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"Beauty in things exists merely in the mind which contemplates them." 

David Hume, 1742 

Abstract—Complexity of software has been largely studied 
as a property of the code. We argue instead that complexity 
is a psychological phenomenon and should be studied from 
this perspective. The psychological literature however is 
structured in a way making of little practical usefulness.  
We propose a model based on isolated psychological facts 
connected by intuitive reasoning to fight complexity in a 
practical way. In this model, complexity corresponds to 
occurrences of cognitive overload in the working memory 
(WM), the bottleneck of cognition. Reducing complexity can 
be achieved by relieving the WM of some load by explicitly 
representing the internal mental constructs using external 
media such as software tools. We present a case study in 
which we used this model to produce a tool to reduce the 
complexity in program comprehension for large software 
systems. The tool was used in an industrial setting. We 
present here the mental constructs targeted and the details 
of the tool. 

Index Terms—Software psychology, Complexity measures, 
Program comprehension, Reverse engineering  

I. INTRODUCTION 

Working with software is difficult, mainly because 
software is inherently complex [1]. Complexity is a 
central issue in software engineering, a raison d’être, one 
can argue. After all, if programs were simple, would ever 
such a discipline exist? In the software literature, 
complexity is discussed mainly in terms of code metrics. 
It is considered as a property of the code itself, ignoring 
that it is actually a human psychological phenomenon.  It 
is the human intellect (of the beholder) that is the subject 
of the experience of complexity. Yet the discussion of 

complexity in software as a psychological phenomenon 
has been largely ignored.    

The feeling of complexity or difficulty is not specific 
to working with software; it is a part of any problem 
solving process, a topic that is well studied in many 
disciplines especially in psychology. Apparently, the 
discipline of psychology should have a lot to offer to win 
the battle against complexity. Yet, it seems that very little 
practical psychological knowledge has been passed to the 
software engineering community. Perhaps there is a 
conception that dealing with complexity from the 
psychological perspective should involve crossing 
disciplines. The study of human intellect is the realm of 
psychology, while, as software engineers, we are more 
educated to work with software artifacts. The idea of 
crossing into a new discipline can be intimidating; we are 
more comfortable with the segregation of disciplines. 

 Psychology, in particular, can be very inhospitable for 
outsiders; it is a science that is based on rigorous 
experiments based on validating hypotheses in labs or 
lab-like settings [2]. Simple comprehensive theory or 
rules of thumb that can provide practical help for 
outsiders, like us the engineers, are not so common.  

II. PSYCHOLOGY FOR SOFTWARE: THE GAP 

Obviously, there is a gap between what psychology 
provides in form of rigorously validated conclusions and 
the kind of intuitive knowledge needed to guide us in our 
fight with complexity.  Bridging this gap could be a 
valuable achievement; psychology is a science with over 
100 years of accumulated knowledge that is supposed to 
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help in dealing with a problem that is primarily 
psychological.  

In bridging this gap, some vacuum has to be filled with 
conclusions that may be less scientific than what is the 
norm in psychology. However, there should be no fear of 
being less scientific: new trends in the philosophy of 
science encourage valuing theories based on their 
problem solving efficacy rather than on their scientific 
rigor [3]. Moreover, the alternative to relaxing the 
scientific rigor, as we propose, is the total absence of any 
guidance from scientific facts as we already have when 
we develop tools for helping with complexity. For 
example, the area of reverse engineering has seen little 
success in achieving its objectives. Many scholars argue 
that this disappointing result has been largely due to the 
fact that reverse engineering tool developer’s base their 
design on their intuitive assumptions of what can be 
useful in reducing complexity in the absence of any 
formal guideline or criteria for evaluating success [4].  

We argue that, in order to arrive at a theory or model 
that is practical enough to aid in software, connecting 
accurate dots (rigorous facts of psychology) with not-so-
accurate lines (intuitive assumptions) is more likely to 
reveal a picture that is more accurate than a drawing 
without any demarcation points (the dots). 

In this article, we try to present an intuitive model for 
fighting complexity that is based on psychological 
evidence and yet practical enough to influence or even 
guide software engineers in their fight with complexity. 
We try to connect the set of fragmented lab-proven facts, 
which can be individually of little practical value, into 
one comprehensive practical theory.  

We start by giving an overview of some psychological 
facts that are instrumental to understand the nature of 
complexity (the dots) as seen by the psychology field. We 
then build on these facts (connect the dots) to propose a 
model of understanding and fighting complexity in terms 
that can be mapped into software design decisions. 
Finally, we describe how we applied this model/approach 
in a case study.  

III. THE DOTS:  PSYCHOLOGICAL FACTS ABOUT 
COMPLEXITY 

To find facts useful in dealing with complexity, the 
human cognitive system responsible for information 
processing is the place to start. Unfortunately, the logical 
anatomy of the human cognitive system is complex and 
subject to many theorizations about its functional 
components and their interactions.   

Within the large psychological body of literature 
describing cognition, one logical component of this 
system has been shown to be so central in understanding 
the psychological aspects of complexity – the working 
memory (WM). The WM has very interesting 
characteristics that makes it intimately related to our 
interest in complexity: 

• It is the mental workbench that is the place of all 
conscious activities and problem solving [11]. 

• It is well-characterized as a place of limited and 
scarce resources.  It is widely considered to be 

the bottleneck for the human cognitive system 
[5].      

WM itself has been subject to different theorizations 
(see related work section), yet some facts have 
accumulated significant empirical support about resource 
utilization and performance in WM: 

1. The number of information elements or concepts 
that can be stored and used in problem solving in 
WM is very limited [14].  

2. The more information is stored, the worse the 
overall performance gets [6].  

3. The longer duration the information are stored 
(beyond 20-30 seconds when active rehearsal 
becomes needed), the worse performance gets [12]. 

As these facts show, the performance of the WM, and 
consequently the whole human cognitive performance, 
depends critically on minute details such as small 
differences in the number of items it stores and on the 
duration they are stored.    

A. Connecting the Dots 
To connect the above dots, we propose that much of 

our perception of complexity is directly related to the 
load on the WM resources. As such, a problem becomes 
complex when its memory representation requires enough 
resources that approach or exceed the WM capacity.  In 
particular, it is the requirement to simultaneously store 
elements in the WM that tests its capacity. How many 
elements exactly and for how long is not important from 
our point of view as long as these elements and their 
storage duration are seriously limited compared to the 
magnitude of problems we need to solve in software 
engineering.     

Accordingly, we propose that managing complexity 
depends on maintaining an adequate level of cognitive 
load (CL) and in particular avoiding cognitive overloads.  
Yet the question remains about the possibility of 
managing CL, can we choose to avoid overloads? 

The answer seems simple when we depend on intuition: 
we do that every day.  When our WM capacity is 
overloaded we resort to external artifacts. For example, 
when we need to store a piece of information that is large 
beyond our WM capacity (e.g. a 9-digit telephone 
number or a shopping list), we write it on a paper. The 
paper thus becomes an extension of the WM that extends 
its storage capacity and takes over some of its storage 
load. The paper can be considered as a cognitively 
inexpensive and resource abundant node within one 
distributed cognitive system to which storage load can be 
delegated. This delegation also happen in processing 
tasks such as when we use a hand held calculator to 
delegate some of the CL of arithmetic so we can free our 
cognitive resources for higher order task like calculating 
a financial statement. In addition to papers and 
calculators, a spreadsheet or even software are all 
examples of external artifacts to which we can delegate 
CL if they can properly integrate with our mental 
processes to form one cohesive distributed cognitive 
system.  
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B. CL and Complexity 
To illustrate how the load on memory translates to the 

psychological notion of difficulty or complexity, consider 
the exercise of adding two numbers mentally. Start with 
adding a 2-digit number to a 1-digit number, say 77 +8. 
This can be easily performed mentally without any help 
as the elements of the problem representation fit within 
the WM capacity. However, when we increase the 
number of digits to four, say (77+89), the task starts to be 
perceived as difficult for some and even intractable for 
others. As the number of elements that need to be 
simultaneously retained in the WM increases (beyond 4 
or 5 digits), most people find such problem to be difficult 
or complex.   

So how do we manage complexity in such situations? 
Again, by using a pen and a paper, the many-digits 
problem becomes tractable. The paper relieves the WM 
from the load incurred in retaining the digits in memory 
since the digits visibility on paper substitute for their 
mental visibility. There will be no more a need for all the 
digits to be retained simultaneously in the WM for 
enough time until the mental calculation finishes.  

The level of success in delegating or integrating 
external artifacts depends, however, on the ability of 
these artifacts to faithfully represent the implicit internal 
cognitive constructs that we build in our WM.  The eye’s 
view of these constructs should be very similar to what 
the mind would visualize. In fact, some recent research in 
brain neuroscience showed a striking similarity in brain 
activities between in-memory visualization and optical 
vision [7]. Mentally visualizing an object was found to 
produce a very similar brain signature to the signature 
produced by actually looking at the same object. Taking 
this into consideration, the term externalization becomes 
more appropriate as the goal becomes to externalize 
imagery from internal memory to external artifacts.  

IV. AN APPROACH FOR HANDLING SOFTWARE 
COMPLEXITY 

So how can we apply this theory/approach on our 
software problems? Can we sub-contract loads from the 
WM in a way that makes the complex problems that we 
face in software become less complex? Unfortunately, the 
nice parallelism in our example between mental and 
paper addition is not expected to be easily found in 
software. Identifying the mental constructs used during 
software tasks that can be externalized may not trivial. 
Moreover, faithfully representing these constructs can 
also be challenging.  In the next section, we describe an 
approach and a case study in which we applied our 
approach in one of the most complex tasks of software 
engineering. 

A. Managing CL 
Perhaps one of the best places where complexity is 

intensely prominent is the area of program 
comprehension during software maintenance of large 
legacy systems. This is an inefficient process mainly 
because of the difficulties in comprehending the code of 
the software systems. Trying to understand someone 

else’s code can be highly taxing on the WM due to the 
unfamiliarity factor since unfamiliarity prevent  
capitalizing on the information in the long term memory 
(chunking) to create a smaller footprint in the WM 
(another fact from psychology).  

The classical way to address the inefficiency in 
software maintenance has been to develop reverse 
engineering tools that attempt to extract relevant 
knowledge from source code and present it in a way that 
breaks the code complexity and thus facilitates 
comprehension.  However, these tools have a major “low 
adoption” problem among software engineers (SEs) in 
industry; developing tools that makes program 
comprehension easier has proved to be not so easy task.  
The failure to produce effective tools is, in our opinion, 
due to the absence of understanding of the true nature of 
complexity.  There is a gap between the real source of 
difficulties a SE faces and what the reverse engineering 
tool developer intuitively assumes.  

Program comprehension is predominantly a cognitive 
process, so instead of basing our tool design on intuitive 
assumptions about what make program comprehension 
easier; we present an approach that is based on what we 
are proposing in this article:  reduce cognitive overloads 
that are the actual source of complexity by externalizing 
them to an external artefact – a reverse engineering tool.   

B. The Approach 
Our approach to break the complexity of program 

comprehension involves the following steps:  
1. Characterize the mental processes used during 

program comprehension. Characterizing how 
programmers understand programs is a thread in 
computer science literature called “cognitive 
models of program comprehension” [8]. A 
cognitive model describes the major internal 
cognitive activities in a generic way. Knowledge 
provided by these models can be useful but, as 
we find out, they are often not detailed enough 
to identify problems that can be addressed by a 
tool. Therefore, we did our own work by 
analyzing the work practices of SE during 
software maintenance, focusing on how SE’s 
comprehend programs from a cognitive 
perspective.   

2. Identify situations and tasks where cognitive 
overloads occur. Such situations are identifiable 
by simple techniques such as external 
observation of SE work practices, by asking the 
SE to identify such situations, or even by 
introspection. 

3. Analyze these tasks trying to identify the nature 
of the mental structures causing the overloads. 
The goal is to identify, among other things, the 
implicit processing constructs and operations 
that go on in the WM.  

4. Design a tool that explicitly represent the mental 
constructs of the overload-causing tasks and 
externalize from the WM whatever possible sub-
activities it can.  
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V. THE CASE STUDY 

We applied our approach in a telecommunication 
company in order to help it reduce the cost of maintaining 
one of its large legacy systems. Minor maintenance 
requests take weeks to finish since most of the time is 
spent on comprehending the system. We analyzed the 
work practices of maintainers looking for sources of 
inefficiency. 

We identified one of the situations of high inefficiency 
when small corrective maintenance tasks are assigned to 
entry level SE’s who have little familiarity with code or 
understanding of the structure of the system.  

The SE’s were typically given a description of 
maintenance request in domain language. Their initial 
goal was to localize the code related to the maintenance 
request so they can modify it. This mostly requires 
mentally executing or comprehending the code (bottom 
up) to determine if the code is related to the maintenance 
request or at least leading to the related code. 

We noted that the mental execution involves the 
tracing of the control flow at the level of routines more 
than at individual lines. The SE’s follow the routine call 
hierarchy at varied levels of depth. They drill down when 
a routine is not clear or when it seems relevant; otherwise 
they move forward at high level in the call hierarchy. 

In analyzing why this activity was perceived as so 
difficult and why it caused frequent overloads, we noted 
the following cognitive sources of difficulties: 

1. Storage overload: the SE’s, while trying to 
mentally explore the execution path of software as 
part of understanding its behavior, need to keep a 
mental map of who calls who— a kind of call tree. 
The map needs to be presented mentally in totality 
since understanding the meaning of a function 
depends on what functions called it and what 
functions it calls. This calling tree aggregates 
together to one concept representing the 
functionality to be achieved. Every part (routine 
name and relative position) of the call tree 
contributes to the overall grasping of the code 
executed.  The necessity to keep all these elements 
in memory simultaneously, particularly when the 
depth of the call tree is significant, made this 
activity cognitively overloading.  

2. High retention cost: the comprehension of code 
that executes in a certain scenario requires 
following the logical relation created by the 
execution (calling) flow between routines that are 
stored all over the software system (in different 
files and directories). The linear order of actual 
code execution has to be mentally reconstructed 

from delocalized static code. This requires finding 
each one of the delocalized piece of code (e.g. the 
calling routine), retaining it in the WM, and then 
finding the next related piece of code (the called 
routine) so that an overall map of the relationships 
can be mentally constructed. In moving from 
acquired information to find the next related one, 
significant time may elapse particularly since 
primitive search tools were used. This retention 
incurs significant CL and in many cases, as we 
observed, the retained information (e.g. calling 
routine) may fade from memory before the related 
information is reached thus breaking the whole 
comprehension process that requires that all the 
related pieces of information to be simultaneously 
present in the WM.  

Interestingly, a similar finding (see related work) has 
been identified in the learning literature. The Split 
Attention Effect theory [9] states that the use of physically 
separated information sources that cannot be perceived 
simultaneously causes a higher cognitive load on WM 
due to the need to mentally integrate the information. 

VI. THE TOOL 

Now that the mental constructs that overload the WM 
have been identified, we need to externalize it to be 
represented by an external medium—a reverse 
engineering tool. That is, if SE’s, during comprehension, 
mentally construct call trees then let’s delegate this load 
to the tool and let the tool do that instead, so the scarce 
resources of the WM can be freed for higher order mental 
tasks.  

Call trees have often been used in trying to understand 
program behavior (e.g. call stacks and traces), but 
unfortunately not in cognitive-friendly forms. For 
example, a call tree can be constructed by a step-wise 
debugger that permits following the call flow; however 
this has been shown to be highly disorienting and not 
useful for program comprehension tasks [10]. A call tree 
that shows in a panoramic way all the call relations 
during a scenario is an attractive representation as it 
explicitly represents the code in its order of execution, 
thus removing the WM load caused by code delocalizing.  

The tool that we developed takes a call trace (a log of 
entries representing the called routine within a scenario) 
and processes the trace in order, generating a call tree 
(see figure 1).  Processing was needed since the call 
traces, even for small executed scenarios are inherently 
large and are of little value in their raw forms. 
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Figure 1: A diagram showing the various steps of trace processing 

Some of the techniques to ensure this parallelism 
between the mental and tool representation included: 

1. Compression: mentally, a human would not 
visualize 100 nodes for the same routine if it was 
called within a loop of 100 iterations. Thus, we 
removed redundant call entries caused by loops 
and recursion. 

2. Selective level display: To parallel the selective 
exploration of call depth that we observed in SE’s, 
we allowed the user to control the depth of the call 
tree using the collapse/expand at each node (much 
like file explorer), so the user drills down in the 
call tree whenever they need to. The user can also 
choose a specific level of call depth to apply to the 
whole tree. 

3. Selective routine display: Not all routines 
contribute to the comprehension equally, some 
routines are more important than others i.e. they 
yield more information in constructing the higher 
level concept the SEs are trying to assimilate. To 
permit the user to hide the less-important routines, 
we developed heuristics that approximate the 
human evaluation of importance of routines 
(ranking) and permitted the user to hide the least 
important on a continuous spectrum. 

4. Learning: contiguous routine call sequences were 
found to recur in the traces. These sequences 
represent patterns that when comprehended at 
their first encounter should be abstracted, learned 
then remembered by the user. To extend this 
ability of the user to remember what he has 
learned, the tool permits the user to choose a 
sequence of call entries (a pattern) and replace it 
with a high level description. This description, 
will then replace all other occurrences of this 
sequence in the traces.  

VII.  EVALUATION 

The various techniques used in the tool did compress 
the call traces to a size that made them readable [11] and 
proportional to the functionality covered.   However, the 

most relevant evaluation is related to perception of SE’s 
of how much difficulty has been reduced.   

 

Figure 2: The call tree generated by the tool where P nodes corresponds 
to a pattern not yet abstracted 

 
The SE’s appreciated the new ways to view the 

software provided by the tool that explicitly represented 
an invisible domain (the dynamic domain i.e. the 
execution of the software) that could be only be 
constructed mentally with difficulty. Some noted that 
although they had a mental conception of how the call 
tree looks like for some familiar code, they were still 
amazed of what the call tree actually looked like in the 
tool. This amazement seems to reflect that they were 
never able to mentally construct large-enough call trees; a 
plausible claim given that, in our subject system, a depth 
of more than eight levels in the call tree was not 
uncommon. One programmer described the tool as a 
panoramic debugger, since a stepwise debugger gives a 
small window of visibility on what is executing, while the 
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higher order view, such that provided by the tool, has to 
be mentally constructed. Overall, the consensus was that 
the tool significantly facilitated the comprehension of the 
system. In particular, it facilitated the kind of 
comprehension that was especially difficult during 
software maintenance. 

VIII. BACKGROUND AND RELATED WORK 

A. The Evolution of WM  
The psychological understanding of the WM and the 

resources it holds has dramatically evolved from its view 
as a short term holder of a limited number of information 
elements. One of the most credible and popular models 
for WM is that suggested by Baddely [12], who views it 
to be more like a mental workbench. 

 Under Baddely’s model, the WM is made out of a 
central executive and two slave subsystems: the 
phonological loop and the visuo-spatial sketchpad. The 
central executive is thought to be the primary workbench 
area of the system where mental work of all sorts is done. 
It initiates a variety of mental processes, such as decision 
making, retrieval of information from long-term memory, 
reasoning and language comprehension. 

The phonological loop is a sound-based system that 
can hold and recycle small quantities of information; it 
corresponds to a short-term rehearsal buffer. The visuo-
spatial sketchpad is a specialized slave system that holds 
visual or spatial codes for short periods of time. 

Baddely considers that the central executive can be 
thought of as a pool of mental resources available for any 
of several different tasks but which is limited in overall 
quantity. Each of the two slave systems also has a limited 
pool of resources. 

Resources are shared in one direction, from the central 
executive down to either the phonological loop or the 
visuo-spatial sketchpad. The central executive shares its 
resources with the slave systems when either one of the 
slave systems becomes overburdened (with an overly 
demanding task) and needs extra resources. However, 
when the central executive shares its resources, it often 
ends up having insufficient capacity to do its own work. 

Recently Baddely [13] added to his model a fourth 
component, the episodic buffer, which holds 
representations that integrate phonological, visual, and 
spatial information, and possibly information not covered 
by the slave systems.   

B. Cognitive Load and Learning 
One of the areas that managed to do well in utilizing 

the psychological knowledge is learning and the design of 
the learning material. We can find in the domain of 
learning comprehensive theories with strong empirical 
evidences covering the relation between WM load, 
performance and the notion of complexity:  

The theory of relational complexity of Halford [14] 
defines relational complexity as the number of 
independent elements or variables that must be simulta-
neously considered to solve a problem. Halford argue that 
relational complexity reflects the cognitive resources 
required to perform a task. The processing difficulty of 

any task is “the number of interacting variables (i.e., 
dimensions or arguments) that must be represented in 
parallel to perform the most complex process in the task”. 
Halford was even more specific when he showed that 
only 4 concepts can be integrated in the WM of an adult 
simultaneously as part of the mental problem 
representation.  

The well-known Cognitive Load theory (CLT) [15] 
suggests that learning happens when there are no 
cognitive overloads. They provide techniques for 
reducing WM load in order to facilitate learning. They 
also propose that users may get an information overload 
when there is too much information that is presented in 
parallel. 

The split-attention effect theory [9] states that when 
learners have to split their attention between disparate 
sources of information, then these sources of information 
have to mentally integrate before the instructional 
material can be rendered intelligible. This process of 
mental integration is likely to impose a heavy cognitive 
load and thus impede learning.   

IX. CONCLUSION 

Complexity is primarily a psychological phenomenon. 
Psychology, a well-established science, should help much 
more than it is already doing. The problem is that the 
literature of psychology is not formulated in a way that 
can provide practical help in the software business as it is 
made in terms of isolated facts (dots) that fall short of 
being comprehensive theories of practical value.  

In this article, we showed that, using some intuitive 
reasoning, these dots can be connected to draw a map that 
can be useful in guiding the software community in 
fighting its eternal enemy – complexity. The approach, 
case study and the reverse engineering tool presented a 
demonstration of how this can be accomplished.  

While performing their intellectual tasks, humans 
create very fluid mental representations that are not 
always easy to replicate with more concrete media. 
Software, more than any other medium experienced by 
humanity before (namely paper), can also be very fluid 
and thus promising in paralleling memory representations.  

Yet, lessons learned from reverse engineering, whose 
main goal is to break the complexity of existing software, 
can also be used in forward engineering. Complexity is 
not specific to software maintenance; it can be part of the 
entire software life cycle. We need to conceptualize 
systems beyond our WM capacity starting from the 
architecture, passing by analysis and design till 
development.  

People intuitively use sketches and diagrams to 
visualize the big picture, or more formally they use 
modeling languages like UML.  Sketching or modeling 
perhaps can be viewed as a way to break concentrations 
of complexity by creating external representations, like a 
pen and paper in mental addition. If that become well 
established, then the perspective we provided in this 
article may be useful in resolving the religious debate 
about the usefulness of modeling (agile vs. formal), 
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answering questions such as how, when and how much 
modeling can be useful.   
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