
Knowledge-based Links for Automatic Interaction
with Programming Online Judges

Guojin Zhu

Dept. of Computer Science, Donghua University, Shanghai 201620, China
Email: gjzhu.dhu@163.com

Yefeng Chen

Dept. of Computer Science, Donghua University, Shanghai 201620, China
Email: chenyefeng5@sina.com

Abstract—Programming online judges are computing
resources with pre-designed test data. Recently, an
increasing attention has been paid on integration of online
judges into a tutoring system. However, it is difficult for a
local system to automatic interaction with remote online
judges on the web to share their computation, because these
computing resources are designed for human users only. To
address such issue, a novel link is proposed here, called
framed link, which consists of a frame-based representation
for the knowledge about how to interact with the computing
resource that the link points to. With the framed link, three
remote online judges including their internal test data are
integrated successfully into a local system for programming
courses.

Index Terms—Framed Link, Automatic Interaction, Online
Judge, Frame-System, Remote Resource Integration

I. INTRODUCTION

There are lots of computing resources with internal
data on the web that are valuable for local computer
systems. Like the majority body of the web [1], most of
these computing resources, however, are designed for
human user only. A human user can interact with the
computing resource easily by filling the web form with
the data to be computed, clicking the hyperlink to submit
the data to the computing resource, and reading the web
page at the computing resource site that contains the
results of the computation, whereas a machine is hardly
able to do these things without human being assistances.
In simple words, it is difficult for local systems to interact
with these computing resources on the web to share their
computation including their internal data.

An online judge [2-4], for instance, is such a
computing resource that is designed for human users only.
Students from anywhere in the world can submit their
program source codes to the online judge, which will
compile the submitted source codes to check whether
there are grammatical errors in them or not. If there is no
grammatical error in a submitted program, the online

judge will run the executable code of the submitted
program and compare the output data from this running
procedure with pre-designed test data. The results of the
judgment will be displayed on a web page whenever a
student asks the online judge for the test results of his or
her submitted programs.

There are many online judges on the web, among
which UVa OJ [5], PKU OJ [6], and Timus OJ1 are
distinguished representatives. These computing resources
are valuable for programming teaching and learning [7].
Teachers can select suitable programming problems from
online judges for their students to practice programming.
However, it is inconvenient for teachers to check the
program source codes that their students submit to online
judges on the web. One possible way to avoid this
inconvenience is to build a local tutoring system that can
share the resources on the remote online judges. When
receiving a program submitted by a student, the local
tutoring system is supposed to forward the submitted
program to a respective remote online judge and save to
its local database the submitted program together with the
testing result which is obtained from the remote online
judge. From the local tutoring system, teachers can easily
obtain the information about the achievements of their
students in the programming practice situation.
Nevertheless, how does a local tutoring system to interact
autonomously with remote online judges that are
designed for human users only?

To address the issue above, we propose a novel link,
called framed link, which consists of a frame. The frame
encodes the knowledge about how to interact with the
computing sources. The content of the frame is a
description of a specific computing resource that the
framed link points to, which probably includes the
website address of the computing resource, the web forms
required to fill with the data to be submitted and the
format of the page that contains the results produced by
the computing resource. By using the knowledge encoded
in the frame, a machine can interact automatically with
the computing resource that the framed link points to
without human being assistances. This makes it possible
for a local system to interact with the computing
resources on the web to share their internal data that are

Corresponding author: Guojin Zhu; E-mail: gjzhu.dhu@163.com.
1. http://acm.timus.ru/

JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013 1209

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.5.1209-1218

 PKU OJ Local
Tutoring
System

Local
API for

OJs

UVa OJ

Internet

Timus OJ

Figure 1. The local API provides the local tutoring system with resources
on remote online judges.

#include<iostream>
using namespace std;
int main(){
 int a,b;
 while(cin>>a>>b){
 cout<<a+b<<endl;
 }
 return 0;
}

Figure 2. The program for the problem A + B Problem.

#include<iostream>
#include<math.h>
using namespace std;
int main(void) {
 for (double dNum, dPow;
 cin>>dPow>>dNum;
 cout<<(int)(pow(dNum,1.0/dPow)+0.5)<<endl
);
 return 0;
}

Figure 3. The program for the problem Power of Cryptography.

involved in their computation. In this paper, we take
online judges as an example to show how the framed link
works.

II. THE MODEL OF AUTOMATIC INTERACTION WITH
ONLINE JUDGES

It is difficult for a local tutoring system to access to a
remote online judge because the latter is designed for
human users only. Thus, an application programming
interface (API) is needed between the local tutoring
system and the remote online judge. The API is supposed
to provide the local tutoring system with operations
necessary to interact with the remote online judge. These
operations enable the local tutoring system to log in to a
remote online judge, to send submitted programs to the
remote online judge, and to query the results of the
judgments. The model of using an application
programming interface for interaction with computing
resources on the web is shown in Fig. 1, where UVa OJ,
PKU OJ, and Timus OJ are remote online judges.

A. Operations of Interaction
Consider a programming problem entitled A + B

Problem on the PKU OJ. The ID number of this problem
is 1000. Fig. 2 shows a program written in the C++
language as a solution to this A + B Problem. To submit
the program, one needs to log in to the PKU OJ first.
After submitting the program, one can query the
judgment result from the PKU OJ. To mimic these
actions of a human user, we design three corresponding
operations for the local API as listed in TABLE I.

The operation api.login(n) is designed for the local

tutoring system to log in to a remote online judge. The
parameter n is an identifier of a remote online judge, e.g.,
n = PKU. By calling the operation api.login(PKU), the
local tutoring system can log in to the PKU OJ.

The operation api.submit(s, p, l) enables the local
tutoring system to submit a program to its last logged-in
online judge. The parameter s is the source code of the
program to be submitted to the logged-in online judge,
the parameter p is the ID number of the problem that the
submitted program is supposed to solve, and the
parameter l is the ID number of the language in which the
submitted program is written. Upon logging in to the
PKU OJ, the tutoring system can submit the source code
in Fig. 2 by calling the operation api.submit(Sa+b, 1000,
4), where Sa+b denotes the source code in Fig. 2, 1000 is
the ID number of the problem A + B Problem, and 4 is
the ID number of the C++ language in the PKU OJ.

The operation api.query() will read the web page at the
remote online judge site that containing the judgments of
submitted programs, and return the verdict of the last
submitted program to the local tutoring system. For
example, the local tutoring system can get the verdict of
the source code for the problem A + B Problem by
calling the operation api.query() following the operation
api.submit(Sa+b, 1000, 4).

The same local API is applicable to different remote
online judges. Fig. 3 shows another program that is also
written in the C++ language. The program solves a
programming problem on the UVa OJ, which is entitled
Power of Cryptography. The local tutoring system can
employ the same local API to submit this program to the
UVa OJ by calling the submitting operation
api.submit(Spower, 113, 3) after a log-in operation
api.login(UVa), where Spower denotes the source code in
Fig. 3, 113 is the ID number of the problem Power of
Cryptography, and 3 is the ID number of the C++
language in the UVa OJ. After these two operations, the
local tutoring system can get the verdict of the source
code for the problem Power of Cryptography by calling
the operation api.query().

B. Automatic Interaction by using Framed Links
How does the same local API enable a local machine

to interact with different remote computing resources?
The answer is the framed link, see Fig. 4. It is similar to a
situation in which the same browser enables a human user
to read pages at different websites. When the local
tutoring system calls the log-in operation api.login(PKU),
the local API will select the PKU home frame which is
embedded with three framed likes, each pointing to a

TABLE I.
THREE OPERATIONS OF THE LOCAL API

Operation Comment

api.login(n) To log in to the remote online judge that the
parameter n identifies.

api.submit(s, p, l)

To submit a problem solution to the last logged-in
online judge. The parameter p identifies the
problem that is supposed to be solved by the
program source code s. The parameter l indicates
the language in which the program is written.

api.query() To make a query for the testing result of the last
submitted solution.

1210 JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

<form method=POST action=login>
<table><tr><td>User ID:</td>
 <td><input type=text name=user_id1 size=10 style='font-
family:monospace'></td>
 </tr><tr><td>Password:</td>
 <td><input type=password name=password1 size=10 style='font-
family:monospace'></td>
</tr></table>
<input type=Submit value=login name=B1>
Register
<input type=hidden name=url value=.>
</form>

Figure 5. The HTML code of the login page of the PKU OJ.

 PKU OJ Website

Query page

Submission page

Local API for OJs

Timus Frame

UVa Frame

Login page

 User ID
 Password

Framed link

Framed link

Framed link

PKU Frame

L-frame

S-frame

Q-frame

Figure 4. The model of interaction by using framed links.

respective page at the PKU OJ website. When the local
tutoring system calls the operation api.login(UVa), the
local API will select the UVa home frame for logging in
to the UVa OJ.

The element L-frame embedded in the PKU home
frame specifies the link to the login page at the PKU OJ
website. It encodes the knowledge about how to interact
with the login page that the link points to. Using this
knowledge, the operation api.login(PKU) can enable the
local tutoring system to log in to the PKU OJ.

When the local tutoring system calls the submitting
operation api.submit(Sa+b, 1000, 4) following the
operation api.login(PKU), the local API will employ the
knowledge which is encoded by the element S-frame in
the PKU home frame to fill the web form on the
submission page of the PKU OJ with the respective
parameter values Sa+b, 1000 and 4. After filling the web
forms, the local API will click the button on the
submission page of the PKU OJ to complete the
submitting action.

The knowledge encoded by the element Q-frame in the
PKU home frame enables the operation api.query() to
read the query page of the PKU OJ and return the verdict
of the last submitted program.

TABLE II compares the framed link with the hyperlink.
The user of the hyperlink is a human being, whereas the
user of the framed link is a machine. The hyperlink is
embedded in a webpage which usually includes a
description about how to use the computing resource that
the hyperlink points to, whereas the framed link is
embedded in a home frame which describes functions of
a remote online judge. Moreover, the browser is the tool
that enables a human user to click the hyperlink, whereas
the local API is the tool that enables a local machine to
employ the framed link by calling an operation of the
local API.

III. THE FRAMED LINK

A link specified by a frame is called a framed link.
More specifically, a framed link is such a link that
consists of a frame which contains the knowledge about

how to interact with the resource that the link points to.
The frame here is a data-structure proposed by Marvin
Minsky for representing a stereotyped situation [8]. For
the framed link, the frame is composed of some slots,
each of which has a name, a marker and an
assignment [9].

According to Marvin Minsky, attached to each frame
are several kinds of information. Some of this
information is about how to use the frame. Some is about
what one can expect to happen next. Some is about what
to do if these expectations are not confirmed. These kinds
of attached information are needed for clicking a framed
link. We express the information attached to a frame as
an algorithm of a clicking procedure attached to its
framed link.

There are three kinds of frames for links to remote
online judges, which point to login pages, submission
pages and query pages, respectively.

A. The Link to a Login Page
In order to log in to an online judge, one needs to enter

a user name (e.g., pkuuser) and a password (e.g., pkupass)
on the login page of the online judge. Fig. 5 shows the
source code of the login page of the PKU OJ, which is
written in the Hypertext Markup Language (HTML [10]).
The uniform resource identifier (URI [11]) of this login
page is http://poj.org/login. In the first line in Fig. 5, we
can find the word POST, which will instruct the web
browser to use the post method of the Hypertext Transfer
Protocol (HTTP [12]) to pass the user name and password
to the PKU OJ when a user logs in to this online judge. In
the HTTP post method [13, 14], the user name and the
password are encoded as key-value pairs (also known as
name-value pairs). For the PKU OJ, the key for the user
name is user_id1 and the key for the password is
password1, which could be found in the third line and the
sixth line in Fig. 5, respectively. The values of the user
name and the password are what the user enters on the
login page (e.g., pkuuser and pkupass, respectively). All
these kinds of information should be encoded in the
frame, named as L-frame, which specifies the framed link
to the login page of a remote online judge.

An L-frame consists of five slots, named LoginURI,
UserKey, UserValue, PasswordKey and PasswordValue.
The assignment at the slot LoginURI is supposed to be a
URI of a login page. The assignments for the pair of slots
UserKey and UserValue are supposed to be a key-value
pair for the user name, and the assignments for the other
pair of slots PasswordKey and PasswordValue are

TABLE II.
FRAMED LINKS VS. HYPERLINKS

User Tool Description Linkage
Human Browser Pages Hyperlinks
Machine API Frames Framed links

JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013 1211

© 2013 ACADEMY PUBLISHER

Algorithm login.clicking()
 (1) post = new PostMethod(LoginURI);
 (2) post.addParameter(UserKey, UserValue);
 (3) post.addParameter(PasswordKey, PasswordValue);
 (4) hiddens = getHiddens(LoginURI, PasswordKey);
 (5) post.addParameter(hiddens);
 (6) client.executeMethod(post);
End login.clicking

Figure 6. The algorithm attached to the L-frame.

Algorithm submit.clicking()
(1) post = new PostMethod(SubmitURI + OptionString);
(2) post.addParameter(LanguageKey, LanguageValue);
(3) post.addParameter(ProblemKey, ProblemValue);
(4) post.addParameter(SourceKey, SourceValue);
(5) post.addParameter(UserKey, UserValue) if UserKey ≠ NULL;
(6) hiddens = getHiddens(SubmitURI, ProblemKey);
(7) post.addParameters(hiddens);
(8) client.executeMethod(post);

End submit.clicking

Figure 7. The algorithm attached to the S-frame.

supposed to be a key-value pair for the password.
TABLE III lists all the five slots of an L-frame together
with their respective assignments for a link to the login
page of the PKU OJ.

Attached to each L-frame is the same clicking
procedure for completing the log-in action. The clicking
procedure is composed of constructing an HTTP post
method and executing the constructed method. Fig. 6
shows the algorithm of the clicking procedure attached to
the link that points to the login page, where an HTTP post
method is constructed in the first five lines and executed
in the last line. All the five slots of an L-frame can find
their names in the first three lines in the algorithm, which
means that the assignment value at each slot of the L-
frame will be passed to the HTTP post method during the
clicking procedure. In the second line from the bottom in
Fig. 5, we can see a hidden field [15] in the login page of
PKU OJ. The key-value pair of the hidden field should
also be passed to the HTTP post method. The method
getHiddens(LoginURI, PasswordKey) in the fourth line of
the algorithm is designed to extract key-value pairs of all
the hidden fields between the pair of form tags that
includes the assignment value at the slot PasswordKey on
the page whose URI is the assignment value at the slot
LoginURI. It uses the HTTP get method to fetch the page
before it is able to extract the hidden fields. The extracted
key-value pairs of hidden fields are added to the HTTP
post method in the fifth line.

Notice that no assignment value at any slot appears in
the clicking algorithm. This means that the same clicking
procedure without any modification of its code is
applicable to different assignments for the L-frame. For
example, the same clicking procedure can be applied to
the L-frame in TABLE IV for logging in to the UVa OJ.

B. The Link to a Submission Page
A frame for a link to a submission page is called an S-

frame. In order to submit a program (e.g., the Sa+b in
Fig. 2) to an online judge (e.g., Timus OJ), one needs to
enter on the submission page of the online judge the
program together with the ID number (e.g., 1000) of the
problem that the program is supposed to solve and the ID
number (e.g., 10) of the language (e.g., C++) in which the
program is written. In some online judge (e.g., Timus OJ),
one may also need to enter the user ID number on the
submission page. These kinds of information are then
passed in the key-value pair format to the HTTP post
method before the submission is actually sent to the
remote online judge. Thus, an S-frame needs four pairs of
slots for the four key-value pairs corresponding to the
program, the problem ID number, the language ID
number and the user ID number, respectively. TABLE V
lists all the slots of an S-frame together with their
respective assignments for a link to the submission page
of the Timus OJ, where the assignment value at the slot
SubmitURI is the URI http://acm.timus.ru/submit.aspx of
the submission page of the Timus OJ, and the assignment
value at the slot LanguageValue is the ID number 10 of
the C++ language on the Timus OJ.

Attached to each S-frame is the same clicking
procedure for completing the submission action. Like the
one for login, the clicking procedure for submission is
also composed of constructing an HTTP post method and
executing the constructed method. Fig. 7 shows the
algorithm of the clicking procedure attached to the link
that points to the submission page, where an HTTP post
method is constructed in the first seven lines and
executed in the last line. As in the algorithm for login, all
the ten slots of an S-frame can find their names in the
algorithm for submission, which means that the
assignment value at each slot of the S-frame will be TABLE III.

AN L-FRAME FOR A LINK TO THE PKU OJ LOGIN PAGE

Name Marker Assignment
LoginURI URI for login page http://poj.org/login
UserKey Key for user name user_id1
UserValue Value for user name pkuuser
PasswordKey Key for password password1
PasswordValue Value for password pkupass

TABLE IV
AN L-FRAME FOR A LINK TO THE UVA OJ LOGIN PAGE

Name Marker Assignment

LoginURI URI for login page
http://uva.onlinejudge.org
/index.php?option=com_c
omprofiler&task=login

UserKey Key for user name username
UserValue Value for user name uvauser
PasswordKey Key for password passwd
PasswordValue Value for password uvapass

TABLE V.
AN S-FRAME WITH ITS SLOT ASSIGNMENTS FOR A LINK TO THE

SUBMISSION PAGE OF THE TIMUS OJ

Name Marker Assignment

SubmiURI URI for submission page http://acm.timus.ru/su
bmit.aspx

OptionString Optional part in URI NULL
LanguageKey Key for language Language
LanguageValue Value for language 10
ProblemKey Key for problem id ProblemNum
ProblemValue Value for problem id 1000
SourceKey Key for source code Source
SourceValue Value for source code Sa+b in Figure 2
UserKey Key for user id JudgeID
UserValue Value for user id 123702WX

1212 JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

Figure 8. A query page of the PKU OJ.

passed to the HTTP post method during the clicking
procedure. Note that there is a condition in the fifth line
to check if the slot UserKey has a non-null value before
the assignments for the pair of slots UserKey and
UserValue is added to the HTTP post method, because
some online judge (e.g., PKU OJ or UVa OJ) do not
require the user ID number for submission of programs
(see TABLE VI). The method getHiddens(SubmitURI,
ProblemKey) in the sixth line of the algorithm extracts
key-value pairs of all the hidden fields between the pair
of form tags that includes the assignment value at the slot
ProblemKey on the page whose URI is the assignment
value at the slot SubmitURI. In some online judge (e.g.,
UVa OJ), the HTTP post method for the submission
needs an optional string appended to the URI of the
submission page. For this reason, we design a slot
OptionString to keep this optional string for appending it
to the URI from the slot SubmitURI in the first line of the
algorithm.

Also notice that no assignment value at any slot
appears in the clicking algorithm for submission. This
means that the same clicking procedure without any
modification of its code is applicable to different
assignments (e.g., in TABLE VI) for the S-frame.

C. The Link to a Query Page
After submitting a program to an online judge, one can

find the verdict of the program on the query page of the
online judge. Fig. 8 shows the query page of the PKU OJ.
To query the verdict, one can enter the ID number (e.g.,
1000) of the problem that the program is supposed to

solve into the text box labeled “Problem ID” on the query
page, enter his or her user name (e.g., pkuuser) into the
text box labeled “User ID”, and finally click the button
labeled “Go” on the rightmost below the title “Problem
Status List”. The result of the query is shown in the table,
where the fourth column of the first line under the
heading line displays the verdict (e.g., Accepted) of the
last submission (see the number 10124631 under the
heading “Run ID”) for the concerned problem. In the
address bar, we can find that the URI of the query page is
http://poj.org/status. This URI has a query string [16]
“problem_id=1000&user_id=pkuuser” after the question
mark ‘?’, which consists of two key-value pairs for the
problem ID number and the user name, respectively.

Thus, a frame for a link to a query page, named as Q-
frame, needs two pairs of slots for the two key-value pairs
corresponding to the problem ID number and the user
name, respectively. TABLE VII lists all the slots of a Q-
frame together with their respective assignments for a
link to the query page of the PKU OJ, where the
assignment value 1000 at the slot ProblemValue is the ID
number of the problem A + B Problem on the PKU OJ,
and the assignment values 4, 5 and 6 at the slots Verdict,
Memory and Time, respectively, indicate the fourth, fifth
and sixth columns of the table in which the verdicts and
code qualities are displayed on the query page as shown
in Fig. 8.

Attached to each Q-frame is the same clicking
procedure for completing the query action. In comparison
with those for login and submission, the clicking
procedure for query is required to return the verdict of the
last submission after constructing an HTTP get method
and executing the constructed method. Fig. 9 shows the
algorithm of the clicking procedure attached to the link

TABLE VI.
ASSIGNMENTS AT EVERY SLOT OF THE S-FRAME FOR LINKS TO

RESPECTIVE SUBMISSION PAGES OF THE PKU OJ AND THE UVA OJ

Name Assignment (PKU) Assignment (UVa)

SubmiURI http://poj.org/submit
http://uva.onlinejudge.org/i
ndex.php?option=com_onli
nejudge&Itemid=25

OptionString NULL &page=save_submission
LanguageKey language language
LanguageValue 4 3
Problemkey problem_id localid
ProblemValue 1000 113
SourceKey source code
SourceValue Sa+b in Figure 2 Spower in Figure 3
UserKey NULL NULL
UserValue NULL NULL

TABLE VII.
 A Q-FRAME FOR A LINK TO THE QUERY PAGE OF THE PKU OJ

Name Marker Assignment
QueryURI URI for query page http://poj.org/status
Verdict Column number for the verdict 4
Memory Column number for the memory 5
Time Column number for the time 6
UserKey Key for user id in query string user_id
UserValue Value for user id in query string pkuuser
ProblemKey Key for problem id in query string problem_id

ProblemValue Value for problem id in query
string 1000

JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013 1213

© 2013 ACADEMY PUBLISHER

Algorithm query.clicking()
(1) get = new GetMethod(QueryURI);
(2) queryString = get.getQueryString();
(3) userString = getQueryString(UserKey, UserValue);
(4) problemString = getQueryString(ProblemKey, ProblemValue);
(5) queryString = queryString+"&"+userString+"&"+problemString;
(6) get.setQueryString(queryString);
(7) client.executeMethod(get);
(8) queryPage = get.getResponseBodyAsString();
(9) result = getResult(queryPage, Verdict, Memory, Time);
(10) return result;

End query.clicking

Figure 9. The algorithm attached to the Q-frame.

that points to the query page, where an HTTP get method
is constructed in the first six lines and executed in the
seventh line. The two key-value pairs for the user name
and the problem ID number are encoded in the third and
fourth lines, respectively, and added to the query string in
the fifth line. In the sixth line, the query string is passed
to the HTTP get method. The last three lines are designed
for obtaining the verdict from the query page. The
method get.getResponseBodyAsString() returns the
HTML source code of the query page, which is assigned
to the variable queryPage in the eighth line. In the ninth
line, the method getResult(queryPage, Verdict, Memory,
Time) extracts as the result the top values in the columns,
indicated by the assignment values at the slots Verdict,
Memory and Time respectively, from the query page
contained in the variable queryPage (e.g., the word
Accepted at the fourth column, the value 252K at the fifth
column, and the value 0MS at the sixth column of the first
line in the table on the query page of the PKU OJ, see
Fig. 8). The result is returned in the last line of the
algorithm.

Again, notice that no assignment value at any slot
appears in the clicking algorithm for query. This means
that the same clicking procedure without any
modification of its code is applicable to different
assignments (e.g., in TABLE VIII) for the Q-frame.
Comparing TABLE VIII with TABLE VII, we can find
that the assignment value at the slot QueryURI for the
Timus OJ has already had a query string. i.e., space=1.
This query string is extracted in the second line in Fig. 9
so that other key-value pairs can be appended to it easily
in the fifth line.

IV. HOME FRAMES FOR ONLINE JUDGES

Just as a hyperlink is embedded in a webpage, a
framed link is embedded in a frame that describes a

remote online judge. To distinguish the frame for an
online judge from the frame for a framed link, we call the
former the home frame of the online judge, and the latter
a sub-frame of the home frame. Each online judge can be
represented by its home frame. The home frame encodes
enough knowledge for interaction with its respective
online judge. All the home frames have the same
structure, so that the same API could be applied to them
without any modification of its implementation. However,
different online judges have different assignments for
their home frames, which make it possible for the same
API to provide a local machine with resources on
different remote online judges. When a local machine
calls a log-in operation api.login(n), the local API will
select the home frame of the remote online judge whose
identifier is the value of the parameter n. By using the
framed links embedded in the home frame, the local API
enables the local machine to interact with the remote
online judge that the parameter n identifies.

A. Structure of Representation
A home frame consists of six slots. Three of them can

be filled with a corresponding framed link. TABLE IX
lists all the six slots of the home frame together with their
respective assignments for the PKU OJ. The three slots
LoginFrame, SubmitFrame and QueryFrame are assigned
with three corresponding sub-frames, i.e., an L-frame for
a link to a login page, an S-frame for a link to a
submission page and a Q-frame for a link to a query page
at the website of the PKU OJ. The assignment value PKU
at the slot SiteName is the identifier of the PKU OJ. The
slot Compliers is assigned with a list of pairs, each of
which consists of a name and an ID number of a possible
compiler on the PKU OJ. The assignment of the slot
Verdicts is a list of terms, each of which indicates a
possible result of the judgment that the PKU OJ may
make.

TABLE X shows assignments at every slot for
respective home frames of the Timus OJ and the UVa OJ.
Comparing TABLE X with TABLE IX, we can find that
each slot name of the home frame keeps unchanged,
whereas the slot assignment value may differ from one
online judge to another. The slot LoginFrame of the
home frame for the Timus OJ is assigned with NULL,
which means that there is no need to log in to the Timus
OJ.

TABLE VIII.
ASSIGNMENTS AT EVERY SLOT OF THE Q-FRAME FOR LINKS TO
RESPECTIVE QUERY PAGES OF THE TIMUS OJ AND THE UVA OJ

Name Assignment(Timus) Assignment(UVa)

QueryURI http://acm.timus.ru/st
atus.aspx?space=1

http://uva.onlinejudge.org/ind
ex.php?option=com_onlinejud
ge&Itemid=9

Verdict 6 4
Memory 9 NULL
Time 8 6
UserKey author NULL
UserValue 123702WX NULL
ProblemKey num NULL
ProblemValue 1000 NULL

TABLE IX.
A HOME FRAME WITH AN ASSIGNMENT FOR PKU OJ

Name Marker Assignment
SiteName Online judge name PKU
LoginFrame Frame for login An L-frame as in TABLE III
SubmitFrame Frame for submission An S-frame as in TABLE VI
QueryFrame Frame for query A Q-frame as in TABLE VII

Compliers List of name-number
pairs for compilers

{(G++, 0), (GCC, 1), (Java,
2), (Pascal, 3), (C++, 4), (C,
5), (Fortran, 6)}

Verdicts List of verdict terms

{Wrong Answer, Compile
Error, Accepted, Runtime
Error, Time Limit Exceeded,
Presentation Error, Output
Limit Exceeded, Memory Limit
Exceeded}

1214 JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

<?xml version="1.0" encoding="UTF-8"?>
<website>
<SiteName>PKU</SiteName>
<LoginFrame>
 <LoginURI>http://poj.org/login</LoginURI>
 <UserKey>user_id1</UserKey>
 <UserValue>pkuuser</UserValue>
 <PasswordKey>password1</PasswordKey>
 <PasswordValue>pkupass</PasswordValue>
</LoginFrame>
<SubmitFrame>
 <SubmitURI>http://poj.org/submit</SubmitURI>
 <OptionString></OptionString>
 <UserKey></UserKey>
 <UserValue></UserValue>
 <LanguageKey>language</LanguageKey>
 <LanguageValue>4</LanguageValue>
 <ProblemKey>problem_id</ProblemKey>
 <ProblemValue>1000</ProblemValue>
 <SourceKey>source</SourceKey>
 <SourceValue> #include<iostream> using namespace std;
 int main() {int a,b;while(cin>>a>>b)
 {cout<<a+b<<endl;} return 0; }</SourceValue>
</SubmitFrame>
<QueryFrame>
 <QueryURI>http://poj.org/status</QueryURI>
 <Verdict>4</ Verdict >
 <Memory>5</Memory>
 <Time>6</Time>
 <UserKey>user_id</UserKey>
 <UserValue>pkuuser</UserValue>
 <ProblemKey>problem_id</ProblemKey>
 <ProblemValue>1000</ProblemValue>
</QueryFrame>
<Compilers>

<name>G++</name><value>0</value><name>GCC</name><valu
e>1</value><name>Java</name><value>2</value><name>Pascal
</name><value>3</value><name>C++</name><value>4</value>
<name>C</name><value>5</value><name>Fortran</name><valu
e>6</value>

</Compilers>
<Verdicts>

<name>Wrong Answer</name><name>Compile
Error</name><name> Accepted</name><name>Runtime
Error</name><name>Time Limit
Exceeded</name><name>Presentation Error</name>
<name>Output Limit Exceeded</name><name>Memory Limit
Exceeded</name>

</Verdicts >
</website>

Figure 10. An XML version of the home frame for PKU OJ.

Algorithm api.login(n)
 (1) OJFrame = findOJFrame(n);
 (2) link = OJFrame.LoginFrame;
 (3) link.clicking() if link ≠ NULL;
End api.login

Figure 11. The algorithm of the procedure api.login(n).

B. Default Assignments
In the opinion of Marvin Minsky, frames are never

stored in long-term memory with unassigned terminal
values. Instead, frames are stored with weakly-bound
default assignments at every slot [8]. For this reason, each
home frame together with its sub-frames is stored with
default assignments at every slot. The default

assignments are attached loosely to their slots, so that
they can be easily displaced by new items that fit better
the current situation. For example, the assignment at the
slot SourceValue will be displaced by a new version of
the submitted solution that is updated at the current time.
Moreover, the assignments at the slots LogginURI,
SubmitURI and QueryURI can be easily displaced by new
URIs of respective pages when the online judge changes
their URIs (actually, the UVa OJ and the PKU OJ have
changed these URIs). This dynamic feature makes frames
different from web pages, whose contents are usually
unchanged.

We use the Extensible Markup Language (XML [17,
18]) to describe home frames together with default
assignments at every slot. Fig. 10 shows an XML version
of the home frame for the PKU OJ. Each slot is
represented by a tag pair, which has the same name as the
slot. Between the opening and closing tags is the
respective default assignment value for the slot. For
example, the slot SiteName is represented by a pair of the
opening tag <SiteName> and the closing tag
</SiteName>, between which is the respective default
assignment value PKU. The tag pairs for respective slots
in the L-frame are embedded between the pair of tags
<LoginFrame> and </LoginFrame>, which means that
the L-frame is embedded in the home frame as the
assignment of the slot LoginFrame. The S-frame and the
Q-frame are embedded in the home frame in the same
way as the L-frame. Each of slots including those in sub-
frames is filled with its respective default assignment
value in the XML version of the home frame. All home
frames in the XML version forms a frame-system.

C. Attached Procedures
Attached to each home frame are three procedures as

the three API operations api.login(n), api.submit(s, p, l)
and api.query(), respectively. Fig. 11 shows the algorithm
of the procedure api.login(n). The method findOJFrame(n)
in the first line of the algorithm is designed to select from
the frame-system the home frame whose slot SiteName
has the same value as the parameter n. The variable
OJFrame keeps the selected frame as the current home
frame. The slot assignments in the current home frame
are from the XML file of the selected frame. For example,
the procedure api.login(PKU) will select the home frame
of the PKU OJ as the current home frame, leading to that
the slots of the current home frame are filled with default
assignments described in Fig. 10. In the second line of the
algorithm, it tries to fetch from the slot LoginFrame the
L-frame embedded in the current home frame. The
fetched L-frame is passed to the variable link, which
represents a framed link to a login page if it exists. This
framed link is “clicked” in the last line of the algorithm
by calling the procedure link.clicking(), which is attached
to the fetched L-frame (i.e., the procedure login.clicking()

TABLE X.
RESPECTIVE ASSIGNMENTS FOR HOME FRAMES OF TIMUS OJ AND

UVA OJ

Name Assignment (Timus) Assignment (Uva)
SiteName Timus UVa
LoginFrame NULL A L-frame as in TABLE IV
SubmitFrame An S-frame in Table 5 An S-frame as in TABLE VI
QueryFrame A Q-frame in Table 8 A Q-frame as in TABLE VIII

Compliers
{(Java, 7), (Pascal, 3),
(C++, 10), (C, 9), (C#,
11)}

{(C, 1), (Java, 2), (C++, 3),
(Pascal, 4)}

Verdicts

{Wrong answer,
Compilation error,
Accepted, Runtime error,
Time limit exceeded,
Presentation error,
Output limit exceeded,
Memory limit exceeded}

{Wrong answer, Compilation
error, Accepted, Runtime
error, Time limit exceeded,
Presentation error, Output
limit exceeded, Memory limit
exceeded, Can't be judged, In
queue}

JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013 1215

© 2013 ACADEMY PUBLISHER

in Fig. 6). In the case of the PKU OJ, the clicking
procedure will use the knowledge encoded in the L-frame
as in TABLE III to submit the corresponding user name
and password to the PKU OJ for completing the log-in
action. The same thing is true for the procedure
api.login(UVa) to log in to the UVa OJ. However, the
procedure api.login(Timus) runs differently because the
slot LoginFrame has a null value in the home frame of
the Timus OJ (see TABLE X). The effect of the
procedure api.login(Timus) is to select the home frame of
the Timus OJ as the current home frame, enabling its
following procedures api.submit(s, p, l) and api.query() to
access to the Timus OJ.

The algorithm of the procedure api.submit(s, p, l) is
shown in Fig. 12. In the first line of the algorithm, it
fetches from the slot SubmitFrame the S-frame embedded
in the current home frame. The default assignments at the
three slots SourceValue, ProblemValue and
LanguageValue in the fetched S-frame are displaced by
the values of the three parameters s, p and l in the second,
third and fourth lines, respectively. The fetched S-frame
is passed to the variable link, which represents a framed
link to a submission page. In the fifth line, this framed
link is “clicked” by calling the procedure link.clicking(),
which is attached to the fetched S-frame (i.e., the
procedure submit.clicking() in Fig. 7). After an operation
api.login(Timus), for example, the procedure
api.submit(Sa+b, 1000, 10) will substitute the three
parameter values Sa+b, 1000 and 10 for the default
assignments at the three slots SourceValue,
ProblemValue and LanguageValue of the S-frame
embedded in the home frame of the Timus OJ,
respectively. The clicking procedure in the fifth line of
the algorithm employs the knowledge encoded in the S-
frame as in TABLE V, to submit to the Timus OJ the
source code Sa+b together with the problem ID number
1000 and the language ID number 4 as a solution to the
problem A + B Problem. In the last line of the algorithm,
the value of the parameter p (e.g., the problem ID number
1000) substitutes for the default assignment at the slot
ProblemValue of the Q-frame embedded in the current
home frame, so that the procedure api.query() following
the procedure api.submit(s, p, l) is able to know from the
Q-frame the ID number of the problem that the last
submitted program is supposed to solve.

Fig. 13 shows the algorithm of the procedure
api.query(). In the first line of the algorithm, it fetches
from the slot QueryFrame the Q-frame embedded in the
current home frame. The fetched Q-frame is passed to the
variable link, which represents a framed link to a query
page. In the second line, this framed link is “clicked” by

calling the procedure link.clicking(), which is attached to
the fetched Q-frame (i.e., the procedure query.clicking()
in Fig. 9). The clicking procedure will use the knowledge
encoded in the Q-frame (e.g., in TABLE VII) to send to
the remote online judge a request for the pointed query
page (e.g., in Fig. 8) that contains the test results of
submitted programs. Furthermore, the clicking procedure
will extract from the query page the verdict (e.g.,
Accepted) and the code quality information (e.g., 252K
for memory and 0MS for run time) of the last submission.
The extracted verdict and code quality information are
returned to the caller (e.g., a local system) in the last line
of the algorithm.

V. APPLICATION

We have implemented the local API for remote online
judges by using the Java language. The home frame of
each online judge is saved as an XML file into a local
directory. The API will load from the local directory all
the XML files into its frame-system. When necessary, the
API will fetch the default assignment at the slot SiteName
of each home frame in its frame-system to produce a
name list of online judges whose XML files are in the
local directory.

On a basis of the implemented API, we have
developed a prototype of a single platform for operating
multiple online judges. The platform enables a human
user to visit different online judges in the same way.
Furthermore, we have integrated several remote online
judges into a local system, which include the PKU OJ,
the UVa OJ and the Timus OJ.

A. A Single Platform for Multiple Online Judges
Fig. 14 shows a snapshot of the single operating

platform for multiple online judges. When it starts up, the
platform will ask the API for a name list of online judges
that the API is able to interact with. The name list is
passed to the drop-down list labeled “Site Name”, from
which one can select an online judge by its name. Each
time an online judge is selected, the default assignment
list at the slot Compilers of the respective home frame
will be passed to the drop-down list labeled “Language”,
so that one can select from this drop-down list a language
in which his or her program is written. In addition, the
default assignment values at slots SourceValue and
ProblemValue will be displayed in the text box labeled
“Source Code” and the editable drop-down list labeled
“Problem ID”, respectively.

To submit a program (e.g., Sa+b in Fig. 2) to an online
judge (e.g., PKU OJ), one can select the online judge
name (e.g., PKU) from the drop-down list labeled “Site
Name”, copy the program source code into the text box
labeled “Source Code”, select a language name (e.g., C++)

Algorithm api.submit(s, p, l)
 // OJFrame keeps the current home frame
 (1) link = OJFrame.SubmitFrame;
 (2) link.SourceValue = s;
 (3) link.ProblemValue = p;
 (4) link.LanguageValue = l;
 (5) link.clicking();
 (6) OJFrame.QueryFrame.ProblemValue = p;
End api.submit

Figure 12. The algorithm of the procedure api.submit(s, q, l).

Algorithm api.query()
 // OJFrame keeps the current home frame
 (1) link = OJFrame.QueryFrame;
 (2) result = link.clicking();
 (3) return result;
End api.query

Figure 13. The algorithm of the procedure api.query().

1216 JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

Figure 14. A snapshot of the single operating platform for multiple
online judges.

Figure 15. The status page of the DHUOJ.

from the drop-down list labeled “Language”, enter the
problem ID number (e.g., 1000) into the editable drop-
down list labeled “Problem ID”, and finally click the
button labeled “SUBMIT”.

After the submit button is clicked, the selected online
judge name (e.g., PKU) is passed from the drop-down list
labeled “Site Name” to the parameter n of the log-in
operation api.login(n). The copied source code (e.g., Sa+b)
is passed to the parameter s of the operation api.submit(s,
p, l) from the text box labeled “Source Code”, the entered
problem ID number (e.g., 1000) to the parameter p from
the editable drop-down list labeled “Problem ID”, and the
ID number (e.g., 4) of the selected language (e.g., C++)
to the parameter l from the drop-down list labeled
“Language”. The platform then calls the operation
api.login(n) to log in to the selected online judge (e.g., the
PKU OJ), followed by the operation api.submit(s, p, l) to
submit the source code (e.g., s = Sa+b) together with the
entered problem ID number (e.g., p = 1000) and the ID
number (e.g., l = 4) of the selected language (e.g., C++).
Later after the two operations above, the platform will
call the operation api.query() to send to the online judge a
request for the verdict of the submitted program. The
returned verdict together with the code quality
information will be shown on the text box labeled
“RESULT”.

B. Integration of Online Judges into a Local System
We have integrated several remote online judges into a

local system. The local system, called Donghua
University Online Judge (DHUOJ[19]), was successfully
applied to the online preliminary contest and the onsite
contest of the 2009 ACM/ICPC Asia Regional Shanghai
Site, in which over a thousand teams participated.
Teachers can put their exercise papers on DHUOJ for
students to practice programming. However, it usually
takes much time to produce programming problems for
the exercise papers. To save the time, teachers may
download their selected problem statements from remote

online judges, but it is difficult to find the test data set for
the downloaded problems because the test data are not
published on the remote online judges. For this reason,
we applied the framed link technology to integration of
remote online judges for the DHUOJ to share these
computing resources together with their pre-designed test
data.

TABLE XI shows a list of problems in an exercise
paper on the integrated system. The first column of the
table lists problem names in the exercise paper. The
second column and the fourth column list the problem ID
numbers in DHUOJ and PKU OJ, respectively. In the
third column are the problem titles. With this table, the
integrated system can forward the programs that the
DHUOJ receives to the PKU OJ that the framed link
points to. Before forwarding the programs to the remote
online judge, the integrated system will transform the
local language identifiers into the remote language
identifiers with a mapping table as in TABLE XII.
Similarly, the integrated system will transform the verdict
received from a remote online judge into a local version
with a verdict mapping table.

The advantage of this approach is that teachers can
easily obtain the information about the achievements of
their students in the programming practice situation. For
example, it is easy to find that the top student has solved
all the four problems A, B, C and D from the rank list as
shown in Fig. 15. Furthermore, it is easy for the teacher
to obtain from the local system the programs that the
students have submitted for some reason (e.g., to inspect
the programming style). However, it would be difficult to

TABLE XI.
A PROBLEM SET FOR ONE CLASS TEST

Local Name Local ID Problem Title Remote ID Remote OJ
A 1001 Deli Deli 3366 PKU
B 1002 Card Game Cheater 2062 PKU
C 1003 Building for UN 3566 PKU
D 1004 Java vs C++ 3157 PKU

TABLE XII.

A MAPPING TABLE FROM THE DHUOJ TO THE PKU OJ

DHUOJ PKU OJ
Language Language ID Language Language ID
CPP 0 G++ 0
C 1 GCC 1
JAVA 2 Java 2
PASCAL 3 Pascal 3

JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013 1217

© 2013 ACADEMY PUBLISHER

get the rank list without integration of remote online
judges into a local system. It would be more difficult for
the teacher to know how much time that each student
spends on their solved problems.

VI. CONCLUSION

Remote online judges together with their pre-designed
test data are valuable resources for teaching and learning.
However, it is difficult for a local tutoring system to share
these resources, because online judges are designed for
human users only and their pre-designed test data are not
published. To address such issue, this paper proposed a
novel link, called framed link, which consists of a frame
that encodes the knowledge about how to interact with
the remote online judge that the link points to. Each
remote online judge is represented by its home frame.
Embedded in the home frame are three framed links that
point to a login page, a submission page and a query page
on the remote online judge, respectively. Moreover, a
local API was designed for a local system to “click” the
framed links for its interaction with the remote online
judge. With this framed link technology, we developed a
prototype of a single platform for operating multiple
online judges in the same way. Furthermore, we
integrated several remote online judges into a local
system, so that the local system is able to share these
computing resources including their pre-designed test
data. We believe that the framed link can be applied to
automatic interaction with pages of other computing
resources on the web to share their computation including
their internal data.

ACKNOWLEDGMENT

This research is supported by the National Natural
Science Foundation of China (NSFC) under Grant No.
60973121.

REFERENCES

[1] Rudi Studer, “The Semantic Web. Enabling innovative
approaches for handling information and services”,
Information Services & Use 29 (2009) 73–80.

[2] Andy Kurnia, Andrew Lim, Brenda Cheang, “Online
Judge”, Computers & Education 36 (2001) 299–315.

[3] Elena Verdúa, Luisa M. Reguerasa, María J. Verdúa, José
P. Lealb, Juan P. de Castroa, Ricardo Queirósc, “A
distributed system for learning programming on-line”,
Computers & Education,Volume 58, Issue 1, January 2012.

[4] Xiaoyu Du, Chao Yi, Yu Wei, Su Feng, Zhi Gong,
“Design of Automata Online Judge”, Information
Engineering and Computer Science (ICIECS), 2010.

[5] Miguel A. REVILLA, Shahriar MANZOOR, Rujia LIU,
“Competitive Learning in Informatics: The UVa Online
Judge Experience”, Olympiads in Informatics, 2008.

[6] Li Wen-xin, Guo Wei, “Peking University Online Judge
and Its Applications”, Journal of Changchun Post and
Telecommunication Institute, 2005-S2.

[7] Georgouli K, Guerreiro P, “Integrating an Automatic Judge
into an Open Source LMS”, International Journal on E-
Learning, 10(1), 27-42. Chesapeake, VA: AACE.

[8] Marvin Minsky, “A Framework for Representing
Knowledge”, MIT-AI Laboratory Memo 306, June, 1974.

[9] Chouyin Hsu, "Development of Semantic-CBR
Framework for Virtual Enterprises in Project
Management", Journal of Computers, Vol 6, No 3 (2011),
434-440, Mar 2011, doi:10.4304/jcp.6.3.434-440.

[10] Berners-Lee Tim, Connolly Daniel, Hypertext Markup
Language (HTML) Internet Draft version 1.1, June 1993.

[11] Mealling M. (Ed.), R. Denenberg (Ed.), “Report from the
Joint W3C/IETF URI Planning Interest Group: Uniform
Resource Identifiers (URIs), URLs, and Uniform Resource
Names (URNs): Clarifications and Recommendations”,
RFC 3305, August 2002.

[12] Yudong Yang, HongJiang Zhang, “HTML Page Analysis
Based on Visual Cues”, Document Analysis and
Recognition, 2001.

[13] Berners-Lee Tim, “HyperText Transfer Protocol”, World
Wide Web Consortium, Retrieved 31 August 2010.

[14] Bruce A. Mah, “An Empirical Model of HTTP Network
Traffic”, Computer and Communications Societies,
Proceedings IEEE. 1997.

[15] Berners-Lee Tim, Connolly Dan, “Hypertext Markup
Language - 2.0”, World Wide Web Consortium. Retrieved
15 January 2011.

[16] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform
Resource Identifier (URI): Generic Syntax”, RFC 3986,
January 2005.

[17] Maler, E., Yergeau, F., Paoli, J., Bray, T., C. Sperberg-
McQueen, “Extensible Markup Language (XML) 1.0
(Third Edition)”, World Wide Web Consortium
FirstEdition REC-xml-20040204, February 2004.

[18] Christopher League and Kenjone Eng, "Schema-Based
Compression of XML Data with Relax NG", Journal of
Computers, 2007.

[19] Guojin Zhu, Yang Guan, “Communities of Autonomous
Units for Distributed Online Judge Systems”, pressed by
the 2010 Second International Conference on Future
Computer and Communication, IEEE Transel. Shanghai,
China, 2010(9).

Guojin Zhu is an associate professor at
the Department of Computer Science,
Donghua University (DHU), Shanghai,
China. He received his M.S. and Ph.D.
degrees from DHU in 1991 and 2007,
respectively. He was a visiting scholar at
the Department of Computer Science
and Engineering, Michigan State
University, East Lansing, Michigan,
USA from November 2007 to November

2008. His current research interests include semantic web,
knowledge discovery, and neural computing.

Yefeng Chen is a graduate student of
Computer Software and Theory at
Donghua University. He was born in
Jiangsu province, P. R. China in 1985,
and received the bachelor degree of
Information and Calculation Science in
Nanjing University of Technology in
2007. His current main research interest
is semantic web.

1218 JOURNAL OF SOFTWARE, VOL. 8, NO. 5, MAY 2013

© 2013 ACADEMY PUBLISHER

