
The Design and Implementation of A Network
Provenance System Framework

Xiang Gao

School of Computer Science, Northwestern Polytechnical University, Xi’an,China
Email: gaoxg@nwpu.edu.cn

Xiao Wang

School of Computer Science, Northwestern Polytechnical University, Xi’an,China
Email: wangxiao5018@163.com

Min Wang

School of communication, Air Force Engineering University, Xi’an, China
E-mail:wang_min5460@sina.com.cn

Yinghan Jin

Northwestern Polytechnical University, Xi’an,China
E-mail:248492720@qq.com

Abstract—Network forensic analysis and fault diagnosis are
becoming increasingly important in network management
and network security domain. This requires network
management system has the ability to query network
metadata, i.e. the network provenance functionality. For
instance, network provenance can be used in tracking the
path of dataflow through the network to obtain the source
of message data.
 This paper presents the design and implementation of a
network provenance system (NPS) framework, the
framework is used to support the full range of functionality
required for enabling forensics in distributed systems. We
adopt the declarative networking coding method proposed
in the networking domain to maintain and query
distributed network provenance. The framework prototype
is developed using Rapidnet, a declarative networking
platform based on the ns-3 network simulator. Simulation
experiments are conducted in simulated network, the
experiment results indicates that our network provenance
system could support provenance process in a large-scale
distributed network and significantly reduce bandwidth
cost compared to traditional approach.

Index Terms—Network Provenance, Declarative
Networking, Query Customization

I. INTRODUCTION
 The network provenance is used for network metadata
inquiry .Network provenance describes the history and
derivations of network state when executing distributed
protocol, it is widely deployed on thousands of nodes
across multiple administrative domains and geographical

areas.
 Traditional data provenance technology has been
extensively applied to a variety of areas, including
probabilistic databases [1], collaborative databases [2],
file systems, scientific workflow computation [3,4], and
cloud computing[5].For instance, VisTrails[3] present
solutions for historical provenance, it enables
reproducibility and simplifies the complex problem of
creating and maintaining visualization products.
Orchestra[2],focuses on managing disagreement among
multiple data representations, in which independent
researchers or groups with different schemas and data
can share information in the absence of global agreement.
RAMP [5] discuss distributed provenance maintenance
and querying for specific applications, recording
metadata related to provenance or develop a logging
mechanism for tracking information and dependencies
between data. Sprov[6]enforces the integrity of
chain-structured provenance, this further suggests a
comprehensive provenance representation that uses
polynomials.
 To support the full range of functionality required for
enabling forensics in distributed systems, there are a
number of challenges that traditional data provenance
can not answer very well. In this paper, we propose a
new provenance approach integrate with declarative
networking model, the main framework can be
implemented compactly using declarative language.
 The remainder of this paper is organized as
follows:(1)We first present a background introduction to

1436 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.6.1436-1442

Figure1. Distributed dataflow between nodes

Figure2. Network topology

declarative networking in section 2.(2)The framework
use distributed relational tables to store provenance
information. We propose a reference-based approach that
reactively generates reverse markers that can be
recursively traversed to a query. (3)The system consists
of provenance maintenance module and provenance
query module. Maintenance module generate and update
the provenance data and query module accept
provenance query request from users.(4)several
modification and optimizations are made to prototype in
order to further reduce the communication overhead
among nodes and adapt specific queries under certain
circumstance.(5) Contrast experiments are conducted on
the simulated network are presented in Section 5.

II. DECLARATIVE NETWORKING

 The distributed nature and large scale of today's
networks pose challenges for the Network protocol
design and implementation, it is important to balance the
extensibility and flexibility of network protocols while
guaranteeing the robustness and efficiency as well. The
most fundamental matter that network protocol designer
faces is how to divorce from the tedious protocol
implementation and focus on the functionality and

concept design of protocols. Declarative networking
language[7] allows us to specify at a high level "what to
do", rather than "how to do it”, it focus on solving the
problems of traditional distributed programming and
parallel programming, simplifying coding process and
significantly reducing the size of implementation in lines
of code.

A. NDlog Language
 Declarative language include Datalog, Netlog,
overlog, NDlog, in this paper we mainly use
NDlog[8],which stands for Network Datalog.NDlog
language can express a variety of well-known routing
protocols (e.g., distance vector, path vector, dynamic
source routing, link state, multicast) in a compact and
clean fashion, typically in a handful of lines of program
code.
 Network protocols are expressed in NDlog and
distributed among nodes, each node compile NDlog rules
into distributed dataflow, as is shown in Fig. 1.These
dataflow exchange messages and network state between
nodes until fixpoint is reached.

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1437

© 2013 ACADEMY PUBLISHER

TABLE I.
EXAMPLE PROV RELATION TABLE

TABLE II.

EXAMPLE RULEEXEC RELATION TABLE

 A NDlog rule has the form p :− q1,q2...,qn.The
predicate p is the head of the rule, and q1, q2, ..., qn
constitutes the body of the rule. qi are either predicates
over fields or function applied to fields. Each predicate
has a primary key, which contains a set of fields uniquely
identifying each tuple. Only when all the functions and
predicates are satisfied, the rule is executed and
generates head. Consider the Mincost program shown
below.

sp1 pathCost(@S,D,C) :- link(@S,D,C).
 sp2 pathCost(@S,D,C1+C2): -
 link(@S,Z,C1),minCost(@Z,D,C2).
 sp3 minCost(@S,D,min<C>):-
 pathCost(@S,D,C).
 The Mincost program executes on a example network
shown in Fig. 2, each node is initialized with a link tuple
for each of its neighbors. Rule sp1 generates one-hop
pathCost tuple from local link relation table. Rule sp3
generates minCost tuple from locally stored pathCost
table. To generate new pathCost tuple, rule sp2 use local
link tuple to concatenate with minCost tuple generated in
the previous round. NDlog prepend an "@" symbol to a
single field, denoting the tuple's actual storage location.
The location specifier enable the NDlog language with
distributed computing capabilities.
B. Rapidnet Platform
 RapidNet[9] is a development toolkit based on NS-3
simulator[10] for simulation and implementation of
network protocols. The NS-3 network simulator is a
discrete-event network simulator for Internet systems,
targeted primarily for research and educational use. All
simulations in NS-3 are driven by discrete event.NS-3
provides simulation and research for a variety of
networks, protocols and layers, researchers can make any
modifications according to their needs.
 Rapidnet integrates declarative networking engine on
NS-3 to execute declarative programs. In rapidnet,
protocols are expressed in Ndlog code, the RapidNet
compiler then parses the input NDlog protocols into C++
code that runs over the RapidNet Library. The latest

Rapidnet version released is Rapidnet_v0.3.

III. DECLARATIVE PROVENANCE FRAMEWORK

 The declarative provenance system is a efficient
provenance framework used in distributed environment,
it adopts distributed provenance and uses reference based
ways to exchange information between nodes, resulting
in significant reductions in bandwidth costs compared to
traditional approaches.

A. Provenance Granularity
 Three levels of granularity are provided to adjust the
level of detail and influence on the network performance.
(1)Tuple level provenance has the ability to trace a
tuple's complete construction process, tuple level
provenance includs all intermediate tuple in the
derivation process, it plays an important role in the
network protocol debugging.Tuple level provenance
consists of all nodes and edges in the graph and encodes
the maximum amount of information, which incurs the
largest communication overhead. (2)Node level
provenance encodes only the nodes that are involved in
the derivation. It is used to determine which node of the
network is responsible for a given tuple. (3)Provenance
information may also stored at the trust domain level.All
nodes in the trust domain share a domain identifier[11],
provenance information encodes trust domain which
involved in the derivation process.

B. Data Model
 The provenance framework use directed acyclic graph
G(V,E)[11] as data model of provenance information.
Each edge in the edge set represents a rule execution
between computation result and tuples. Edge from tuple
to computation result represents the input of rules and
edge from the computation results to tuple represents the
output of rules. The vertex set includes tuple vertices and
rule execution vertices, identified by VID and RID. To
uniquely identify each tuple vertex in a derivation graph,
we assign a vertex ID to each vertex in the provenance
graph, using cryptographic hash functions[12] to

1438 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

generate a unique value. For instance, the VID of a tuple
vertex for link(@X,Y,C) is VID =SHA1(“link”+X+Y+C).
For rule execution vertex, a rule ID has the form RID =
SHA1(“r2”+X+t1+t2),which means rule r2 at node X is
executed with input tuples t1 and t2 .
C. Provenance Maintenance Module
 The provenance information is maintained by two
relational tables Prov and ruleExec,shown in table 1 and
table 2.The Prov table stores provenance information,
each entry represents the derivation of a given tuple,
which has the form prov(@Loc,VID,RID,RLoc).The
Prov table is distributed throughout the nodes by the
location identifier Loc. The ruleExec table stores the
metadata generated by rule execution, the RLoc field
denotes the rule reside location, each entry represents a
rule execution, which has the form ruleExec (@RLoc,

Figure 3. Distributed query process

RID,R,VIDList).
 Two NDlog maintain rules are used to generate
provenance information while executing network
protocols. For instance, the provenance maintenance
rules for Mincost rule sp2 are automatically rewritten in
provenance generation rules.
 R1 ruleExec(@RLoc,RID,R,List) :-
 ePathCostTemp(@RLoc,S,D,C,RID,R,List).
 R2 prov(@S,VID,RID,RLoc):-
 ePathCost(@S,D,C,RID,RLoc),
 VID=f_sha1(‘‘pathCost’’+S+D+C).
 The first three provenance generation rules generates
the S,D and C fields that the Mincost protocol requires,
besides, these three rules generates four maintenance
fields: RLoc,RID,R and LIST. These four fields consist
of the ruleExec entry in rule R1.Then,the ePathCost
event tuple generated by rule R1 is sent to node S
according to the location identifier. At node S, the
received ePathCost event tuple is used to execute the
protocol and generate the Prov entry (rule R2) .

D. Provenance Query Module
 Consider the provenance query process of minCost
tuple shown in table 1, the corresponding VID value of
the tuple is VID7,a VID 7 query is initialized at first, the
corresponding RID value RID5 is found according to
Prov table(3rd entry).The query then trace back to the
VIDList corresponding to VID5 in the ruleExec
table(2nd entry) using fields RLoc and RID, and two
qualified entry is returned form Prov table, triggering
two VID5 query simultaneously(VID5 is obtained from
ruleExec entry).The process is similar to the VID7 query.

The VID5 query will trigger new VID query until
fixpoint is reached. After all the children of VID5 have
returned the Prov entry, the provenance information is

Figure 4. Provenance graph for minCost(@a,c,5)

sent to the query issuer by RLoc node.
 Above is the general process of the provenance
information query, the query module implementation is
achieved by two basic rules (rule edb1 and c0) and eight
recursive rules(idb1-idb4,rv1-rv4).Rule edb1 return basic
tuple provenance information, rule c0 count the a certain
VID's children number. There are two pairs of
query/response event tuple (eProvQuery/eProvResults
and eRuleQuery/ eRuleResults) operating Prov table and
ruleExec table, respectively.
 The idb rules(idb1-idb4) is used to operate Prov table,
the Request node initialize a VID query request
eProvQuery(@X,QID,VID,Ret), where QID is the query
ID uniquely differ from other queries. If the VID being
queried is a base tuple, the module execute rule edb1 to
end this query, otherwise, rule idb1 initialize provenance
buffer at the given address provided by tuple eProvQuery.
Rule idb2 send event tuple eRuleQuery to node
RLoc(protocol execution node), retrievaling qualified
entry according to field RID. The rv rule (rv1-rv4) is
used to trace rule execution vertices in the ruleExec table,
performing a similar traversal as idb rules did.
 Idb rules and rv rules are triggered recursively until all
child nodes are visited. As the query proceeds, the
eprovQuery events tuples are recursively propagated
from the query issuer towards the base tuple in order to
construct the entire provenance graph. Finally, the
provenance query module recursively traverses prov and
ruleExec tables across nodes until the entire provenance
graph is obtained.

IV. PROTOTYPE OPTIMIZATION

A. Query Traversal Order
 During the provenance query stage, the framework
prototype issues queries simultaneously to all possible
directions, the recursive queries use breadth first order to
traverse all the vertex of current layer in the provenance
tree. As a result, BFS would visit all the vertex
throughout the whole provenance tree, each level of the
tree is visited in parallel at different nodes.
 In this section, We explore another querying traversal
order. Instead of starting queries for each derivation
simultaneously, in depth first order(DFS), vertices are

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1439

© 2013 ACADEMY PUBLISHER

visited along the tuple's derivation direction until it
reached the base tuple vertex.The processing of the next
derivation is started only if the results of the previous
direction have been received. DFS will terminates such
queries as soon as certain conditions are met (e.g.,the
given length of derivation is obtained or the derivation
number of certain tuple is recieved).DFS is used in
queries which the users want to konw whether a tuple
has more than N derivations or the length of certain
derivatin of a tuple. However, the new approach may
incur longer querying latencies than the prototype since
the former order could stall before a subresult of a
derivation is obtained,as is shown in Fig. 4.
idb1 pResultTmp(@X,QID,Ret,VID,f_empty()):-

 eProvQuery(@X,QID,VID,Ret),
 prov(@X,VID,RID,RLoc),RID!=NULL.

idb2a pQList(@X,QID,AGGLIST<RID,RLoc>) :-

 eProvQuery(@X,QID,UID,Ret),
 prov(@X,UID,RID,RLoc), RID!=NULL.
idb2b eIterate(@X,QID,N) :-

 pResultTmp(@X,QID,Ret,UID,Buf),
 numChild(@X,UID,C),N=f_size(Buf)+1,
 N<=C,f_pIDB(Buf,X)<=Threshold.
idb2c eRuleQuery(@RLoc,RQID,RID,X) :-
 eIterate(@X,QID,N),

 pQList(@X,QID,LRID,LRLoc),
 RID=f_item(LRID), RLoc=f_item(LRLoc).

The Request node initialize a VID query request
eProvQuery(@X,QID,VID,Ret),where QID is the query
ID uniquely differ from other queries. If the VID being
queried is a base tuple, the module execute rule edb1 to
end this query, otherwise, rule idb1 initialize provenance
buffer at the given address provided by tuple
eProvQuery.Rule idb2 send event tuple eRuleQuery to

Figure 5 .Average communication cost(MB) Figure 6 .Average packet size(Byte)

for provenance maintenance for provenance maintenance

node RLoc(protocol execution node), retrievaling
qualified entry according to field RID. To allow DFS
terminates queries as soon as the query requirement is
satisfied, the original idb2 rule is rewritten by three rules
(idb2a,idb2b and idb2c) . Rule idb2a maintains a pOList
which stores the rule execution vertices while rule idb2b
counts the number of the results that have been ever
received by checking the size of the buffer. If the
condition is not met (e.g., derivation number is not
reached), query proceed to visit the next derivation

B. Provenance Condensation
 In the framework prototype, three user-defined
functions are used in the query rules to return provenance
information. These user-defined functions are
implemented as (1)f_pEDB(VID),it takes as input the
base tuple's VID. The function returns the base tuple or
the relevant Prov entry.(2)f_pIDB(Derivations, Loc),it
takes as input Derivations that contain all possible ways
to derive the tuple, and the location specifier of the tuple.
The function applies a union operation across all entries
in Derivations.(3) f_pRule(ChildPred,R,RLoc),it takes as
input ChildPred, representing all input tuples that are
used in the execution of rule R at location Loc. The
function applies a join operation across all entries in
ChildPred .
 To further reduce the bandwidth cost between nodes,

the f_pEDB function can be modified to return the VID
value instead of the whole Prov entry. The returned VID
value could then be retrieved by reading a local Prov
table that maps VIDs to tuples. The second approach
tries to calculate the derivation number of a given tuple.
For base tuple, f_pEDB returns a integer, representing a
edb tuple. For intermediate tuple, f_pIDB returns the
sum of the sub-results; f_pRULE returns the product of
the sub-results. Such functions are used in scenarios
which users want to obtain the derivation number of a
given tuple.

V. EVALUATION
Our experiments are conducted on simulated

networks. We use the NS-3 network simulator developed
by the University of California Berkeley to do the
simulation experiments. In exploration and validation of
section 4, we use the 3.5.1 version of NS-3 to build up
network topological structure and Rapidnet complier to
compile NDlog programs under Ubuntu10.14.

A. Prototype Analysis
 We compare two implementations of the MinCost
routing protocol: MinCost is a base implementation in
Rapidnet without provenance and MinCost-Prov is an
implementation of the declarative provenance prototype.

1440 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

Before each execution, each node is initialized with a
link tuple for each of its neighbors, and the experiment
terminates until no more tuples can be derived.
 We conduct the experiment in multiple node size,
arranging from 5 to 40.Fig. 5 plots the average

communication overhead per-node and Fig. 6 plots the
average packet size during provenance maintenance
stage. MinCost-Prov incurs more communication
overhead and larger packet size than MinCost, that is

 Figure 7. Average communication cost(KB) for Figure 8 .Average Completion time(seconds) for
 different query traversal order in a 30-node network different query traversal order in various node size

 Figure 9. Average communication cost(KB) for different Figure 10.Average communication cost(MB) for different
 querying granularity in a 30-node network querying granularity in various node size

because the MinCost-Prov attach additional provenance
in each tuple. Each tuple have to carries its derivation
history when exchange between nodes.

B. Modified Framework Evaluation
The traversal experiment is conducted in different
network size (number of nodes).To study the trade-offs
between different query traversal orders,we compare the
average communication cost of these two methods to
verify our analysis in section 4.1.
 Two different provenance traversal order are being
tested in various node size. Breath first traversal order's
query completion time is mainly determined by traversal
depth in the provenance graph. Depth first traversal order
visit alternative derivation directions according to the
given target function. Fig. 7 plots the average
communication cost using depth first traversal order in a
30-node size and Fig. 8 shows the average convergence
time ranging from 5 nodes to 40 nodes. The experiment
result indicates that in conditional queries, the depth first
order has the approximately equivalent communication
cost compared to breath first order but converges quicker

than breath first order traversal.
 We conduct the provenance condensation of
node-level granularity on Rapidnet platform, modified
functions are added in the rapidnet source file.
 Fig. 9 shows the average communication cost of
provenance query of modified approach in a 30-node
network during 6 seconds. Fig. 10 plots the average
communication cost in various node size. The simulation
result indicate that due to the prov entry condensation,
the provenance condensation approach further reduce the
average communication cost compared to prototype
implementation.

VI. CONCLUSION

 This paper presents a generic efficient provenance
framework used in distributed environment, it adopts
distributed provenance and uses reference based ways to
exchange information between nodes, resulting in
significant reductions in bandwidth costs compared to
traditional approaches. Administrators can explain any
network state changes using this provenance framework,
it is used for provenance and forensics against illegal

JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013 1441

© 2013 ACADEMY PUBLISHER

behaviors in network. Our prototype use graph
representation to express provenance information and
two relational tables to store provenance data. Five
maintenance rules in maintenance module generate and
update the provenance data, eight query rules in query
module accept provenance query request from users.
 In the exploration and validation process, we use the
3.5.1 version of NS-3 to build up network topological
structure and Rapidnet complier to compile NDlog
programs under Ubuntu10.14.The prototype analysis
indicates that declarative provenance system effectively
reduce the communication overhead while ensuring
efficient data provenance compared to other approaches.
The query customization evaluation shows that depth
first order traversal is more efficient in queries which the
users want to know whether a tuple has more than N
derivations or the length of certain derivation of a tuple.
And provenance condensation incurs lower
communication cost while reducing query completion
time. In future work, we will explore building efficient
provenance framework in adversarial environment.
Consider the integration of the provenance framework
with existing fault detection method[13] to ensure the
confidentiality and authenticity of provenance
information.

ACKNOWLEDGMENTS

 This work is supported by National Key Technology
R&D Program of the Ministry of Science and
Technology（2012BAB15B01）

REFERENCE

[1] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan.
Why and where: A characterization of data provenance.In
Proceedings of the International Conference on Database
Theory (ICDT), 2001.

[2] Todd J. Green, Grigoris Karvounarakis, Nicholas E.
Taylor, Olivier Biton,Zachary G. Ives, and Val Tannen.
ORCHESTRA: Facilitating collaborative data sharing. In
Proceedings of ACM SIGMOD International Conference
on Management of Data (SIGMOD), 2007.

[3] Steven Callahan, Juliana Freire, Emanuele Santos, Carlos
Scheidegger, Clau-dio Silva, and Huy Vo. VisTrails:
Visualization meets data management. In Proceedings of
ACM SIGMOD International Conference on Management
of Data (SIGMOD), 2006.

[4] Sarah Cohen-Boulakia, Olivier Biton, Shirley Cohen, and
Susan Davidson.Addressing the provenance challenge
using zoom.Concurrency and Computation : Practice and
Experience, 20:497–506, 2008.

[5] Robert Ikeda, Hyunjung Park, and Jennifer Widom.
Provenance for generalized map and reduce workflows.In
Proceedings of Biennial Conference on Innovative Data
System Research (CIDR), 2011.

[6] Ragib Hasan, Radu Sion, and Marianne Winslett.
Preventing history forgery with secure provenance.ACM
Transactions on Storage (TOS), 5(4):1–43, 2009.

[7] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J.
M.Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe,
and I. Stoica. Declarative Networking. In CACM, 2009.

[8] B. T. Loo, T. Condie, J. M. Hellerstein, I. Stoica and R.
Ramakrishnan. Declarative Routing: Extensible Routing
with Declarative Queries. In SIGCOMM, 2005.

[9] RapidNet.http://netdb.cis.upenn.edu/rapidnet/.
[10] Network Simulator 3.http://www.nsnam.org/.
[11] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y.

Mao.Efficient querying and maintenance of network
provenance at internet-scale. In SIGMOD, 2010.

[12] Hua Zheng,Qing hua Zhu,Kewen Wu.Provenance
Management for Data Quality Assessment.In Journal of
Software, Vol 7, No 8 (2012), 1905-1910, Aug 2012

[13] Wei Li, Dawu Gu, Xiaoling Xia, Ya Liu, Zhiqiang
Liu.Fault Detection on the Software Implementation of
CLEFIA Lightweight Cipher.In Journal of Networks, Vol
7, No 8 (2012), 1288-1294, Aug 2012

Gao Xiang was born in ShangHai,
China, in April 10, 1974. He received
his Master and PhD degrees of
Computer network from school of
computer Science, Northwestern
Polytechnical University, in 2000 and
2004, respectively. He had been
working for more than 8 years and
currently is a associate professor in the

school of computer Science at Northwestern Polytechnical
University and he had published more than 20 academics paper
in journals and conference proceedings. His research interests
are network security and highly trusted network.

Wang Xiao received his B.Sc. in
Information and Computer Science from
Fuzhou University in 2011.Now he is
working for his master degree of
Computer Science in Northwestern
Polytechnical University. His research
interests mainly include source track
method,network traffic analysis,
network provenance and information
retrieval.

Wang Min received her master degree
of signal processing in school of
electronics and information and PhD
degree of computer application in
school of computer science at
Northwestern Polytechnical University
in 2000 and 2010 respectively. Her
research interests are signal processing
and network countermeasures.

Jin Yinghan received his Bachelor degree in School of
Automation at Northwestern Polytechnical University in 2010.
His research interest is system simulation.

1442 JOURNAL OF SOFTWARE, VOL. 8, NO. 6, JUNE 2013

© 2013 ACADEMY PUBLISHER

