
Object Detection based on Combination of 
Visible and Thermal Videos using A Joint 

Sample Consensus Background Model 
 

Guang Han 
College of Information Science and Engineering, Northeastern University, Shenyang, China 

Email: a00152738@sohu.com 
 

Xi Cai and Jinkuan Wang* 
Northeastern University at Qinhuangdao, Qinhuangdao, China 

Email: cicy_2001@163.com, wjk@mail.neuq.edu.cn 
 
 
 

Abstract—In uncontrolled video surveillance environments, 
performing efficient foreground segmentation is very 
challenging. In order to improve robustness and accuracy of 
object detection, we take advantage of spectral information 
of both visible and thermal videos. This paper presents a 
novel joint background model combining visible and 
thermal videos for foreground object detection in complex 
scenarios. Different from traditional methods that first 
detected moving objects in either domain respectively and 
then fused the detection results, we provide a joint sample 
consensus background model with four channels (red, green, 
blue and thermal) to accomplish the object detection and 
fusion of complementary information simultaneously, which 
lowers the computational cost of our method. Raw 
foreground segmentation is obtained in the thermal domain, 
making initial foreground more accurate. Meantime this can 
enhance the efficiency of further steps. Time out map (TOM) 
is utilized to deal with the problem that a newly exposed 
background is wrongly marked as foreground for a long 
time. In the updating phase, unlike most sample-based 
methods using first-in first-out policy, we intentionally 
employ a random update policy to reserve some older 
samples. That is, when a pixel is classified as background, 
we randomly pick up one of the background samples stored 
for the corresponding pixel to discard. In this manner, the 
backgrounds, occluded by slow moving foreground or 
temporally still foreground, can be recovered promptly 
when they reappear. Experimental results show that the 
proposed method can achieve accurate and precise detection 
results.  
 
Index Terms—Object Detection, joint sample consensus, 
visible and thermal videos, background model, time out 
map, random update 
 

I.  INTRODUCTION 

Video surveillance is a very active research area in 
computer vision applications owing to rapidly increasing 
number of surveillance cameras. To make video 
surveillance systems more intelligent, there is a strong 

demand to automatically analyze their output videos. 
Object detection in video streams is to segment 
foreground (objects of interest) from background, and it 
is an important initial step for further high level 
processing, such as object tracking, object recognition, 
and activity analysis. Persistence (i.e. 24 hours operation 
in day and night) is the most desirable quality of a video 
surveillance system [1]. Therefore powerful object 
detection algorithms must be robust and effective at all 
times. 

Recently, much effort has been devoted to detection 
algorithms in the visible domain which is abundant in 
color and texture information [2]-[13]. However, in real 
world scenarios, object detection for only visible cameras 
are generally not effective in sudden or gradual changes 
of illumination, visibility and weather, generating poor 
segmentation of actual objects and many false positives. 
There are also some researches on object detection 
algorithms in the thermal domain [14]-[17]. Since 
thermal cameras can capture information of the thermal 
energy emitted/reflected from objects in the scene, they 
are independent of illumination. This makes detection 
algorithms in the thermal domain more effective than that 
in the visible domain under poor lighting conditions. 
However, the thermal videos have their unique inherent 
challenges due to low signal-to-noise ratio, uncalibrated 
white-black polarity changes, and the “halo effect” that 
appears around very hot or cold objects, which leads to 
noise pollution, inaccurate location and enlarged scale of 
the detection results [1]. 

A promising solution in non-ideal environment is to 
segment foreground objects relying on combination of 
multimodal sensors. Combining the thermal sensors and 
the visible sensors can be advantageous in two ways. 
First, thermal and visible information has complementary 
nature, which would remedy the opposite side’s default. 
Second, the redundancy of information captured by 
different sensors of different spectrums increases the 
accuracy and robustness of detection algorithms.  

A few methods have combined information from both 
sensors to robustly detect and track the moving objects 
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[1], [18]-[21]. These methods all extracted initial 
foreground in the visible domain and the thermal domain 
respectively, and then fused them to further improve the 
detection results. However, implementing object 
detection twice was so complicated that it caused very 
high computational cost, and the fusion step at the feature 
level only exploited limited complementary information 
of original images. 

In this study, we propose a method for object detection 
in the thermal and the visible domains using a joint 
background model (JBM-TV for short) to achieve the 
detection and fusion in the meantime. The joint 
background model is nonparametric. Each pixel has a set 
of background samples and each background sample has 
four channels (red, green, blue and thermal). Inspired by 
sample consensus method with three channels originally 
presented in [8], we make some improvement by using 
four channels joint sample consensus to combine the 
thermal and the visible videos. It is different from 
aforementioned traditional methods in combining 
information from both sensors at the pixel level. More 
specifically, each observed pixel is classified as 
foreground or background according to its similarity to 
the joint background model. 

Since a joint background model of augmented “Red-
Green-Blue-Thermal” video input is built, object 
detection and fusion can be executed simultaneously, 
which lowers the complexity of detection method. The 
thermal video is used to extract raw foreground pixels to 
get fewer miss detections and more accurate regions of 
interest (ROIs). A memoryless update policy is employed. 
Different from the traditional first-in first-out (FIFO) 
policy, we randomly update the background samples by 
allowing a few old samples to remain in the background 
model to improve the time relevance. Experimental 
results demonstrate that this framework allows us to fuse 
the complementary information from both domains, 
making it a robust algorithm with accurate and precise 
detection results. 

The organization of the remainder of this paper is as 
follows: in Section II, we present a short review of 
previous related work on object detection. Section III 
describes our technique and details our major innovations. 
In Section IV, experimental results show the advantages 
of our method qualitatively and quantitatively. Finally, 
we conclude the paper in Section V. 

II.  RELATED WORK 

Some works have been published on detection methods 
appropriate for joint thermal-visible video surveillance 
applications. Davis et al. proposed a background 
subtraction algorithm fusing contours from thermal and 
visible images [1]. Binary contour fragments in both 
domains were extracted from initial ROIs respectively 
using contour saliency map, and then combined into a 
better and less broken contour image. However, since 
contours were first extracted from cluttered or incomplete 
foregrounds and then fused, further post-processing was 
required to clear the erroneous contour lines and 
complete the missing contour segments. A belief model 

was developed in [19] to determine the validity of a 
foreground region detected in either sensor respectively. 
The improved segmentation of foreground objects was 
achieved through fusion of reliable sensor measurements. 
In [20], Ulusoy et al. implemented background modeling 
using a single Gaussian and foreground detection 
respectively in infrared image, intensity image and color 
image, and then fused the detection results. The resulting 
foreground regions were used as a mask on the infrared 
image, and snake algorithm was applied to detect object 
boundaries. 

All these methods first detected objects in both 
domains respectively, and then fused the detection results 
to utilize the complementary information. They can gain 
good detection results, but their frameworks are very 
complicated. 

III.  THE PROPOSED DETECTION METHOD 

We present a detection method based on a joint 
background model to simultaneously detect and fuse 
visible and thermal videos. The proposed framework is 
shown in Fig. 1. At first, we use the thermal video to 
segment the raw foreground region (i.e. possible 
candidate foreground pixels). This can lower the amount 
of processed data significantly. Candidate foreground 
pixels and their corresponding background samples are 
fed into the joint sample consensus algorithm, and then 
the pixels from the dynamic background and other 
uninteresting moving objects (e.g. shadows and halos) are 
suppressed. Some post processing methods are utilized to 
improve the integrity and quality of the detected 
foreground. In order to suppress “ghosts”, a technique 
named time out map (TOM) is employed in our method 
to assign lasting foreground pixels to be background. To 
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Figure 1.  Framework of the proposed method. 
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make the background model adaptive, random update 
policy of the background samples is employed every 
single frame for pixels which are labeled as background. 
Finally, binary foreground output is achieved. 

A.  Raw Foreground Segmentation 
Raw foreground regions are segmented in the thermal 

domain because there are fewer miss detections and false 
positives in the thermal domain compared to the visible 
domain. Adjacent frame differencing used in [8] is not 
adopted to extract candidate foreground pixels, for it 
yields holes in the foreground region. Instead, pixel-wise 
median values are computed during a training phase, and 
pixels of test image which exceed a fixed threshold of the 
median are considered foreground. The median and 
threshold method can get more accurate raw foreground. 

B.  Joint Sample Consensus 
As a nonparametric background model, N background 

samples are recorded for each pixel. The values of each 
background sample are obtained from both visible and 
thermal videos, denoted by ( ) { ( ), ( ), ( ),R G Bx i x i x i x i=m m m m  

} ( )Tx im , where R, G, B for the red, green, blue channels, 

T for the thermal channel, and ( )x im  indicates four 
channel values of the ith sample for pixel m. 

For current frame at time t (t>N), we define ( )x tm  as 
the observed four channel values for pixel m. According 
to similarity between the current observation and 
background samples, N votes are generated for each 
channel as follows, 

 
1, ( ) ( ) ,

( , )
0, otherwise,

c c c
c x i x t T

Vote i t
− ≤

=
⎧
⎨
⎩

m m m
m  (1) 

where cTm  is a threshold, proportional to standard 

deviation cσm of background samples. Moreover, 

considering that cσm  may be overestimated when the 
background samples are multimodal distributed, we also 
set a constant maxT to limit the maximum value of cTm . So  

 maxmin( , )c cT T= ησm m , (2) 

where η  is usually set as 2.5. 
Equation (1) means that, when current observation 

value is similar to one of the background samples, one 
“agree” vote would be produced to suggest the current 
observation as a background pixel. Counting the number 
of “agree” votes in each channel, the proposed method 
obtains background decision as follows, 

 1

1, ( , ) { , , , },
( )

0, otherwise,

 
N

c c

N
i

Vote i t T c R G B T
Bg t =

≥ ∀ ∈
=
⎧
⎪
⎨
⎪⎩

∑ m

m  (3) 

where c

NT  is a threshold for the total amount of “agree” 

votes, and ( )Bg tm  is a binary value. When the total 

amount of “agree” votes is lager than c

NT , ( )Bg tm  equals 
one which represents a background pixel; Otherwise, 

( )Bg tm  equals zero that signifies a foreground pixel. 

Obviously, c

NT  is in direct proportion to sample size N 

and threshold cTm . Namely, 

 c c

NT T N= τ m , (4) 

where τ  is a constant and chosen empirically. 

C.  Post Processing 
Morphological operations are employed in post 

processing. First, morphological close operation to 
connect foreground part is implemented. We use vertical 
line as structure element, because human has many 
vertical edges. Then, morphological fill operation is used 
to fill the holes in the foreground region. At last, 
connected component analysis is utilized for each 
resulting image, eliminating the foreground pixels whose 
4-connected region is less than 20. 

D.  Time Out Map 
After post processing, there still exists a problem that 

some pixels belong to foreground continuously. This is 
abnormal in real-world scenario though the speed of 
some moving objects is slow. This phenomenon is called 
“ghosts” and it is always caused by the moved or inserted 
background objects. We use a simple counter TOM to 
solve this problem, and ( )TOM tm  is the counter’s value 
at pixel m at frame t. This map is incremented every 
frame at the pixels that have been classified as foreground. 
Once a pixel is classified as a background pixel, 

( )TOM tm  is set to zero. Namely, 

 
( ) ( 1) 1, ( ) 0,

( ) 0, otherwise.

TOM t TOM t Bg t

TOM t

= − + =

=

⎧
⎨
⎩

m m m

m

 (5) 

When ( )TOM tm  is larger than a threshold, pixel m 
should be assigned to the background. 

E.  Random Background Updating 
As the background scene is always changing, the 

background samples should be updated to fit the changes 
of the environment. We employ conservative update 
policy by selectively adding only pixels marked as 
background to the background model.  

Furthermore, we randomly choose the ith（i=1,…,N）
background sample to update as follows, 

 
( ) ( ), ( ) 1,

no updating, otherwise.

c cx i x t Bg t= =⎧
⎨
⎩

m m m  (6) 
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In this way, older samples are not discarded directly like 
FIFO, but reserved partly. According to the valuable 
information in the older samples, we can recover the 
backgrounds when they reappear after once occluded by 
slow moving foreground or temporally still foreground. 

IV.  EXPERIMENTAL RESULTS 

In this section, we shall present results of our JBM-TV 
method while challenging real-world visible and thermal 
videos. We take a publicly available OTCBVS 
Benchmark Dataset Collection (Dataset 03: OSU Color-
Thermal Database) [1], which has six sequences in the 
dataset. The first two sequences (Campus A and Campus 
B) are used in our test and they have color and thermal 
images recorded in a daytime situation where a group of 
clouds is passing in the sky, causing abrupt illumination 
changes in various parts of the observed scene. We 
empirically set the number of background samples N=50. 

A.  Qualitative Analysis 
The aim of this experiment is to demonstrate the 

efficacy of our algorithm for object detection. For 
comparison, we also introduce Zivkovic method [22], a 
very promising object detection method recommended by 
[23], to perform on visible and thermal domain 
respectively. 

Examples of silhouettes extracted are shown in Fig. 2-
Fig.7. In Fig. 2-Fig. 5, we can see that in the visible 
domain, Zivkovic method detected a lot of false positives 
because of the sudden illumination changes, and also 
detected shadows as foreground. The proposed JBM-TV 
method can eliminate the false positives and shadows by 
using the thermal video in initial segmentation. As seen 
from Fig. 6 and Fig.7, in the thermal domain, Zivkovic 

method detected halos around the person, but JBM-TV 
method can still eliminate the halos by combining visible 
information. 

B.  Quantitative Analysis 
We use two CLEAR metrics [24], multiple object 

detection accuracy (MODA) and multiple object 
detection precision (MODP), to quantitatively analyze the 
proposed method.  

MODA is to access the accuracy of the performance at 
the object level. Assuming that the number of misses is 
denoted by tm  and the number of false positives is 

denoted by tfp  for each frame t, MODA is defined as 

 ( ) t t

t

G

m fp
MODA t 1

N

+
= − , (7) 

where t

GN  is the number of ground truth objects in frame 
t. The normalized MODA (N-MODA) for the entire 
sequence is denoted as 

 1

1

( )
1

frames

frames

N

t tt

N t

Gt

m fp
N MODA

N
=

=

+
− = −

∑
∑

, (8) 

where framesN  is the total frame number of the sequence. 
MODP is to evaluate the precision of the performance 

at the pixel level.  We first compute the mapped overlap 
ratio (MOR) as follows 

 
1

( )
t
mapped

t tN
i i

t t
i i i

G D
MOR t

G D=

= ∑
I

U
, (9) 

                                  
(a)                                                                                                       (b) 

                                  
(c)                                                                                                       (d) 

Figure 2.  Original frames and detection results of frame 131 of Campus A: (a) original frame in the visible domain. (b) original frame in the thermal 
domain. (c) using Zivkovic method in the visible domain. (d) using JBM-TV method in both domains. 
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(a)                                                                                                       (b) 

                                  
(c)                                                                                                       (d) 

Figure 3.  Original frames and detection results of frame 301 of Campus A: (a) original frame in the visible domain. (b) original frame in the thermal 
domain. (c) using Zivkovic method in the visible domain. (d) using JBM-TV method in both domains. 

                                  
(a)                                                                                                       (b) 

                                  
(c)                                                                                                       (d) 

Figure 4.  Original frames and detection results of frame 341 of Campus B: (a) original frame in the visible domain. (b) original frame in the thermal 
domain. (c) using Zivkovic method in the visible domain. (d) using JBM-TV method in both domains. 

where t
iG  denotes the ith ground truth object in frame t, 

t
iD  denotes the detected object for t

iG , and t
mappedN  is 

the number of mapped object pairs in frame t. Then, the 
MODP is computed as 

 
( )

( )
t

mapped

MOR t
MODP t

N
= . (10) 

The normalized MODP (N-MODP) that gives the 
detection precision for the entire sequence is defined as 

 1
( )framesN

t

frames

MODP t
N MODP

N
=− =

∑
. (11) 

In our experiments, we randomly pick up 40 frames in
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(a)                                                                                                       (b) 

                                  
(c)                                                                                                       (d) 

Figure 5.  Original frames and detection results of frame 491 of Campus B: (a) original frame in the visible domain. (b) original frame in the thermal 
domain. (c) using Zivkovic method in the visible domain. (d) using JBM-TV method in both domains. 

                                  
(a)                                                                                                       (b) 

                                  
(c)                                                                                                       (d) 

Figure 6.  Original frames and detection results of frame 201 of Campus A: (a) original frame in the visible domain. (b) original frame in the thermal 
domain. (c) using Zivkovic method in the thermal domain. (d) using JBM-TV method in both domains. 

each test sequence and their corresponding detection 
results. Then, we manually marked the ground-truths and 
the detection results using rectangle. The MODA and 
MODP can finally be obtained according to the 
parameters of these marked rectangles.  

All the above considered measures attain values in 
[0,1], and the higher the value, the better the results. 

The MODA and MODP for both sequences are shown 
in Fig. 8 and Fig. 9. The MODA values demonstrate that 

our method performs well at object level in complex 
environments. The MODP values show that our method 
is quite acceptable at pixel level.  

According to Fig. 8, we can calculate that, the N-
MODA for Campus A is 0.96, and the N-MODP for 
Campus A is 0.82. As seen in Fig. 9, the N-MODA for 
Campus B is 0.95 and the N-MODP for Campus B is 
0.81. For these two challenging sequences, our JBM-TV 
method attains satisfactory results. 
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(a)                                                                                                       (b) 

                                  
(c)                                                                                                       (d) 

Figure 7.  Original frames and detection results of frame 321 of Campus B: (a) original frame in the visible domain. (b) original frame in the thermal 
domain. (c) using Zivkovic method in the thermal domain. (d) using JBM-TV method in both domains. 

                                  
(a)                                                                                                       (b) 

Figure 8.  Quantitative Analysis of JBM-TV method for Campus A: (a) MODA and (b) MODP 

                                 
(a)                                                                                                       (b) 

Figure 9.  Quantitative Analysis of JBM-TV method for Campus B: (a) MODA and (b) MODP 

V.  CONCLUSION 

In our study, we provide a joint sample consensus 
background model, which is different from the common 
methods that first detect foreground respectively and 
then fuse the detection results. In our background model, 
object detection and fusion can be executed 

simultaneously, which lowers the complexity of 
detection method. Also, it is helpful to extract initial 
ROIs in the thermal domain, employ TOM mechanism 
and utilize memoryless update policy. Experimental 
results demonstrate that JBM-TV method can handle 
scenes containing dynamic background, gradual and 
sudden illumination changes. Meanwhile it can eliminate 
the shadows and halos around the moving objects. 
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