied, with the suffix field appending to all UAPs in the
sub-graph. In worst cases, the whole ACG is copied in
each propagation process.

Lets denote the UAPs in ACG withv1, v2, v3 vn
respectively, and the procedure starts fromv1, but the
actual propagation starts fromvn reversely. Suppose there
are totallyV UAPs in the ACG initially, and letVi and

JOURNAL OF SOFTWARE, VOL. 8, NO. 7, JULY 2013 1595

© 2013 ACADEMY PUBLISHER



 

 

 

= queried label 

= new labels 

= new constraints 

= field propagation 

p.*.n.*.n.*.f 

p.*.n.*.f p.*.n.*.n.* 

p.*.n.* 

p.*.f 

p 

q r 
p.*.n 

p.* 

q.* r.* 

a b 

q.*.f r.*.f 

a.f b.f 

g f 

p.* p.*.n.* 

p.*.n.*.n 

n 

* 

f 

q.* a 

r.* b 

a.f f 

b.f g 
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Figure 4. An example process of field propagation

1Procedure Propagate (v)  

2 If v is marked as propagated yet Then 

3  Exit Procedure  

4 Mark v as PROPAGATED 

5 For each separation (p, s)  P(v) 

6  For each node vp in reach(p) 

7   Propagate (vp) 

8  For each edge (vl, vr) in reach(p) 

9   If |vl.s| K  |vr.s| K Then 

1     ACGInsert (vl.s, vr.s) 

Figure 5. Basic algorithm of field propagation

Ti represent the number of nodes (or UAPs) and edges
(or constraints) in acyclic sub-graph that start fromvi.
These sub-graphs may overlap with each other, but every
UAP has aPROPAGATEDflag to mark whether the UAP
has been processed, and each UAP would be processed
exactly only once (assured by line 2 through 4). In the
chain of propagation, every sub-graph are replicated and
accumulated into previous sub-graphs, like a rolling snow
ball. The times of insertions in each time of propagation
are list in Table.II.

In the worst cases, the edge sets of sub-graphs are
overlapped and for any i,Ti ≈ T . Then we can infer that
the total complexity of propagation procedures measured

TABLE II.
T IMES OF INSERTIONS IN EACH TIME OF PROPAGATION

Increment Total

vn V · Tn V · (Tn + 1)

vn−1 V · Tn−1 · (Tn + 1) V · (Tn−1 + 1) · (Tn + 1)

... ... ...

v1 V · T1 ·
n∏

i=2

(Ti + 1) V ·
n∏

i=1

(Ti + 1)

by count of constraint insertions.

O(V ·
n∏

i=1

(Ti + 1)) =

{
O(V · T n), whenn ≪ V

O(V · T V ), whenn ≈ V

And in the worst case, the whole constraint set of the
preceded UAP is copied in every time of propagation,
leading the whole graph might grow exponentially. This
worst case would only happen when the data structure
of program is a deep nested aggregate type. But in most
programs, there are plenty of irrelevant data structures,
dispersing the variables into different sub-graphs and
making n far smaller thanV . So we believe that the
performance of our algorithm would be polynomial to
the count of constraints in most cases.

C. Optimizations

The basic algorithm is time exhausting in practice,
several performance optimizations are introduced to make
our analysis applicable for our application.

1) Folding Right Recursive UAPs:It has been dis-
cussed above that UAP set is diverging when it involves
recursive sub-structures. For example, the constraintp ⊇
p. ∗ .next is usually met in list traversals. With the field
rule, it could repeatedly derive out an infinite sequence
of constraints, likep. ∗ .next ⊇ p. ∗ .next. ∗ .next,
p. ∗ .next. ∗ .next ⊇ p. ∗ .next. ∗ .next. ∗ .next, etc.
These constraints are really exists but most of them are
useless because no other constraint refers them. So these
UAPs with recursive sub-structures could be folded into
short forms.

As it is referred above,P (a) is the separation set
of UAP a. As every separation(p, s) of UAP is a pair
of components, letdom(P ) and ran(P ) represent the
sets of former and latter components respectively in the
separations. That is

dom(P ) ={p|(∃s)(p, s) ∈ P}

ran(P ) ={s|(∃p)(p, s) ∈ P}

A UAP a can be said right recursive, when . And f
folds a in a way of getting rid of the latter part of the
separation, where

f(a) =

{
p, (∃(p, s) ∈ P (a))s ∈ ran(P (p))

a, otherwise

A UAP needs to be folded for several times until it is
non-recursive. So in analysis, all UAPs likep. ∗ .next. ∗
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.next. ∗ .next are folded into non-recursive forms like
p. ∗ .next.

Folding right recursive UAPs can bring approximation
to the common pointer analysis, causing that, for example,
different elements of an iterative container become undis-
tinguishable. It introduces approximation to the result of
static constant containers, in which pointers in different
positions should be distinguishable. In practice, however,
those iterative containers are dynamically allocated and
managed. So that when anyone of the elements is referred
in a program point, all the functions stored in respective
fields in the container are potentially involved. From this
point, the approximation would have no effect to the
accuracy of analysis to dynamic data structures. Similar
problem is encountered by previous works [6], and is
overcome by a similar mechanism.

After getting rid of those recursive UAPs, the total
number of UAPs in a program has an upper bound. Let
l stand for the maximum distance between the level of a
function pointer type field and the level of the top level
aggregate type that the pointer resides, and letk stand for
the maximum level of pointer used in program. Then the
maximum length of UAP isl+lk, because every field may
have the maximum level of pointer type, and program may
use variables of maximum level pointer type. So UAP set
should have a polynomial upper bound ofV l+lk, where
V is the number of identifiers in program.

In our observation, some data structures have a very
large recursive span, which encumbers the whole analysis
greatly. In this case, k-limiting is the last effective method
to control the size of UAP set, as well as the ACG size.
As stated before, the theoretical maximum length of UAP
is l + lk, which is hard to reach for actual programs,
because few pointers have the maximum pointer level of
l, and few aggregates have maximum depth ofk, in our
observation, most programs can be solved appropriately
in a UAP length of 10 to 12. In other words, practically
most pointers could be solved in a set of UAPs whose
length is not exceeding 12. By limiting the upper bound
of UAPs, the size of ACG could be efficiently reduced.

2) Partitioning Analysis: After folding the recursive
UAPs, the UAP set has a polynomial upper bound, how-
ever, the total number of UAPs and their constraints are
still very huge for large programs. To make the analysis
more effective, the UAPs and the constraints need to be
reduced as possible as we can. There are mainly two
methods to reduce constraints: partitioning analysis and
constraint reduction.

Partitioning analysis is based on the natural composi-
tions of program. There are at least 2 levels of composi-
tions: functions and translation units. And someone would
refer modules as well. A program is made of several
translation units, each of which contains several functions.
An identifier is global when it can be used in different
functions in the same translation unit. Or it is external
when it can be referred in different translation units. By
classifying those identifiers, our analysis could be run
in different levels of compositions. At first, functions

in the same translation unit are processed individually,
exporting the constraints in which the UAPs at both sides
are global or external. And second, the translation unit is
processed, exporting external constraints. And at last, all
external constraints are collected together for analyzing.
In practice, the layer of translation units could be skipped
if program doesnt have too many translation units.

Partitioning analysis divides the constraints into much
smaller partitions, in each of which the analysis become
efficient because the UAP set of each partition is very
small, and most complex graph components are filtered by
the boundary of partitions, leaving simplified relations of
global or external constraints to the next level of analysis.
The whole process is depicted in Fig.6.

In Fig.6, there are 3 categories of UAPs: local, global,
and external. As a result, field propagation process of
every level becomes a category-based filter. For example,
FPs in local level filter out all local UAPs, and FPs
in global level filter out all global UAPs, respectively.
Before being filtered, queried UAPs should be linked
to at least one UAP of outgoing categories. And the
linkage information can help the FPs in next levels to
generate complete relations between queried pointers and
the functions that they pointed. Additionally, the number
of levels can be adjusted by different applications, such as
adding a modular level for inter-modular analysis which
support static and dynamic libraries, or merging the global
and external level together in analyzing small programs
for performance.

3) Tunable Exploration:The basic algorithm is essen-
tially an aggregation in depth-first order, whose disad-
vantage is apparent that exploring will not stop until all
relevant UAPs are propagated. But in many applications,
we wish the analyzer could report some results as quickly
as possible. So it is necessary to stop the propagation
process after a small wave of propagation, giving the
analyzer and users a chance to decide whether or not
to continue processing. This technique, called tunable
exploration, could help to prune a lot of long UAPs which
unlikely contain useful aliases under the belief that aliases
could be found with short UAPs.

To make the propagation stop quickly, we modified
the Propagate procedure, and marks all UAPs in new
constraints (in line10) as PROPAGATED. If any queried
UAP doesnt link to any outgoing UAPs, propagation will
continue by resetting those new UAPs, until the whole
depth-first aggregation is completely performed. Users
could also specify a limit count of waves of propagations
if analysis runs too long. However, pruning long UAPs
can lead to losing some useful constraints as Fig.7 depicts.

The missing of unexplored constraints is caused by
the stopping of propagation when queried nodes have
different sources of values from different levels of fields.
Experimental result shows that the undiscovered solutions
are minor, because most nodes have simple origin of
values. In fact, the analyzer needs to spend most of time
in exploring few solutions precisely, while most solutions
can be discovered in short time. Thats the reason of the
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Figure 6. Partitioning analysis, FP means the field propagation process.
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Figure 7. Normal exploration (a) and Tunable exploration with only one round (b)

effectiveness of tunable exploration.
4) Constraint Reduction:Constraint reduction is based

on the observation that many functions, especially the
string operations and memory controls, may bring in a
large number of irrelevant aliases which link different
types of aggregates together, and increase the work load
of field propagation process tremendously. In worst cases,
it makes the ACG a complete graph. So in the step
of constraint extraction, the value passing through the
parameters of these functions are ignored. Other functions
can also be filtered, but the effect is unclear.

D. Field-based Analysis

Field-based analysis, an approximated method for ex-
periment comparison in this article, treats field names
as special variables. With this method, all pointers that
nested in aggregate types could be solved simply by the
help of corresponding field name, instead of data flow.

To implement a field-based analyzer on the basis of
field propagation algorithm, field names are omitted in the
field propagation process. Instead, we create individual
UAPs to stand for different fields, and add aliases of the
fields and corresponding variables. Formally, we add 2
rules to our inference system:

[field2]
p.s ⊇ q

p.s = s ∧ s ⊇ q
[field3]

q ⊇ p.s

p.s = s ∧ q ⊇ s

Note that in these rules, s refers to the UAP components
that contain field names, and these components have
no need to be propagated because they are regarded as
variables and the aliases could be transited though them.

Other components consist of pointers (*), arguments (ρi),
and return values (γ) are propagated like field sensitive
analyzer, and these components are far less than those
components that contain field names, leading the field-
based analyzer much quicker than field-sensitive analyzer
experimentally.

IV. EXPERIMENTAL RESULTS

We have selected several programs as analysis targets
listed in Table.III. All these programs can be download-
ed from GNU.org or their respective official websites.
The analysis program runs on a Intel Core Dual T5250
1.5GHz2 CPU with 2GB memory, but uses only one core
because the analyzer is single threading. Our analyzer
propagates fields in 2 levels of partitions: intra-procedural
level and inter-procedural level. And the inter-modular
capability is unused in experiment.

From Table.III, most function pointers can be solved.
And we have inspected the sources of these programs,
and find that most of the unsolvable pointers are exactly
null pointers. To demonstrate the accuracy, the analyzer
counts all functions that referenced by solved pointers and
that have been taken address. Most of the unreferenced
functions are passed as callbacks to libraries, such as
qsort(), signal(), atexit(), etc.. So actually, the result
should be more accurate than it looks. The percentages of
solved pointers of field-sensitive and field-based analysis
are depicted comparatively as the evidence in Fig.8.

The percentages are not the higher the better, because
some of the pointers are used in unreachable parts of
program, which can affect the results of field propagation.
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TABLE III.
ACCURACY OF THE EXPERIMENT

Program Version Solved/Queried Ref/Alla
Avg size of

solutions

Unreferenced

functions

bash 2.05 75/85 338/363 6.72 25

cflow 1.4 22/29 22/24 2.00 2

gawk 3.1.0 71/73 73/81 4.11 8

gettextb 0.18 1/1 2/14 2.00 12

grep 2.6.3 16/21 33/36 3.56 3

gzip 1.4 4/4 8/10 4.00 2

make 3.79.1 2/2 24/32 12.00 8

parted 3.0 49/57 272/306 6.20 34

sed 4.2 1/1 2/3 2.00 1

sendmailc 8.14.4 32/39 55/88 5.47 33

uucp 1.06.1 75/75 187/210 5.33 23
a Count of functions referenced by solved pointers, and countof all functions which have

their address taken.
b gettext-runtime only
c Without static libraries
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80.00%
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Figure 8. Percentages of solved pointers

While field-based analyzer can still solve them by simply
the transitivity of field names, which makes no sense from
the view of data flow. Thats the reason why the results
of field-based analyzer sometimes have many spurious
solutions so as to be unreliable and unsuitable for precise
state graph construction, as Fig.9 shows.

The time consumptions of field propagation are listed
in Table.IV, in which, we regard constraint insertions as
the count of total constraints approximately, because in
partitioning analyzing, constraints of each partitions are
overlapped with each other, and it needs a lot of time and
memory to count them clearly, so we simply count all the
insertions as the count of constraints.

The result shows that the propagation time is not
exactly polynomial to the size of program (measured as
original constraints), because not all the constraints are
involved since the propagation process is demand driven.

The time consumption per query varies in different
programs, depending on the complexity of the relations
among variables. In our observation, it is extraordinarily
slow to analyze structures like hash tables and memory
control components, in which, plenty uses of void pointer
for generality bring in huge number of illogical aliases
which contain different types of pointers. It might be
avoided by type checking, however, we havent implement-
ed it yet. Currently, we simply isolate the hash tables and

memory control components out of the analysis manually
for performance, if these components dont involves any
function pointers. The most serious disadvantage of field
propagation is the time consumption. It needs several or-
ders of magnitude time comparing to field-based analyzer,
as Fig.10 shows. Whether it is worth spending so much
time for a precise result depends on the requirement of
applications.

V. RELATED WORKS AND DISCUSS

The purpose of our analysis is trying to find out those
functions are pointed by specific function pointers, which
are used in indirect calls, and generating call graphs
or state graphs. Unlike some general pointer analyses,
the accuracy is of the utmost importance to the results
because it can affect the correctness of generated state
graphs. Besides the precision requirement, there are other
differences to other works in methods and techniques.

A. Comparing to Point-to Analysis

In point-to analysis, analyzer records the point-to set
of every pointer, and propagate the set from one pointer
to the others by a group of specific rules, which make up
an inference system of point-to analysis. Many point-to
analyses [6], [17] use an inference system like Table.5
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Figure 9. Comparison of the average sizes of solutions of solved pointers

TABLE IV.
ACCURACY OF THE EXPERIMENT

Program
Original

Variables

Original

Constraints

Total

Variables

Constraints

Insertions

Propagation

Time (ms)

Time (ms)

per query

gzip 1,088 20,039 2,855 3,682 266 67

sed 1,437 11,205 2,864 7,345 202 202

gettext 1,163 34,750 2,862 7,900 265 265

bash 16,451 140,426 45,767 654,061 25,226 297

cflow 4,588 22,283 11,995 549,261 18,049 623

sendmail 6,726 75,928 48,689 2,678,439 34,438 884

make 2,646 24,238 16,433 687,158 2,059 1,030

gawk 8,179 47,625 79,463 3,926,304 106,971 1,466

grep 2,887 22,766 85,988 1,086,478 32,404 1,544

uucp 8,350 117,191 651,006 6,934,369 214,811 2,865

parted 10,121 118,401 119,325 6,026,555 183,930 3,227

1

10

100

1,000

Field-sensitive Field-based

Figure 10. comparison of the time consumption per pointer inmilliseconds on alog10 axis

TABLE V.
COMPARISON OF THE INFERENCE SYSTEM OF POINT-TO ANALYSIS AND ALIAS ANALYSIS

Point-to inference system Simulation by alias inference system

Preconditions Conclusions Preconditions Conclusions Deduction

1 p ⊇ q, r ⊆ p r ⊇ q p.∗ = q, r ⊇ p r.∗ = p.∗ = q [alias][trans]

2 p ⊇ ∗q, q ⊇ r p ⊇ r p ⊇ q.∗, q.∗ = r p ⊇ q.∗ = r [trans]

3 ∗p ⊇ q, p ⊇ r r ⊇ q p.∗ ⊇ q, p.∗ = r r = p.∗ ⊇ q [trans]

4 p ⊇ q → s, q ⊇ r p ⊇ r.s p ⊇ q. ∗ .s, q.∗ = r p ⊇ q. ∗ .s = r.s [field][trans]

5 p → s ⊇ q, p ⊇ r r.s ⊇ q p. ∗ .s ⊇ q, p.∗ = r r.s = p. ∗ .s ⊇ q [field][trans]

6 p ⊇ q → s, q ⊇ r p ⊇ r.s p.∗ = q. ∗ .s, q.∗ = r p.∗ = q. ∗ .s = r.s [field][trans]
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shows. And a simulation by alias inference system is
made in passing.

The simulation in Table.V demonstrates that alias in-
ference system could easily simulate all the deductions
of point-to analysis, but not vice versa. In Fig.11 is an
example which shows that alias analysis can successfully
deduce the relation between p and f, but point-to analysis
cannot.

What Fig.11 reveals is that the deduction of point-to
inference system in Table.5 requires the pointers should
stick to memory locations, while alias analysis concerns
about the relations among pointers, which are only labels,
but taking less attention to what locations the pointers
point or where they reside. The location stickiness is an
advantage for point-to analysis in performance, because
analyzer could take more attention on few locations,
instead of the complex relations of the pointers. The
disadvantage is that it requires a complete constraint set
to make sure that point-to sets could be passed through
memory locations. In contrast, alias analyzer could gen-
erate chains of pointers that reflect how the values are
passed through the variables. If some parts of a program
are unavailable temporarily, for example in inter-modular
analysis, the chains are broken. After the missing parts
are available, the chains are linked. Additionally, after
a propagation process on a complete scope of program,
internal variables and their constraints could be filtered
out to simplify the incomplete constraint graphs. Thats the
essential idea of partitioning analysis introduced above.
When heap allocation is involved, point-to analyzer needs
to analyze the shape of heap in order to assign locations to
those pointers that point to heap memory. Function pointer
alias analyzer just skips those heap operations because
heap location is merely usable in variable aliases; instead,
it concentrates on the location of functions and relation
of pointers.

Demand-driven pointer analysis [11] suppresses the
disadvantage by introducing a special symbol, written as
a dot (), which stands for unknown variables that to be
solved. That actually acts like partitioning analysis, except
that their analysis is performed in a field-based way.

B. Comparing to Other Alias Analysis

Different alias analyses are sharing the same principle
of basic model, of which the essential concern is the
relations of pointers. Several theoretical works [7], [18]
have shown that to precisely solve a may-alias query,
it needs exponential times of operations. Most works
concentrate their concerns on all kinds of optimizations,
which could help to solve alias queries as fast and/or pre-
cise as possible. Conclusively, the following optimization
techniques are wildly used in previous works:

• Field-insensitive analysis
Field-insensitive analyzer [12], [19] counts the point-
to information of field pointers into aggregate vari-
ables where they reside, making the variable set
of program much smaller. But the point-to sets of

different fields are merged together and hard to
distinguish, depending on the test cases.

• Field-based analysis
Field-based analyzer [3]–[5] [20] treats fields as vari-
ables. As our experiment shows, field-based analysis
is sometimes effective, but sometimes introduces
spurious solutions. Comparing to field-insensitive
analysis, field-based analysis is better for function
pointer analysis, because functions are usually bound
to field names instead of variables.

• K-limiting
By limiting the length of access paths, analysis could
get higher performance. In the other hand, it prevents
the analyzer from further exploration, potentially
missing some chances to discover deeper implica-
tions. However, after all means of optimization, there
are always some cases which could cause long access
paths and decrease the performance seriously. So K-
liming is our last means to control the length of
access paths.

There also exist some other techniques, such as regard-
ing constraint relation undirected [10] to lower the com-
plexity of constraint graphs. We absorbed the essences of
previous techniques and created several techniques with
the help of our observations and experiences. For a graph
based analyses, we could benefit in performance from
2 methods primarily: reducing the nodes and reducing
the edge. From this aspect, our 4 techniques can be
categorized as Table.VI shows.

As stated before, if the actual value of a pointer, at
the program point where it is called, is irrelevant to the
position in iterative containers, folding the recursive UAPs
would constraint the length of recursive UAPs without
negative. Partitioning analysis could limit the complexity
in small scales, instead of spreading local relations to
other parts of programs. The primary inaccuracy of our
analysis is brought in with tunable exploration, which
would cause some pointers unsolvable. So currently we
should avoid complex data structures to get convincing
results with a bearable performance.

C. Flow-sensitivity and Context-sensitivity

Flow-sensitivity refers to whether the solutions of the
pointers are sensitive to its position in control flow. The
reason of using flow-insensitive method in our analysis
is that most C programs use static global structures as
function tables, and few of the global function pointers
would change their values during intra-procedural control
flow. Additionally, with the help of SSA in most mod-
ern compilers, the flow-sensitivity could be reflected in
the value transitivity through the SSA names in intra-
procedural analyzing. If the function tables are built
dynamically, flow-insensitive analysis is still unreliable,
because the analyzer is unaware of the changing of the
values.

Context-sensitivity refers to whether the solutions of
the pointers are sensitive to the call site contexts of the
functions that they reside, so that every function has
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Point-to Analysis  Alias Analysis 

p  q->s (1) 
q  r (2) 
r->s  t (3) 
t  {f} (4) 
r->s  {f} (5) [1](3, 4) 
(unable to go on…) 

 p  q.*.s (1) 
q  r (2) 
r.*.s  t (3) 
t.* = f (4) 
q.*.s  r.*.s (5) [field](2) 
p  r.*.s (6) [trans](1,5) 
p  t (7) [trans](3,6) 
p.* = t.* (8) [alias](7) 
p.* = f (9) [trans](4,8) 

p  q->s (1) 
q  r (2) 
r->s  t (3) 
t  {f} (4) 
r  {m} (5) 
q  {m} (6) [1](2,5) 
p  m.s (7) [4](1,6) 
m.s  t (8) [5](3,5) 
p  t (9) [1](7,8) 
p  {f} (10)[1](4,9) 
 

A location m enables the values 

of r->s to be passed to q->s 

Figure 11. An important difference between point-to and alias analysis

TABLE VI.
COMPARISON OF THE INFERENCE SYSTEM OF POINT-TO ANALYSIS AND ALIAS ANALYSIS

Node reduction Edge reduction Effects to accuracy

Folding of recursive UAP
√

None

Partitioning analysis
√ √

None

Tunable exploration
√ √

With few constraints lost

Constraint reduction
√

Determined by user

different call graphs corresponding to different contexts.
So result of context-sensitive analysis is more accurate
than result of context-insensitive analysis to reflect the
inter-procedural control flow, but it might not be useful for
some cases of intra-procedural analysis, such as analysis
in unit tests, in which we need a complete control flow
of all contexts that the functions are invoked. A context-
sensitive analyzer using field propagation is planned in
our future works depending on the demand of its appli-
cations.

VI. CONCLUSION

We have represented a field-sensitive alias analysis for
function pointers, in which the suffix fields of access
paths are propagated to prefix parts and their aliases and
successors, so as to discover new implied aliases. After
the whole process or propagation, analyzer could find the
pointed functions in the alias sets of specific pointers.
Several optimizations are brought in our analysis for
better performance. Although some of the optimizations
might cause some alias missing, as an auxiliary tool,
users could overcome this disadvantage by either avoiding
complex structures, such as raw object, general structures
using void pointers and location overlapping, etc., or
manually adjusting point-to sets for function pointers, in
order to construct a complete reliable state graph for
program analysis, which could be applied in program
behavior extractions instead of dynamic monitoring [21]–
[23].
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