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Abstract—Path delay between two end-hosts not only is one 
of the key metric for evaluating the performance of a 
communication network, but also plays a significant role in 
several overlay network construction protocols, peer-to-peer 
(P2P) applications, etc. A popular example is P2P networks 
which need to build an overlay between peers in a way that 
minimizes the message exchange delay among the peers. 
Moreover, the clock error and the location error are the 
main factors to influence the measurement accuracy in the 
network path delay measurement. In this paper, we present 
a new scheme for accurate path delay measurement. In the 
scheme, Khlifi’s clock synchronization algorithm is used to 
eliminate the clock error between two end-hosts, and a 
kernel network driver (an intermediate driver based on 
Windows Network Driver Interface Specification) is utilized 
to eliminate the location error. The experimental results 
show that the new scheme can practically improve the 
measurement accuracy of network path delay, and make 
sure the measurement standard deviation to be lowered 
10μs under different packet lengths and host loads. This 
scheme doesn't need additional softwares and hardwares, so 
it has lower cost and can be applied widely. 
 
Index Terms—network path delay, active measurement, 
measurement probe, clock error, location error, network 
kernel driver 
 

4BI.  INTRODUCTION 

In IP networks, delay is the key metric for evaluating 
the network performance. One-way delay (OWD) is the 
foundation for measuring network bandwidth, delay 
variation, packet loss rate, etc. Round-trip delay (RTD), 
i.e., path round-trip time (RTT), plays a crucial role in all 
reliable network transport protocols, peer-to-peer (P2P) 
applications, and proximity-based server redirection in 
such applications as content distribution networks and 
multi-player games. The IETF IP Performance Metrics 
(IPPM) Working Group has developed a set of standard 
metrics that can be applied to the quality, performance, 
and reliability of network data delivery services. OWD 

and RTD metrics of packets across Internet paths were 
defined respectively in rfc2679 and rfc2681 [1, 2]. 
Unfortunately, the OWD estimation is a difficult problem 
between end-hosts. The OWD value cannot be calculated 
accurately, because the clocks between two end-hosts are 
not synchronized (in this paper, the clock difference 
between two hosts is referred the clock error). 
Furthermore, in heterogeneous and massive networks, 
such as the Internet, it is even more difficult to guarantee 
the synchronized clock.  

In order to reduce the clock error as far as possible, a 
number of researchers have done much work in the area 
of clock synchronization, such as J. H Choi [3], M. Aoki, 
E. Oki [4], D. Kim, J. Lee [5]. According to the way how 
they acquire synchronization between two clocks, the 
clock synchronization algorithms can be categorized into 
two basic types, which are end-to-end measurement 
based schemes and external source based schemes [3]. 
Typically, external source based schemes are the 
synchronization methods using centralized clock sources 
such as Network Time Protocol (NTP), Global 
Positioning System (GPS) and IEEE 1588. End-to-end 
schemes get synchronization information through active 
network measurements between two end hosts.  

In addition to the clock error, the location error on the 
end-host is another significant factor which affects the 
measurement accuracy. What is the measurement location 
error? It means that the sending or receiving timestamp 
which marked by measuring application program is not 
the true moment when a probe packet departs from or 
arrives at the Network Interface Card (NIC) of an end-
host. In other words, the location error is caused by the 
end-hosts. Therefore, the measurement results which 
contain the location error cannot represent the actual 
performance of the end-to-end path. In fact, the factors 
affecting the location error mainly include the hardware 
performance of an end host, the kernel complexity of an 
operating system, system load, interrupt response, kernel 
spin lock, and process/thread scheduling. So the location 
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error can reach dozens to hundreds of milliseconds. 
Especially, the big traffic flows lead to the end-host 
kernel appears the extreme case of interrupt-live-lock 
(ILL), which would be up to hundreds of milliseconds 
and even infinite [6, 7]. Therefore, an accurate path delay 
measurement system should reduce the clock error and 
location error as far as possible.  

In this paper, a new delay measurement framework on 
Windows platform is presented. In our scheme, Khlifi’s 
algorithm is adopted for clock synchronization between 
two end-hosts, and a kernel network driver is exploited 
and used to eliminate the position error. In addition, the 
User Datagram Protocol (UDP) is utilized to carry out the 
network path delay measurements. Our work makes 
several contributions as follows: 

• An accurate timestamp collection driver (named 
ATC-Driver in this paper) based on Windows 
Network Driver Interface Specification (NDIS) is 
successfully exploited. By installing this driver on 
end-host, the collection position of probe time-
stamp can be moved from the user application 
program to the data link layer of TCP/IP stack. 
The measurement location error can be basically 
eliminated based on this new method. To the 
author's knowledge, this work describes the first 
timestamp marked technology specifically tailored 
for the end-to-end latency measurement. 

• We present a novel solution which substantially 
simplifies the development of accurate and low-
cost path delay measuring application based on 
ATC-Driver. The experimental results show that it 
can be adapted to parallel and concurrent delay 
measurement tasks. 

• The scheme uses the active network measurement 
technology, and is concurrently suitable for 
forward one-way delay (FOWD), reverse one-way 
delay (ROWD) and RTD measurements between 
two end-hosts. 

The remainder of this paper is organized as follows. In 
Section II, some related work in this field of network 
delay measurement is briefly introduced. In Section III, 
the solution of accurate and low-cost delay measurement 
is presented. Experimental results and discussion are 
given in Section IV. The final section ends the paper with 
some concluding remarks. 

5BII.  RELATED WORK 

During the past few years, many researchers have 
devoted their efforts on the issue of network delay 
measurement and therefore many valuable contributions 
are presented in the literatures. In 1983, Mike Muuss 
exploited the famous utility ping to diagnose the network 
connectivity from the path round-trip delay [8]. The ping 
utilizes the Echo request/reply mechanism defined in the 
Internet Control Message Protocol (ICMP) to carry out 
the path delay and connectivity measurement [9]. In [10], 
the authors proposed the method based on multicast 
protocol to estimate the network delay. In addition, other 
ping-like tools emerge, such as TCP-ping which employs 
the SYN/ACK mechanism in hand-shaking procedure of 

Transmission Control Protocol (TCP) [11, 12]. Above 
these measuring methods are typical active measurement 
technologies, which inject extra traffic into measured 
networks. Measuring delay passively doesn't generate 
additional traffic into measured network, but need to keep 
track the departure and arrival times for all probe packets 
at the measurement endpoints, and need to communicate 
with each other to correlate the timestamps for network 
delay calculation [13]. For this reason, passive measuring 
method for OWD is rarely deployed [14]. 

In order to measure path OWD, the clocks of two end-
hosts must keep synchronized. A lot of researchers have 
focused on the clock synchronization algorithms with 
end-to-end measurement based schemes. Most of 
synchronization algorithms have focused on the detection 
and estimation of clock skew existing in the 
unidirectional path. Moon et al. focused on filtering out 
the effects of clock skew only with the unidirectional 
delay measurement to determine the variable portion of 
the delay [17]. Khlifi et al. proposed two offline clock 
skew estimation and removal algorithms [18]. In [19], L. 
Zhang et al. used their convex hull based algorithm to 
remove the skew from online delay. Above algorithms 
can be classified into two sub-groups according to their 
real-time applicability, i.e., offline method and online 
synchronization method. 

Although there were many algorithms and tools for 
delay estimation, all or almost all of them focused on the 
design process of clock synchronization algorithms, i.e., 
many of them attempted to eliminate the clock error. To 
the best of our knowledge, few researchers have focused 
on the issue of eliminating the location error which is 
another key factor affecting the measurement accuracy. 
In [20], the authors presented a high performance data 
acquisition and generation (DAG) card which can capture 
network traffic with high accurate timestamps. But this 
card is too expensive and only suitable for the passive 
measurement mode. Berkeley Packet Filter (BPF) can 
capture the packet at the data link layer, and a timestamp 
can be returned to the application by libpcap API [21]. 
Similarly, this method is also only suitable for the passive 
measurement mode.  

In this paper, our solutions not only pay attention to 
eliminate the clock error, but also in particular concerned 
about the elimination of the location error based on kernel 
driver technology. 

6BIII.  DELAY MEASUREMENT SOLUTIONS  

0BA.  Scheme Overview 
Our goal is to exploit an accurate and low-cost delay 

measurement program, and to facilitate FOWD, ROWD, 
and RTD (i.e., RTT) measurements. The novel scheme of 
the network path delay measurement is shown in Figure 1. 
The solutions are presented as follows: 

In order to measure FOWD and ROWD, the clocks of 
two end-hosts must keep synchronized each other. If the 
two clocks are perfectly synchronized, the OWD result 
can be calculated by subtracting the send timestamp from 
the receive timestamp and this value will be exactly the 
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true delay between the two end-hosts. Unfortunately, two 
clocks are rarely perfectly synchronized in the real 
systems. In this paper, an off-the-shelf, accurate and low-
complexity algorithm is employed to eliminate the clock 
error from online delay measurements (this algorithm 
mainly removes the clock skew between two end-hosts): 
the combined algorithm [18], which is a mixed approach 
of the sliding window mechanism (SWM) and the convex 
hull algorithm (CHA). The SWM can quickly respond to 
skew effect, but it is less accurate than the CHA when 
long intervals are used. The combined algorithm also uses 
an exponential smoothing approach to improve the 
convex hull estimation of the current skew. The estimate 
of the skew at the end of the interval i , i.e., ˆiα  is defined 
as follows: 

                       1ˆ ˆ (1 )i i iα ω α ω α−= × + − ×                          (1) 
where, 1ˆiα − denotes the estimate of the skew at the end of 
the interval 1i − , iα  denotes the output of the CHA for the 
interval i , and ω  denotes the weighting factor ( 0 1ω< < ). 
This approach is of complexity (1)O . 

 
Figure 1.  Scheme Overview 

 Currently, most network performance measurement 
tools, such as ping, Iperl and Netperf which were 
developed with user-level C/C++ code written based on 
socket libraries and the timestamps are marked in user 
applications. Because of the process/thread context swap, 
the end host load, the interrupt response and many other 
factors, the timestamps suffer from an uncertain deviation 
from the expected wire departure/arrival times. Thus, the 
measurement results will contain the location error which 
reaches maybe from dozens to hundreds of milliseconds. 
In Figure 1, when the measurement probe application, Ffor 
instance, the sender, sends a probe packet, the timestamp 
(denoted by _send rawt ), which marked by the sender, is not 
the true moment (denoted by sendt ), which marked by the 

ATC-Driver. So the sending location error, denoted 
by sendtΔ , can be described as follows: 

_send send send rawt t tΔ = −  
where _send send rawt t> . Similarly, the receiving location 
error, denoted by recvtΔ , is calculated as follows: 

_recv recv raw recvt t tΔ = −  
where _recv raw recvt t> . So the location error of a one-way 
path is presented as: 

                           loc send recverr t t= Δ + Δ                         (2) 
Therefore, the end-to-end OWD (denoted by rawowd ) 

which measured by the traditional method (i.e., The 
timestamps are marked in user applications), can be 
described as follows:  

             
1 1

n n

raw i i const lock loc
i i

owd q t p err err
= =

= + + + +∑ ∑       (3) 

where, iq and it  ( 1,2,...,i n=  ), denote the probe packet 
queuing delay and the transmission delay of the thi router 
respectively, and it  can be calculated by the formula of 

( )_ / i
linkPacket size Capacity . A constant propagation delay 

is denoted by constp . The clock error and the location error 
of the one-way path are respectively denoted by clockerr  
and locerr . Consequently, it can be seen that the rawowd  not 
only contains the clock error, but also may contain a large 
location error.  

As the operating system kernel can provide high 
accuracy timestamp than user level, the mark position of 
probe timestamp can be moved from the user space to the 
kernel driver. To avoid the influence of the location error 
as much as possible, an accurate timestamp collection 
driver, which referred to as ATC-Driver is developed 
based on Windows Network Driver Interface Specifi-
cation (NDIS). By installing this driver on end-host, the 
collection position of probe timestamp will be moved 
from the application program to data link layer of TCP/IP 
stack. In the section IV, the experimental results show 
that this method can basically eliminate the measurement 
location error. 

As shown in Figure 1, the Sender and the Receiver, 
respectively, are the sending thread and the receiving 
thread inside the measuring probe, which is developed 
with standard C++ code written based on Winsock 
library (i.e., ws2_32.dll). In this paper, the measuring 
probe (named ATC-Measurer) utilizes the protocol of 
UDP to carry out the end-to-end delay measurements. 
The Receiver receives measurement probe packets which 
are sent by the Sender, and reads the timestamps from 
these probe packets. These timestamps are marked and 
immediately written into the probe packets by the ATC-
Driver. The advantage of this design is that the three 
types of measurement results, i.e., the FOWD, the 
ROWD and the RTT, can be obtained after one round-trip 
measuring process is accomplished. 

1BB. ATC-Driver 
To effectively reduce the measurement location error, 

the main idea is that we manipulate the position of probe 
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packet timestamps marked as close as possible to the 
host’s NIC. On Windows NT 4.0 or later system, 
fortunately, the NDIS specification provides us with the 
possibility to achieve the innovation.  

NDIS: is implemented by a Windows kernel file called 
Ndis.sys1, and is a standard application programming 
interface (API) for the NICs. It allows computers to be 
connected to IP network with different communication 
protocols such as TCP/IP, IPX, AppleTalk, NetBIOS, etc. 
It supports three types of network drivers, i.e., the 
protocol driver, the intermediate driver, and the miniport 
driver (i.e., NIC driver). In fact, the intermediate drivers 
sit in-between the Media Access Controller (MAC) and 
Internet Protocol (IP) layers and can control all traffic 
being accepted by the NIC card. 

In our solutions, the accurate timestamp collection 
driver, i.e., ATC-Driver, is an intermediate driver, and 
implements both miniport and protocol interfaces (i.e., 
ProtocolXxx and MiniportXxx functions). The NIC driver 
and protocol driver actually communicate with the 
corresponding protocol and miniport interfaces that reside 
in the ATC-Driver. When a communication packet arrives 
at the ATC-Driver, it should be checked by the ATC-
Driver as a probe packet or not according to the port rules. 
If it is not a probe packet, it will directly be sent to the 
NIC driver or the protocol driver. On the contrary, the 
ATC-Driver will immediately generate a timestamp, and 
write the timestamp into the user data segment (UDS) of 
the probe packet. The IP probe packet structure is shown 
in Figure 2. The it ( 1, 2,3, 4)i = , respectively, is the 
measuring timestamp in one round-trip measuring 
process. When the UDS is constructed by the Sender, 
specifically, its first 128 bits are all set to 1 for 
simplifying the checksum recalculation. 

 
Figure 2.  IP probe packet structure (46~1500 bytes) 

NDIS defines a packet as a packet descriptor with a 
chain of one or more buffers containing the network 
packet data. The NDIS library describes the packet 
descriptor by defining the NDIS_PACKET structure. 
NDIS packet is allocated by a protocol driver, filled with 
data (i.e., The IP probe packet), and passed to the next 
lower NDIS driver so that the data can be sent on the 
network. When an NDIS packet (which contains an IP 
probe packet) is passed to the ATC-Driver from the 
protocol driver, or the lowest level NIC drivers which 
allocate an NDIS packet to hold received data and pass 
the packet up to the interested ATC-Driver, the ATC-
Driver will immediately generate a timestamp. Therefore, 
the location error of delay measurement can be removed 
effectively. The procedure of removing the location error 
is described as follows: 

Location error removal procedure 
Inputs: oPacket: NDIS packet, H_type: end-host 
type, bRecOrSend: traffic direction 
Begin 

1. Initialize the environment and get the context. 
2. Allocate a new packet descriptor, named 

nPacket, from the NDIS packets pool. 
3. nPacket ⇐  oPacket. 
4. pIPHeader ⇐ Query_IP_Packet ( nPacket ). 
5. if pIPHeader → protocol equals to UDP then 

   pUDPHeader ⇐  (pIPHeader+1). 
6. else 

  goto step 10. 
7. if pUDPHeader→ port equals to rule_port then

         ⑴ Generate the timestamp t ; 
         ⑵ if H_type is the source host then 
                  if bRecOrSend is dir_send then 
           Write t  into the place t1 of the UDS;
                  else 

Write t  into the place t4 of the UDS; 
         ⑶ else 
      if bRecOrSend is dir_recv then 
           Write t  into the place t2 of the UDS;
                  else 

                         Write t  into the place t3 of the UDS;
         ⑷ Recalculate and update the checksum for 

the probe packet. 
8. if bRecOrSend is dir_send then 

Sends nPacket to the NIC drive; 
9. else 
         Indicates nPacket to the protocol driver. 
10. release nPacket. 

End
 
Because the ATC-Drive modifies the UDS’s contents 

with the timestamp information (see Figure 2), the 
checksum of the UDP datagram should be recalculated 
and updated. Here, we pay close attention to optimize the 
checksum algorithm to avoid the high overhead of 
recalculating a new checksum. Since UDP use a one's 
complement sum, it is sufficient to calculate the 
arithmetic difference between the before-modification 
and after-modification and add this to the checksum. 
When the time stamp information, such as it ( 1, 2,3,4)i = , is 
inserted into the UDS, the checksum adjustment 
algorithm is described as follows:  

 
Checksum adjustment algorithm 
Inputs: oChechsum: old checksum, it : tht  time-stamp
Output: nChechsum: new checksum 
Begin 

1. oChechsum ⇐ ~ oChechsum.    /* Bitwise 
complement operation*/ 

2. it ⇐  ~ it . 
3. oChechsum ⇐  oChechsum⊕ [0]it . /* Binary 

addition operation; [0]it is the low 16-bits part 
of it  */ 

1Ndis.sys is referred to as the NDIS wrapper, and defines the way
protocols communicate with network adapters in Windows kernel. 
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4. oChechsum ⇐  oChechsum⊕ [1]it .  /* [1]it is the 
high 16-bits part of it  */ 

5. nChechsum ⇐  ~ oChechsum. 
End 
 

2BC. Measurement Application 
The measurement application, i.e., the ATC-Measurer 

is associated with the ATC-Driver, and implements the 
following steps: ⑴ executive the clock synchronization 
process between the source end-host and destination end-
host, ⑵ assign filtering rules to the ATC-Driver, ⑶ inject 
some probe packets into measured networks, ⑷ read the 
timestamp information from the probe-packets, and 
calculate the network path delay. After one round-trip 
delay measurement is accomplished, three types of delay 
values can be obtained, and described as follows: 

2 1

4 3

2 1 4 3 4 1 2 3

(4)
( ) ( ) ( ) ( )

FOWD t t
ROWD t t
RTT t t t t t t t t

= −⎧
⎪ = −⎨
⎪ = − + − = − + −⎩

 

The round trip measurement processes of the ATC-
Measurer are mainly described as follows:  

• Initially ， the ATC-Measurer executives the 
clock synchronization process between the source 
host (denoted as sourH ) and destination host 
(denoted as destH ). 

• The Sender (is the sending thread of the ATC-
Measurer; see Figure 1), sends a UDP probe 
packet (named _1Packet ) to the destH  from the 

sourH , then the ATC-Driver can capture the 
packet, generate  a timestamp 1t  at once, and 
insert it into the UDS of this packet. 

• When _1Packet  arriving at the destH , the ATC-
Driver captures it, generates the timestamp 2t  
rapidly, and inserts 2t  into the UDS of this packet. 

• The Receiver fetches the _1Packet , and sends it to 
the sourH  right away. Similarly, when this packet 
is transmitted back to the sourH , the time stamps 
(i.e., 3t  and 4t ) will also be inserted into the UDS. 

• On the source-host side, the ATC-Measurer can 
get four time-stamps ( 1t , 2t , 3t and 4t ), so the 
FOWD, ROWD, and RTT values can 
respectively be calculated by the Equation (4). 

7BIV.  EXPERIMENTAL RESULTS AND ANALYSIS 

3BA. Experiments Design 
In order to evaluate the performance and accuracy of 

the ATC-Measurer, we designed a comparison program 
(named U-Measurer), which is not associated with the 
ATC-Driver but makes the timestamp information in its 
own process space. The experiments are completed with 
two general PCs which are linked by a shielded CAT-5 
twisted-pair network cable. The length of the cable is 
only 1 m . As the transmission delay of electrical signal 

equal to 1 ns  on this cable, so the delay value can be 
ignored. These two PCs have the same configuration with 
Pentium (R) Dual-Core E6700 3.2G CPU, 2GB memory, 
Intel PILA8460M-82551 1000Mbps Ethernet NIC, and 
Windows XP sp3 operating system. We express them as 
PCsour and PCdest in this paper. The PCsour denotes source 
host, and the PCdest denotes destination host. The probe 
packet sizes (psize) are typically 64 bytes, 512 bytes, and 
1500 bytes respectively.  

In addition, to avoid the interference of background 
traffic, other communications processes which were 
running at PCsour and PCdest were closed. The ATC-Driver, 
ATC-Measurer and U-Measurer were installed on PCsour 
and PCdest respectively. Those measurement results of 
path delay are calculated by Equation (4). Under these 
conditions, the FOWD, ROWD, and RTT meet the 
following criteria: FOWD=ROWD=RTT/2. For this 
reason, the value of RTT is used to evaluate the 
measurement accuracy and stability for the ATC-
Measurer. In particular, our new solution can nearly 
eliminate the location error. In this paper, the evaluation 
parameters mainly include the maximum (Max), 
minimum (Min), mean (Mea) and standard deviation2 
(Std) based on the RTT measurement samples. Multiple 
sets of comparative experiments between the ATC-
Measurer and U-Measurer were executed carefully. All 
experiments had been done from April.7, 2012 to 
April.15. 

B. Light-load Measurement Evaluation 
As a first test, the delay measurement accuracy was 

evaluated for the ATC-Measurer application compared 
the U-Measurer under the light-load conditions on PCsour 
and PCdest. The detailed compounding of parameters are 
as follows: Case 1 set tout to 1 s and psize to 64 bytes; Case 
2 set tout to 1 s and psize to 512 bytes; Case 3 set tout to 1.5 
s and psize to 1500 bytes. The experiment results on ATC-
Measurer and U-Measurer were persistently sampled 
1000 numbers under different parameters cases, so six 
experimental result sets could be obtained. Table 1 lists 
the path RTT measurement results under three kinds of 
cases. Figure 3 displays that the time series of path round-
trip delay under case 3. 

TABLE I.   

THE PATH RTT MEASUREMENT RESULTS UNDER THREE KINDS OF CASES 

Case
U-Measurer ATC-Measurer 

Min Mea Max Std Min Mea Max Std

1 169 203.7 237 28.1 161 165.3 201 7.4

2 241 280.2 319 23.9 233 241.1 247 5.2

3 322 348.9 395 22.7 252 256.8 265 4.8

As can be seen from Table 1, all the statistics of the 
path RTT measured by the ATC-Measurer are lower than 
those measured by the U-Measurer.  For example, the 
mean RTT measured by the ATC-Measurer is 18.85% 

2 The formula of standard deviation is 2

1

( ) /
n

i
i

x x n
=

−∑ , 
1

1 n

i
i

x x
n =

= ∑ . 
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lower than that measured by the U-Measurer under case 1, 
13.95% under case 2, and 26.40% under case 3. The RTT 
difference between maximum and minimum is 41.2% 
under case 1, 82.1% under case 2, and 82.2% under case 
3. In addition, the results measured by the ATC-Measurer 
are more stable than that measured by the U-Measurer 
under all kinds of cases. For example, the difference of 
standard deviation is 73.7% when measured under case 1, 
78.2% when measured under case 2, and 78.6% when 
measured under case 3. Furthermore, from Figure 3, we 
also noticed that the results measured under case 3 have 
particular difference. The testing reveals that the ATC-
Measurer application based on the ATC-Driver can 
effectively reduce the location error, while it can improve 
and guarantee the accuracy of path delay measurement. 

0 2000 4000 6000 8000 10000
250

300

350

400

450

packet seqence

RT
T(

m
s)

AT C-Measurer
U-Measurer

 
Figure 3.  The time series of path round-trip delay under case 3 

C. High-load Measurement Evaluation 
In large-scale parallel measurement applications, one 

host usually provides network measurement services for 
the dozens or hundreds of target hosts. When the 
measurement host is running with a high load, the 
frequent scheduling of processes and threads may have a 
large effect on the user space application of network 
delay measurement. In order to evaluate the accuracy and 
stability of the ATC-Measurer for the parallel and 
concurrent delay measurements, we measured the path 
RTT using the ATC-Measurer compared the U-Measurer 
between the PCsour and PCdest in the high-load conditions 
(the CPUs utilization all are above 90%, and the probe 
packet size is equal to 1500 bytes, expressed as case 4). 
Table 2 lists the path RTT measurement results, and 
Figure 4 displays that the time series of path round-trip 
delay. 

As can be seen from Table 2, all the statistics of the 
path RTT measured by the ATC-Measurer are also lower 
than those measured by the U-Measurer. The standard 
deviation of the RTT measured by the ATC-Measurer is 
lower than that measured by the U-Measurer. The 
standard deviation of the U-Measurer can achieve around 
130μs, and the standard deviation of the ATC-Measurer 
can be less than 10μs. In addition, the mean difference 
can reach around 500μs. As can be seen from Fig. 6, the 
path RTTs measured using the ATC-Measurer is almost 
stable, but the RTT jitter using the U-Measurer is large. 
So the delay measurement using the traditional methods 

and tools will contain the location error. Hence, the 
results of network path delay measurement using the 
ATC-Measurer will be more accurate. Especially, the 
ATC-Measurer can be suitable for the large-scale path 
delay measurement. 

TABLE II.   

THE PATH RTT MEASUREMENT RESULTS UNDER CASE 4 

Application Min Mean Max SD 

ATC-Measurer 254 258.3 267 4.9 

U-Measurer 427 817.6 1026 128.7 
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Figure 4.  The time series of path round-trip delay under case 4 

8BV. CONCLUSION 

Understanding the network path delay is of crucial 
importance: first, it affects the quality of service of 
realtime applications and enables people to design an 
efficient congestion control mechanism for both realtime 
and non-realtime applications. In this paper, an accurate 
and low-cost delay measurement program is presented to 
facilitate FOWD, ROWD and RTD measurements. In our 
scheme, the combined algorithm is employed to eliminate 
the clock error from online delay measurements, and an 
NDIS intermediate driver is exploited to mark and collect 
the measurement timestamps. Especially, based on the 
kernel NDIS driver, the collection position of probe 
timestamp can be moved from the application program to 
data link layer of TCP/IP stack. The experimental results 
show that this method can nearly eliminate the location 
error. Meanwhile, the measurement accuracy can be 
practically guaranteed. In addition, the measurement 
scheme has low-cost in the investment, so it can be 
applied widely. In this paper, Windows XP is used as the 
target operating system. However, the exploited concepts 
are general and can also be adapted to other operating 
systems. 
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