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Abstract—High dimensional sequences, such as biological 
sequences, are characterized by a small number of 
transactions, and a large number of items in each 
transaction. Mining sequential patterns in the sequences 
need to consider different forms of patterns, such as 
contiguous patterns, local patterns which appear more than 
one time in a special sequence, and so on. Mining closed 
patterns might lead to not only a more compact complete 
result set, but also better efficiency. In this paper, a novel 
algorithm based on BIDE (BI-Directional Extension) and 
multi-support is presented for high dimensional sequences 
specifically. It mainly mines three types of closed sequential 
patterns which are sequential patterns, local sequential 
patterns and total sequential patterns. Thorough 
experimental performances on biological sequences have 
demonstrated that the proposed algorithm could reduce 
memory consumption and generate more compact patterns. 
Index Terms—sequential pattern mining; high dimensional 
sequence; closed pattern; biological sequence; data mining 

I.  INTRODUCTION 

Sequential pattern mining is an important way to 
discover patterns that occur in many sequences in a given 
database. Previous methods mining complete set of 
patterns, which is huge for effective utilization. We need a 
compact but high quality set of patterns, such as closed 
patterns and maximal patterns [1, 2]. For a fixed minimum 
support threshold, the set of closed frequent patterns 
contains the complete information regarding to its 
corresponding frequent patterns; whereas the set of max-
patterns, though more compact, usually does not contain 
the complete support information regarding to its 
corresponding frequent patterns.  

In recent years, some methods focus on multi-support, 
such as BioPM [3], WildSpan [4]. But these algorithms 
mine the complete patterns. In this paper, a novel 
algorithm based on BIDE(BI-Directional Extension) [5] 
and multi-support is provided specifically for high 
dimensional sequence. It uses to mine three kinds of 
interesting closed patterns. 

The rest of this article is organized as follows. Section 
2 reviews BIDE algorithm. In section 3, some concepts 
are defined, and an improvement of BIDE algorithm: M-
bBIDE is proposed. Section 4 shows the experimental 
results of biological sequential pattern mining and some 
interesting patterns are provided. Finally, the conclusion is 
provided in section 5. 

II. THE BIDE ALGORITHM 

The BIDE [5] is a competitive algorithm for mining 
closed sequential patterns. It used a sequence closure 
checking scheme to avoid the maintenance of closed 
candidate sequence. The proposed back scan pruning 
method could prune the search space more aggressively 
than the methods used in CloSpan [6].  

The BIDE algorithm is used to mining discontinuous 
closed patterns. It is not suitable to mining biological 
datasets. In this paper, we need contiguous patterns. So, 
the following patterns in this paper are contiguous patterns. 

Definition 1 (Closed Sequential Pattern) [1] A pattern 
X is a closed sequential pattern in a data set S if X is 
frequent in S and there exists no super pattern Y such that 
Y has the same support as X in S. 

TABLE I.   

BIOLOGICAL SEQUENCES 

sequence id sequence 

10 (g)(a)(g)(g)(a)(g)(a) 

20 (a)(g)(a)(t)(a)(t)(g)(c)(t)(t)(a)(g)(a)(g) 

30 (a)(c)(t)(g)(a)(g)(g)(t)(a)(g)(a) 

40 (a)(t)(t)(g)(a)(g)(c)(t)(t) 

 
For example, Table Ⅰ shows the input high 

dimensional  biological sequence database S. Suppose the 
minimum support is 50%, denoted as min_sup=50% (0.5), 
so the subsequences occurrence frequency in the set of 
sequences is no less than 2 (4*0.5). The set of items in the 
database S is {g, t, c, a}, and the sequence_id are {10, 20, 
30, 40}. There are 7 items in sequence 10, 14 items in 
sequence 20, 11 items in sequence 30 and 9 items in 
sequence 40. Since these 4 sequences contain 
subsequence x=(g)(a)(g), x is a length-3 pattern, and its 
support is 4, denoted as support(x)=4(100%). 

TABLE II.   

PROJECTED DATABASE AND SEQUENTIAL PATTERNS 

prefix projected database sequential 
pattern 

g 10: (a)(g)(g)(a)(g)(a) (g),  
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10: (g)(a)(g)(a) 
10: (a)(g)(a) 
10: (a) 
20: (a)(t)(a)(t)(g)(c)(t)(t)(a)(g)(a)(g) 
20: (c)(t)(t)(a)(g)(a)(g) 
20: (a)(g) 
30: (a)(g)(g)(t)(a)(g)(a) 
30: (g)(t)(a)(g)(a) 
30: (t)(a)(g)(a) 
30: (a) 
40: (a)(g)(c)(t)(t) 
40: (c)(t)(t) 

(g)(c),  
(g)(a), 
(g)(g), 
(g)(c)(t),  
(g)(a)(g), 
(g)(c)(t)(t), 
(g)(a)(g)(g)

t 20: (a)(t)(g)(c)(t)(t)(a)(g)(a)(g) 
20: (g)(c)(t)(t)(a)(g)(a)(g) 
20: (t)(a)(g)(a)(g) 
20: (a)(g)(a)(g) 
30: (g)(a)(g)(g)(t)(a)(g)(a) 
30: (a)(g)(a) 
40: (t)(g)(a)(g)(c)(t)(t) 
40: (t) 

(t),  
(t)(a),  
(t)(t),  
(t)(g), 
(t)(a)(g),  
(t)(g)(a), 
(t)(a)(g)(a),
(t)(g)(a)(g)

c 20: (t)(t)(a)(g)(a)(g) 
30: (t)(g)(a)(g)(g)(t)(a)(g)(a) 
40: (t)(t) 

(c),
(c)(t),  
(c)(t)(t) 

a 10: (g)(g)(a)(g)(a) 
10: (g)(a) 
20: (g)(a)(t)(a)(t)(g)(c)(t)(t)(a)(g)(a)(g) 
20: (t)(a)(t)(g)(c)(t)(t)(a)(g)(a)(g) 
20: (t)(g)(c)(t)(t)(a)(g)(a)(g) 
20: (g)(a)(g) 
20: (g) 
30: (c)(t)(g)(a)(g)(g)(t)(a)(g)(a) 
30: (g)(g)(t)(a)(g)(a) 
30: (g)(a) 
40: (t)(t)(g)(a)(g)(c)(t)(t) 
40: (g)(c)(t)(t) 

(a),  
(a)(t),  
(a)(g),  
(a)(g)(a),  
(a)(g)(g) 

When min_sup is 0.5, complete sequential patterns of 
database S are shown in Table Ⅱ. The first column is 
prefix and the second column is the corresponding 
projected database of prefix. It is clear that, there are 24 
complete sequential patterns, 4 length-1 patterns, 9 length-
2 patterns, 7 length-3 patterns and 4 length-4 patterns.  

When min_sup=0.5, Table Ⅲ shows the complete 
sequential patterns, maximal sequential patterns and 
closed sequential patterns of dataset S. It is clear that 24 
complete patterns can be compressed into 5 maximal 
sequential patterns or 9 closed sequential patterns. 
Therefore, 9 closed patterns are more compressed than 24, 
and they contain the complete support information 
regarding to its corresponding frequent patterns. The 
maximal patterns are more compact than closed patterns, 
but it does not contain the complete information regarding 
to its corresponding frequent patterns. For example, the 
support of maximal pattern (g)(a)(g)(g) is 2 and support of 
(g)(a)(g) is 4. The support of these two pattern is different, 
but pattern (g)(a)(g) is compressed through mining 
maximal pattern. 

TABLE III.   
SEQUENTIAL PATTERNS AND SUPPORTS 

sequential pattern maximal pattern closed pattern

(g), (g)(c), (g)(a),  
(g)(g),(g)(c)(t),  
(g)(a)(g),(g)(c)(t)(t),  
(g)(a)(g)(g) 

(g)(c)(t)(t),  
(g)(a)(g)(g) 

(g)(a)(g), 
(g)(c)(t)(t), 
(g)(a)(g)(g) 

(t), (t)(a), (t)(t), 
(t)(g),(t)(a)(g),  
(t)(g)(a),(t)(a)(g)(a),  
(t)(g)(a)(g) 

(t)(a)(g)(a),  
(t)(g)(a)(g) 

(t)(g), 
(t)(a)(g)(a), 
 (t)(g)(a)(g) 

(c), (c)(t), (c)(t)(t),  (c)(t) 

(a), (a)(t), (a)(g),  
(a)(g)(a), (a)(g)(g) (a)(t) (a)(t), 

(a)(g)(a) 

 

III. THE NOVEL ALGORITHM 

In this chapter, we provide a novel algorithm, called 
M-bBIDE (Multi-support BIDE for biological datasets). 
M-bBIDE is an improvement of the algorithm BIDE 
devoted to mining contiguous closed sequential patterns in 
biological data set. Meanwhile, it mines some interesting 
patterns based on multi-support. At first, we propose some 
definitions. 

Definition 2 (Support) [7] The support of a 
subsequence X in a dataset S is the number of tuples in the 
dataset containing X, denoted as 
support(X)=|{<sequence_id, s >|(<sequence_id, s>∈S)∧ 
(X⊆S)}|. 

Definition 3 (Local Support) [3]  The local support of 
a subsequence X in a dataset S is the number of tuples in a 
specific sequence Y containing X, denoted as local 
_support(X, Y)=|{<location_id, Y>|(Y⊆ S)∧ (X⊆ Y)}}|. 

Definition 4 (Total Support) The total support of a 
subsequence X in a dataset S is the total number of tuples 
in S, denoted as total_support(X)=∑Ylocal_support(X, Y). 

Definition 5 (Local Sequential Pattern) [3] Local 
sequential pattern is a subsequence whose occurrence 
frequency in one specific sequence is no less than local 
minimum support (local_min_sup(sequence_id)). 

Definition 6 (Total Sequential Pattern) Total 
sequential pattern is a subsequence whose occurrence 
frequency in dataset S is no less than total minimum 
support (total_min_sup). 

There are three kinds of patterns in this paper. The 
first one is sequential pattern, which is a subsequence 
whose occurrence frequency in the set of sequences is no 
less than min_sup [7]. The second one is local sequential 
pattern, which is a subsequence whose occurrence 
frequency in one specific sequence (suppose 
sequence_id=si) is no less than local_min_sup(si). The 
third one is total sequential pattern, which is a 
subsequence whose occurrence frequency in dataset S is 
no less total_min_sup. 

TABLE IV.   

CLOSED SEQUENTIAL PATTERNS AND SUPPORTS 

closed 
pattern support total 

support 

location 
<sequence_id, 
location_id> 

(t)(g) 3 3 
<40, {2}> 
<30, {2}>   
<20, {5}> 

(c)(t) 3 3 
<40, {6}> 
<30, {1}>,  
<20, {7}> 

(g)(a)(g) 4 5 

<40, {3}> 
<30, {3}>  
<20, {11} 
<10, {0, 3}> 

(a)(g)(a) 3 4 <30, {8}> 
<20, {0, 10}>  
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<10, {4}> 

 
For example, the database S is shown in Table Ⅰ and 

supposed the min_sup is 0.75. We get 4 closed sequential 
patterns as shown in the first column of Table Ⅳ. The 
first column is closed sequential pattern, denoted as X, the 
second column is support(X), the third column is 
total_support(X) and the last column is the location of X. 
The support((a)(g)(a))=3 means that it appears in 3 
sequences: sequence_id={10, 20, 30}. While 
total_support ((a)(g)(a))=4 means it appears 4 times in 
dataset S. It appears 1 time in the location 4 of sequence 
10(denoted as <sequence_id, location_id>=<10, {4}>); 2 
times in sequence 20, <sequence_id, location_id>=<20, 
{0, 10}> and 1 time in sequence 30, <sequence_id, 
location_id>=<30, {8}>. If the total_min_sup number is 4, 
then we get 2 total sequential patterns: (g)(a)(g) and 
(a)(g)(a). 

Table Ⅴ shows the frequent subsequences which 
appear in sequence 10. There are 2 subsequences, (g)(a)(g) 
and (a)(g)(a). Pattern (g)(a)(g) appears 2 times in 
location_id={0, 3}, therefore local_support((g)(a)(g), 
10)=2. Pattern (a)(g)(a) appears 1 time in location_id={4} 
and the local_support ((a)(g)(a), 10)=1. If 
local_min_sup(10) is 2, then we get 1 local sequential 
pattern (g)(a)(g) in sequence 10. 

TABLE V.   

LOCAL CLOSED SEQUENTIAL PATTERNS IN SEUQNCE 10 

local pattern local support location 
<sequence_id, location_id>

(g)(a)(g) 2 <10, {0, 3}> 

(a)(g)(a) 1 <10, {4}> 

 
Algorithm M-bBIDE is shown in algorithm 1. The 

input parameters are sequence database and three 
minimum supports. M-bBIDE is an improvement of BIDE 
algorithm, which change it more suitable for mining 
patterns  in biological sequences and mining different 
interesting pattern based on multi-support.  
Algorithm 1 (M-bBIDE) 
Input: an input biological sequence databases S, 
minimum support thresholds  

support_thresholds 
={min_sup, local_min_sup, total_min_sup} 

Output: the three sets of frequent closed sequences 
Method 1:  
Call M-bBIDE(S) 
(1) Scan S, find length-1 frequent patterns α. 
(2) For each α do 

(2.1) Scan S again, find the location information <α, 
sequence_id, transaction_id> to PrefixLocation|α. 

(2.2) S|α=pseudo projected database(S). 
(2.3) If(!ForwardScan(α)), call  

bide(α, S|α, PrefixLocation|α, 
support_thresholds). 
Method 2:  
Call bide(α, S|α, PrefixLocation|α, support_thresholds) 
(1) Scan S|α once, find each frequent item, b. 

(2) For each b, append it to α to form a new prefix α’. 
(2.1) According to PrefixLocation|α, find the location 

information <α’, sequence_id, transaction_id> to Prefix-
Location|α’. 

(2.2) S|α’=pseudo projected database(S|α). 
(2.3) If(!ForwardScan(α’)), then call  

bide(α’, S|’α, PrefixLocation|α’, 
support_thresholds). 

(2.4) If(!ForwardScan 
(α’)&&!BackwardExtension(α’)) 

Then output α’ which satisfies the support_ 
thresholds. 

In algorithm 1, the method ForwardScan() is used to 
check whether it exists item before prefix to meet the 
same support. Return true if we should stop to explore this 
prefix. The method BackwardExtension() return true if 
there is a backward-extension [5]. 

IV. PERFORMANCE EVALUATION 

In this chapter, we provide experimental results to 
compare the performance of three algorithms: PrefixSpan, 
MM-PrefixSpan and M-bBIDE. PrefixSpan mines 
complete contiguous patterns by PrefixSpan algorithm, 
MM-PrefixSpan algorithm mines maximal contiguous 
patterns by PrefixSpan based on multi-support, and M-
bBIDE mines closed contiguous patterns based on multi-
support. In our performance study, we select 7 biological 
sequences, which meet the condition of “Homo sapiens” 
and “cancer” from NCBI. There are four kinds of cancers 
as shown in Table Ⅵ. The first 4 lines are sequence about 
colon cancer, line 5 is about stomach cancer, line 6 is 
about colorectal cancer and the last line is about ovarian 
cancer. The sequence lengths are shown in Table Ⅵ and 
the average length of these sequences is 2384.  

TABLE VI.   

BIOLOGICAL SEQUENCES 

sequence_id sequence title length of 
sequence

U14658 

Mutation in the DNA mismatch repair 
gene homologue hPMS2 is associated 
with hereditary nonpolyposis colon 
cancer 

2697 

U03911 
The human mutator gene homolog 
MSH2 and its association with hereditary 
nonpolyposis colon cancer 

3080 

U07418 Mutation of a mutL homolog in 
hereditary colon cancer 2503 

U07343 

Mutation in the DNA mismatch repair 
gene homologue hMLH1 is associated 
with hereditary non-polyposis colon 
cancer 

2484 

U27467 
A novel Bcl-2 related gene, Bfl-1, is 
overexpressed in stomach cancer and 
preferentially expressed in bone marrow 

737 

U04045 
Mutations of a mutS homolog in 
hereditary nonpolyposis colorectal 
cancer 

2947 

U34880 
A cDNA from the ovarian cancer critical 
region of deletion on chromosome 
17p13.3 

2234 

 
All experiments were conducted on a 3.0GHz AMD 

PC with 2.0GB main memory, running Microsoft 
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Windows 7. Three algorithms, PrefixSpan, MM-
PrefixSpan and M-bBIDE, were implemented by us using 
JDK 1.6 and Eclipse SDK 3.7.0. 

First, we analyze the results about multi-support 
sequential patterns. When the min_sup=100% there are 
623 complete patterns and 267 closed patterns. The 
distributions of frequent patterns are shown in figure 1. 
When the min_sup=50%, there are 3593 complete patterns 
and 2103 closed patterns, as shown in figure 2. It is clear 
that the number of closed patterns is much less than the 
number of complete patterns and. About 45% patterns are 
compressed.  

When the min_sup=100%, we get 2 length-7 closed 
patterns: (c)(t)(c)(g)(t)(a)(g) and (c)(c)(g)(t)(t)(a)(a). Table 
Ⅶ shows that the supports and total supports of them are 
all 7. It means that these two patterns appear once in each 
sequence. The locations of them are shown in the last 
column of Table Ⅶ. Value <U14658, 224> means that 
pattern (c)(t)(c)(g)(t)(a)(g) appears in location_id={224} 
of U14658. 

Supposed number of sequences meeting min_sup is 7 
and number of subsequences meeting total_min_sup is 50, 
we can get the total sequential patterns as shown in Table 
Ⅷ. There are 7 total patterns, 5 lentgh-4 patterns and 2 
length-5 patterns. It is clear that pattern (t)(a)(t)(t) appears 
76 times in 7 biological sequences. In details, it appears 
19 times in sequence U14658, 15 times in sequence 
U03911, 14 times in sequence U07418, 14 times in 
sequence U07343, 6 times in sequence U27467, 7 times in 
sequence U04045 and 1 time in U34880. Because 
(t)(a)(t)(t) appears 14 times in U07343 and U07418, the 
relationship between these two sequences may be more 
closer than with others. 

From the results of M-bBIDE, we can also get the 
local patterns in one sequence. For example, when min_ 
sup=100% and local_min_sup(U14658)=13, there are 8 
local patterns in U14658 as shown in Table Ⅸ. Such as 
pattern (t)(a)(t)(t) appears 19 times and its locations are in 
location_id={354, 401, 772, 911, 1294, 1751, 1900, 1952, 
1563, 2036, 2570, 2651, 2835, 2846, 2866, 2876, 2936, 
2946, 2978}. 

Figure 3 shows the processing time of the three 
algorithms: PrefixSpan, MM-PrefixSpan and M-bBIDE, 
at different support thresholds. The min_sup is from 0.5 to 
1. It is clear that the runtime of M-bBIDE is more than 
PrefixSpan and MM-PrefixSpan. The reason is the 
consumption of backward and forward extension checks 
on every prefix.  

The memory usage of the three algorithms at different 
support thresholds is shown in figure 4. It is clear that the 
memory usage of M-bBIDE is lower than others because 
of the pruning strategy. Figure 5 shows the number of 
sequence patterns of the three algorithms at different 
support thresholds. It is clear that mining maximal and 
closed sequential pattern compress the result of complete 
sequential patterns. The number of closed patterns is 
higher than maximal patterns. Closed pattern contains the 
complete support information regarding to its 
corresponding frequent patterns, while maximal pattern 

does not contain it. Therefore mining closed patterns meet 
the user’s requirements.  

The relation of complete frequent pattern to maximal 
frequent pattern and closed frequent pattern is shown in 
figure 6. The number of sequential pattern is larger than 
number of closed sequential pattern, and number of closed 
pattern is larger than number of maximal sequential 
pattern.  

 
Figure 1.  Numbers of frequent patterns when min_sup is 100% 

 

Figure 2.  Numbers of frequent patterns when min_sup is 50% 

 
Figure 3.  Runtime of three algorithms on biological sequences 

 
Figure 4.  Memory usage of three algorithms on biological sequences 
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Figure 5.  Number of frequent patterns on biological sequences 

frequent pattern

closed frequent pattern

maximal frequent pattern

 
Figure 6.  Relationship between sequence subsets 

 

TABLE VII.   

THE SUPPORTS AND LOCATIONS OF TWO LENGTH-7 PATTERNS 

closed pattern support total 
support 

location 
<sequence_id, 

transaction_id> 

(c)(t)(c)(g)(t)(a)(g) 7 7 

<U14658, 224> 
<U03911, 289> 
<U07418, 1208> 
<U07343, 1228> 
<U27467, 906> 
<U04045, 81>  
<U34880, 1490> 

(c)(c)(g)(t)(t)(a)(a) 7 7 

<U14658, 1171> 
<U03911, 1236> 
<U07418, 1723> 
<U07343, 1743> 
<U27467, 2309> 
<U04045, 622>  
<U34880, 789> 

 
 

TABLE VIII.   
PATTERNS WHOSE TOTAL SUPPORTS ARE MORE THAN 50 

closed pattern support total 
support 

(g)(c)(c)(t) 7 72 

(t)(a)(c)(t) 7 52 

(t)(a)(t)(t) 7 76 

(t)(t)(a)(t) 7 55 

(a)(a)(a)(a)(a) 7 54 

(a)(a)(t)(c) 7 62 

(a)(g)(a)(t)(g) 7 50 

TABLE IX.   

PART OF LOACL PATTERNS IN SEQUENCE U14658 

closed 
pattern 

local 
support 

location 
<sequence_id, transaction_id> 

(t)(a)(t)(t) 19 

<U14658, {2036, 2651, 401, 2946, 
2978, 911, 772, 1294, 1900, 2835, 
1952, 1563, 354, 2866, 1751, 2936, 
2876, 2846, 2570}> 

(t)(t)(a)(c) 13 
<U14658, {2002, 1128, 2950, 1565, 
1203, 1321, 2797, 603, 1140, 2362, 
2689, 1214, 1654}> 

(t)(t)(a)(t) 13 
<U14658, {713, 1252, 3053, 308, 
2444, 1951, 2863, 2650, 2977, 1897, 
1293, 840, 2873}> 

(a)(a)(a)(a)(a) 13 
<U14658, {685, 744, 1975, 684, 1611, 
2985, 683, 2645, 2644, 2807, 1267, 
1591, 1695}> 

(a)(a)(t)(c) 16 
<U14658, {821, 2810, 2777, 789, 
1431, 2237, 2578, 381, 558, 2376, 
1236, 259, 222, 2397, 2026, 3063}> 

(a)(a)(g)(a) 13 
<U14658, {1135, 1936, 955, 2224, 
2319, 1978, 2970, 2932, 1207, 1473, 
397, 1105, 271}> 

(a)(t)(g)(a) 13 
<U14658, {1939, 1711, 1399, 2773, 
2825, 1681, 2356, 249, 2245, 900, 
759, 1455, 1273}> 

(a)(g)(t)(t) 13 
<U14658, {305, 2475, 1304, 826, 
2859, 865, 800, 2560, 3071, 1348, 
1180, 391, 1555}> 

 

V. CONCLUSION 

Contiguous and long patterns are remarkable 
significance for biological data analysis. Although BIDE 
is a fast algorithm for mining closed sequential patterns, it 
not suitable for discovering patterns on biological data. 
Further considering the characters of biological sequence, 
an improvement of the BIDE is provided in this paper. 
This novel algorithm, called M-bBIDE is based on the 
multi-support to discover three types of contiguous closed 
pattern in biological datasets.  

There are three kinds of patterns: sequential pattern, 
local sequential pattern and total sequential pattern. They 
correspond to three subsequence supports: support, 
local_support and total_support. The support(X) (X is a 
subsequence) is the number of tuples in the dataset 
containing X. If support(X) ≥ min_sup, then X is a 
sequential pattern. The local_support(X, Y) (Y is a 
biological sequence) is the number of tuples in sequence Y 
containing X. If local_support(X, Y)≥local_min_sup(Y), 
then X is a local sequential pattern in sequence Y. The 
total_support (X) is the sum number of local_support(X, 
Y). If total_support(X)≥total_min_sup, then X is a total 
sequential pattern. 

There are many interesting issues that need to be 
studied, such as mining high dimensional sequential 
patterns with constraints [8-10], mining closed gapped 
subsequences [6, 11, 12], mining multiple patterns [13] 
and so on. 
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