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Abstract—By use of semantic attributes of 3D object, the 
user can search for targeted objects, which main advantage 
is that it does not require the user to sketch a 3D object as 
the query for 3D object retrieval, and the retrieval system 
can obtain a better retrieval performance. There are many 
categorical datum among these attributes, and how to use 
those and find the most similar objects is a vital problem to 
resolve. However, several elements with different types may 
have a shorter Euclidean distance. It is obvious the objects 
belonging to the same category are closer. Therefore, we 
present a 3D object retrieval method with clustering 
principle and RBF interpolator, which need a robust 
clustering method. The k-modes is a classic clustering 
algorithm for categorical data set. Its principle is simple, but 
it is easy to converge to a local optimum. PSO (Particle 
Swarm Optimization) algorithm is an effective tool for 
optimization, so we attempt to overcome the local optimum 
problem with PSO for categorical data set. PSO usually 
used to solve continuous optimization problems., but the 
categorical data are non-continuous. This paper presents an 
a novel k-p-modes algorithm to overcome these problems. 
Results show the method is effective.  
 
Index Terms—3D object retrieval, particle swarm 
optimization, K-Mode, clustering algorithm 

I.  INTRODUCTION 

Three-dimensional (3D) models have become 
widespread in not only research and industry, but also 
entertainment, such as computer vision, CAD, and 
computer game. Because of the demand to organize these 
3D models for effective creation and distribution, 3D 
models retrieval has been drawn more and more attention. 
A shape-based 3D model retrieval system compares 
shape of 3D models for their retrieval[1]. However, 3D 
models that have a similar meaning may own different 
shape, or 3D models that have different meanings may 
own a similar shape. Literature [2] developed an 
alternative solution, and users search for targeted 3D 
objects in mind by specifying the attribute values. This is 

an intuitionistic way of delivering search intents to the 
system for common users, because humans tend to 
describe an object using high-level semantic attributes. 
Besides, these semantic descriptions of 3D objects are an 
important complement to low-level shape features, and 
thus can use to improve existing 3D object retrieval 
algorithms. 

A common method to find the result objects is to 
calculate the Euclidean distance between an element and 
the virtual object with given attributes, and take the ones 
with smaller distance as research results. But it often is 
not a best result. Although some objects with same 
category maybe are further away from the virtual object 
than a few other elements with different category, since 
they have the same pattern, and have more similarity. 
Therefore, it is necessary to perform clustering analysis 
for finding a better retrieval result[3]. 

Cluster analysis is an important tool for information 
retrieval, which can divide the known data set into 
meaningful or useful clusters[4]. The K-means algorithm[5-

7] is well-known for its efficiency in clustering large data 
sets. But, it may only stop at local optima of the 
optimization problem and working only on numerical 
data limits its use. Furthermore, how to use the clustering 
analysis to improve 3D retrieval is a subject to be noted 
and studied. 

Large categorical data sets are often met in such areas 
as data mining. The categorical data are discrete, 
sometimes non-numeric. For example, there are a set of 
data describing the properties of 3D model: shape, uses, 
scale. Many clustering algorithms for categorical data 
have been developed. Huang proposed the algorithm for 
clustering large data sets with categorical values in 
1998[5]. On this basis, Huang and others proposed a fuzzy 
k-modes algorithm in 1999[6]. These algorithms are 
similar to the k-means algorithm except for calculating 
the similarity between two elements. Like the k-means 
algorithm, the k-modes algorithm also stops at locally 
optimal solutions, that depends heavily on the initial 
modes and the distribution of the data set. Many literature 
have tried to find a globally optimal solution. For 
example, the fuzzy k-Modes algorithm, the tabu 
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searching method[7]; the genetic fuzzy k-modes 
algorithm[8]. 

In PSO, the system is initialized with a population of 
random solutions and searches for optima by updating 
generations. The PSO potential solutions, called particles, 
fly through the problem space by following the current 
optimum particles. Comparing with GA, PSO is easy to 
implement and has fewer parameters to adjust. PSO 
simulates the behaviors of bird flocking. PSO is 
initialized with a group of random particles (solutions) 
and then searches for optima by updating generations. In 
past several years, PSO has been successfully applied in 
many research and application areas. It is demonstrated 
that PSO gets better results in a faster, cheaper way 
compared with other methods. Another reason that PSO 
is attractive is that there are a few parameters to adjust. 
One version, with slight variations, works well in a wide 
variety of applications. How to apply PSO to k-modes 
algorithm needs to be explored. 

The rest of the paper is organized as follows: Section 2 
introduces some related work. Our K-P-modes algorithm 
is introduced in Section 3. Section 4 describes 3D object 
clustering retrieval approach. A variety of experimental 
results are presented in Section 5. Finally, we provide 
some concluding remarks in Section 6. 

II.  RELATED WORK 

A. 3D Model Retrieval 
Traditional 3D model retrieval puts the emphasis on 

shape matching. That is, determining the extent to which 
two shapes resemble each other[9]. Matching by feature 
correspondences and matching by global descriptors are 
two main approaches to this problem. The strategy in the 
former approach is to compute multiple local features for 
every object and then to compute a distance measure 
between pairs of objects[10]. On the other hand, the global 
descriptor-based approach reduces intrinsic shape 
characteristics to vectors or graph-like data structures, 
called shape descriptors, and then evaluates the distance 
between the descriptor pairs as a measure of similarity. 
Finding correspondences is a well-known difficult 
computational problem in computer vision and shape 
analysis[11]. Global descriptors method attempt to solve 
the correspondence problem by registering the shape 
information on a common grid. References [3] provides 
more comprehensive reviews. 

Transform-based methods[12-20] implicitly register the 
surface points onto a 3D voxel grid by means of a scalar-
valued function, which is then processed by transform 
tools such as 3DFourier[13], angular radial transform[14], 
3D Radon[15], spherical trace transform[16], spherical 
harmonics[12, 17-19], or wavelets [20]. A significant 
advantage of adopting transform method is descriptor 
compaction achieved by keeping first few transform 
coefficients in the descriptor vector. Furthermore, pose 
invariance can be obtained by discarding the phase of the 
transform coefficients at the expense of some shape 
information[17]. 

Two-dimensional view-based methods[12, 21] consider 
the 3D shape as a collection of 2D projections taken from 
different viewpoints. Each projection is then described by 
2D image descriptors like Fourier descriptors[12] or 
Zernike moments[21]. These methods work surprisingly 
well despite their logical disadvantage as they discard 
valuable 3D information. A possible explanation for their 
good performance is that, as the 3D models are 
completely given, projections can be produced in a 
controlled manner so that troublesome effects of 
occlusion and affine deformations are avoided. These 
methods can also be beneficial for 2D sketch-based 
queries. 

In reference [12], a hybrid descriptor, which is a 
combination of two 2D view-based methods, DBI and 
SIL, and a transform based method REXT, is proposed. 
This descriptor, i.e. DSR, is proven to be very effective 
on PSB[22] and on the Konstanz database[23]. 

Graph-based descriptors[24-26] are fundamentally 
different from other vector-based descriptors. They are 
more elaborate, but they have the potential of encoding 
geometrical and topological shape properties in a more 
intuitive manner. However, It is not easy to generalize to 
all 3D shape representation formats and they require 
dedicated matching schemes. In fact, graph-based 
methods do not completely avoid the correspondence 
issue. They just lighten it by reducing the problem of 
matching two feature sets to that of matching graph nodes, 
which still remains a complicated task for general-
purpose retrieval applications. It should be noted that 
some part of the information contained in a graph can be 
encoded in the form of vector-based numerical 
descriptions with tools from spectral graph theory. 

One key issue for a user-friendly search engine is how 
to deliver user search intention to the system. Content-
based retrieval causes great trouble for the user who does 
not have a 3D query that is similar to his targeted objects 
in the database. To avoid this problem, some systems 
allow the user to form a query by sketching the object's 
silhouette[1, 27]. The main drawback of these methods is 
that a 2D sketch is difficult to draw, which leads to less 
retrieval accuracy. Text-based query can only get a small 
part of 3D objects because currently most 3D objects are 
pure shapes without well classification and attribute 
information. 

B. Clustering Analysis 
Clustering is a fundamental exploratory analysis 

problem akin to discovering natural groupings in the 
observed data. It is known to be a hard optimization 
problem mainly in its unsupervised version. The lack of 
any knowledge, except the data themselves, poses 
important challenges at different stages in clustering 
analysis: choosing the right distance function and the 
relevant features, defining the clustering criteria, 
validating the solution. 

Clustering has a huge search space and a vaguely 
defined optimum; these characteristics of the problem are 
addressed in the existing literature by means of various 
heuristics and experimental studies. 

964 JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 2013

© 2013 ACADEMY PUBLISHER



Different paradigms optimize different criteria and 
thus deliver different data partitions. Algorithms like K-
Means or hierarchical forms account for the global data 
distribution. There are also algorithms which exploit only 
local properties and specify that neighboring data items 
should share the same cluster. This approach to clustering 
is called the connectivity principle and is implemented in 
the single-link hierarchical algorithm and in density-
based method. 

Each of the algorithms mentioned above has 
advantages and disadvantages with regard to the 
computational time and parameters tuning. More 
importantly, they deliver different solutions. Each 
algorithm is appropriate to a specific data distribution. 
The k-Means algorithm is very effective with regard to 
the computational time or parameter tuning but is 
applicable to Gaussian clusters of equal volumes. The 
connectivity principle yields clusters of various shapes 
but the methods implementing it may suffer from the 
chaining effect that causes undesirable long and narrow 
clusters, or are very sensitive to parameters. 

Soft computing techniques were proposed to ease the 
drawbacks of the traditional clustering algorithms. Most 
of them minimize the within-cluster variance, being 
inspired by the k-Means algorithm. 

There are a few strategies designed for clustering that 
optimize simultaneously several criteria. The use of 
multi-objective evolutionary algorithms is one of the 
most important contributions in this regard: the solution 
is evolved considering several criteria[28]. 

The current paper proposes a hybridization of k-Means 
with a swarm intelligence technique, aiming at enhancing 
the performance of the traditional clustering algorithm. 
Our method is consistently different from existing 
approaches for clustering based on swarm intelligence. 
Particle Swarm Optimization is used to introduce the 
connectivity principle into the K-Modes clustering 
algorithm; the new method thus takes into account both 
the local and global distribution of data. 

C. Particle Swarm Optimization 
Particle Swarm Optimization(PSO)[29] is a meta-

heuristic mainly used for numeric optimization. Its use in 
combinatorial optimization necessitates rather complex 
adaptations, such as the redefinition of its operators. 
Initially, PSO was intended to simulate the social 
behavior of flocks but its authors observed the 
optimization capability of the agents involved in the 
simulation. 

PSO maintains a population of particles, each one 
characterized by a position vector in the search space and 
a velocity vector which determines its motion. The 
velocity vector is computed following the rules: 

a. Each particle tends to keep its current direction; 
b. Each particle is attracted to the best position it has 

achieved so far; 
c. Each particle is attracted to the best particle in 

population. 
The velocity vector is computed as a weighted sum of 

three terms corresponding to the rules above. Two 
random multipliers are used to gain stochastic exploration 

capability while several coefficients are weights usually 
empirically determined. 

Particle swarm optimization has been used for 
approaches that can be used across a wide range of 
applications, as well as for specific applications focused 
on a specific requirement. PSO simulates the behaviors of 
bird flocking. PSO is initialized with a group of random 
particles (solutions) and then searches for optima by 
updating generations. Each particle is updated according 
to the two ''best'' values. The first one is the position 
vector with its best fitness finish ever, and is denoted by 

idp . The second one is the best fitness particle of this 
iteration, and is denoted by gdp . 

After finding the two best values, the particle updates 
its velocity and positions with the following two 
equations[29]: 

1
1 (.) ( )k k k

id id id idv w v c rand p x+ = × + × × − , 

2 () ( )k
gd idc rand p x+ × × −                                 (1) 

1 1k k k
id id idx x v+ += + ,                                                         (2) 

where k
idx  is the value on the d th dimension of the i th 

particle. k
idv  is the velocity on the d th dimension of the 

i th particle. w is the inertia weight which is a parameter 
to control the impact of the previous velocities on the 
current velocity. 1c , 2c  are positive constants. rand(.) is a 
random number between 0 and 1. 

Many literature attempted to combine particle swarm 
optimization with the clustering algorithm. For example, 
the fuzzy clustering algorithm based on PSO[30-32]. They 
all use PSO to solve the continuous problems. Yin BO, 
etc. propose fuzzy K-Prototypes clustering based on 
particle swarm optimization. Likely k-means, the method 
essentially uses a continuous data processing method[33]. 

Supposed that { }1 2D , , , nX X X= K  is a categorical 
data set with n objects, each of which is described by m 
categorical attributes { }1 2, , , mA A AK . Attribute jA  
(1<=j<=m) has nj categories, i.e., 

{ }(1) (2) ( )DOM( ) , , , nj
j j j jA a a a= K . jn  is the number of the 

value of attribute jA . [ ]1 2, , ,i i i imX x x x= K is the data 
object, where DOM( )ij jx A∈ , 1 i n≤ ≤ . 

Def. 1 The dissimilarity measure between 
[ ]1 2, , ,i i i imX x x x= K  and 1 2, , ,j j j jmX x x x⎡ ⎤= ⎣ ⎦K  can be 

defined by the total mismatches of the corresponding 
attribute categories of the two objects. The smaller the 
number of mismatches is, the more similar the two 
objects. Formally, 

1
( , ) ( , )

m

i j il jl
l

d X X x xδ
=

≡ ∑ , 1 , ,i j n≤ ≤                (3) 

where 

0, ;
( , )

1, .
j j

j j
j j

x y
x y

x y
δ

=⎧⎪= ⎨ ≠⎪⎩
                           (4) 
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Def. 2  Let the k cluster centers be represented 
by { }1 2, , , kZ Z Z Z= K , and ,1 ,2 ,, , ,l l l l mZ z z z⎡ ⎤= ⎣ ⎦K , 

(1 )l k≤ ≤ . The objective of the k-Modes is to minimize 

1 1
( , ) ( , ) 1 , 1 ,

k n

li l i
l i

F W Z w d Z X l k i n
= =

= ≤ ≤ ≤ ≤∑∑   (5) 

subject to  
{0,1}, 1 , 1 ,liw i n l k∈ ≤ ≤ ≤ ≤                       (6) 

1
1, 1 ,

k

li
i

w i n
=

= ≤ ≤∑                                        (7) 

where (.,.)d is defined in Eq. (5). W is the k n×  
partition matrix, and 1liw =  means the object iX  is a 
member of the cluster which center is lZ . ( , )F W Z  is 
also namely the objective function. 

Theorem 1. The quantity ( , )F W Z  defined in Eq. (5) is 
minimized if and only if 

( )
, ( ),r

l j j jz a DOM A= ∈                           (8) 
where 

{ } { }( ) ( )
, ,| , 1 | , 1r t

li i j j li li i j j liw x a w w x a w= = ≥ = = ,  

1 jt n≤ ≤ , 1 j k≤ ≤ .                             (9) 

Theorem 2. Let { }1 2, , , kZ Z Z Z= K  be fixed, then the 
partition matrix W  which minimizes the quantity 

( , )F W Z  defined in Eq. (5) subject to Eq. (8) is given by 

2

1

1, ( , ) ( , ),1 , ;

0, ( ) , .

l i h i
n

li
i

i

if d Z X d Z X l h k
w

X X others
=

≤ ≤ ≤⎧
⎪= ⎨ −⎪⎩
∑

    (10) 

Based on the two theorems described above, the k-
Modes algorithm can be implemented recursively. 

Algorithm 1 
Step 1  Select k initial modes, one for each cluster. 
Step 2  Allocate an object to the cluster whose mode is 

the nearest to it according to Eq. (3). Update the mode of 
the cluster after each allocation according to Theorem 1. 

Step 3  After all objects have been allocated to clusters, 
retest the dissimilarity of objects against the current 
modes. If an object is found such that its nearest mode 
belongs to another cluster rather than its current one, 
reallocate the object to that cluster and update the modes 
of both clusters. (according to Theorem 2) 

Step 4  Repeat step 3 until no object has changed 
clusters after a full cycle test of the whole data set. 

 

Ⅲ. THE K-P-MODES ALGORITHM 

The complete K-P-modes algorithm includes digitizing 
the categorical data, discretizing the categorical data, 
selecting a dissimilarity measure, constructing the 
encoding and fitting function, and PSO optimization of 
K-Modes. The following paper will describe them step by 
step. 

A. Digitizing the Categorical Data 
All the categorical data are mapped to natural numbers. 

For example, there are some 3D Model data which has 3 

attributes, functionalities, shape, natural property, shown 
in TABLE I. The datum are processed, and are shown in 
TABLE II . 

B. Discretizing the Categorical Data 

For each data object [ ]1 2, , ,i i i imX x x x= K  in data set, 
its attribute value ijx (1 i n≤ ≤ ) is now not only a single 
number, but an expanded set on the possible values, that 
is to say, for the jth  value ijx has a confidence 
coefficient on [0,1]. Besides, the default value in the 
matrix should be added by 0. 

For example, the above data object 3X =(2, 1, 1) 
would be now expanded as follows, 

((0, 1, 2), (0, 1), (0, 1, 2)) 

3

0 0 1
0 1
0 1 0

X
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

After being added by 0, 

3

0 0 1
0 1 0
0 1 0

X
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Generally, let max max( )(1 )jn n j m= ≤ ≤ , after 

processing, the data [ ]1 2, , ,i i i imX x x x= K  is transformed 
into a maxm n×  matrix, which is as follows: 

max

max

11 12 1

21 22 2

1 2 max

i i i n

i i i n
i

im im im

x x x

x x x
X

x x x n

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M

L

.          (11) 

The excellence of is that we can now make the data 
more "continuously" for intermediate data object are 
defined, as soon as some coefficients are between 0 and 1. 
This idea is similar to expanding a natural number to an 
integer, or expanding an integer number to a real, etc.. 

C. Selecting Dissimilarity Measure Between Two Data 
Object 

Since each data object change, the dissimilarity 
measure between iX and iY  should be changed 
accordingly. 

max

max

11 12 1

21 22 2

1 2 max

i i i n

i i i n
i

im im im

x x x

x x x
X

x x x n

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M

L

, 

max

max

11 12 1

21 22 2

1 2 max

j j j n

j j j n
j

jm jm jm

x x x

x x x
X

x x x n

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M

L

. 

The new form is as follows, 

1
( , ) ( , )

m

i j il jl
l

d X X x xδ
=

≡ ∑ , 1 , ,i j n≤ ≤           (12) 
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where 
max 2

1

1( , ) ( )
2

n
it jt it jtk

x x x xδ
=

= −∑                 (13) 

In Eq. (12), to divide 2  is to make our algorithm be 
compatible with the traditional k-modes algorithm. The 
objective function ( , )F W Z  is the same as that of the 
traditional k-modes (as Eq. (5)) except for the 
dissimilarity measure, which is defined as Eq. (12). 

TABLE I.   
THE QUANTITATIVE CHARACTERISTICS OF 3D MODEL 

Attr. 
Object Function Shape Natural 

property

X1 food smooth natural 
X2 clothing smooth artificial
X3 housing angular natural 
X4 transport acuminate natural 

TABLE II.   
THE INITIAL DATA OF 3D MODEL 

Attr. 
Object Function Shape Natural 

property

X1 0 0 0 
X2 1 0 1 
X3 2 1 0 
X4 3 2 0 

 

D. The Encoding and Fitting Function 
A single particle in the swarm represents one possible 

solution for clustering the document collection. Therefore, 
a swarm represents a number of candidates clustering 
solutions for the document collection. Each particle 
maintains a matrix 1 2( , , , , )kZ Z Z Z= K , where iZ  
represents the iZ  cluster centroid vector and k is the 
cluster number. At each iteration, the particle adjusts the 
centroid vector' position in the vector space according to 
its own experience and those of its neighbors. We use 

( )f Z as the fitness value to evaluate the solution 
represented by each particle. The fitness value is 
measured by the equation below: 

1( ) ,
( , ) 1

f Z
F W Z

=
+

                              (14) 

where, ( , )F W Z  is defined as Eq. (5). The smaller 
( , )F W Z  is, the higher the fitness value is, and the better 

the cluster is. 

E. PSO Optimization of K-Modes 
In PSO, each particle is made up of the k cluster 

centroids, whose form has changed as shown in (11), so 
the form of velocity should be changed accordingly. It 
has the same representation than a position: a list of sets. 
The only difference is that the coefficients can have any 
real value (not only on [0,1]). 

We apply "standardized" to make sure that all 
coefficients in an expanded position fall in [0,1], and that 
the sum of all values in each line is 1. The example below 
shows how the operator works (remember that the 
coefficients are between 0 and 1). 

0 2 4 0 0.33 0.67
0.1 0.3 0.2 0.17 0.5 0.33
4 1 0 0.8 0.2 0
0 0 1 0 0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⇒
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

The algorithm is as follows. 
Step 1 Initialize 
(1) Initialize the parameters. Give the cluster number 

k , the particle size s , study factors 1c  and 2c , inertia 
weight w , particles' maximal velocity maxV  and the 
maximum iterative error.  

(2) Initialize the k cluster centroids. Choose k data 
objects randomly as cluster centroids to generate one 
particle. Repeat it for s times to generate s particles. Then 
encode each particle and get its position matrix. 

(3) Initialize pbest and gbest. Each particle's personal 
best position is initialized the same as its current position. 
Then calculate the global best position according to 
fitness, which is the highest fitness of all pbests. 

Step 2  Generate partition matrix W . 
Calculate the distance between every particle and each 

centroids of every particle according Eq. (12), then 
generate the partition matrix W according to Eq. (10), 
which allocates each data object to the nearest cluster. 
Repeat it for s times according to the centroids provided 
by s particles.  

Step 3  Calculate each particle's fitness.  
(1) Calculate the objective function ( , )F W Z  

according to the generated s partition matrix W  and Eq. 
(5). 

(2) Calculate the fitness according to Eq. (14). 
Step 4  Update pbest and gbest. 
(1) For each particle, set current value as the new pbest 

if its current fitness value is better than the best fitness 
value (pbest) in history.  

(2) Choose the particle with the best fitness value of all 
the particles as the gbest. 

Step 5  Update the particle, which means maybe 
generate new centroids. Update each particle's position 
and velocity according to Eq. (1), (2).  

Notation: 
(a) Particles' velocities on each dimension are clamped 

to a maximum velocity maxV . If the sum of 
accelerations would cause the velocity on that dimension 
to exceed maxV , which is a parameter specified by the 
user, then the velocity on that dimension is limited to 

maxV . 
(b) The results do not need to be rounded. 
Step 6  Termination. Judge the termination criterion, 

namely whether the iteration reaches the maximum 
iterations or the best fitness reaches the designated value. 
If the criterion is satisfied then stop the program, or else 
go to step 2. 
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Ⅳ. 3D OBJECT CLUSTERING RETRIEVAL METHOD 

Clustering deals with finding a structure in a collection 
of unlabeled data. A cluster is therefore a collection of 
elements which are ''similar'' between them and are 
''dissimilar'' to the elements belonging to other clusters. 
However, it is not to say that the distance between 
elements within a cluster must be smaller than the 
distance of elements between different cluster. That is to 
say 

{ }1 2| ( , ) ( , ) , | .x dist x y dist x z x y C z C< ∩ ∈ ∩ ∈ ≠ Φ  
One way of 3D model retrieval is to directly return the 

cluster hitted by retrieval condition, but which usually is 
a too large retrieval result. The other is to redesign a more 
reasonable method to solve the problem. We propose a 
new retrieval method based on RBF(Radial Basis 
Function)[34] and clustering analysis. 

Supposed that X is a virtual element with the retrieval 
condition. If we want to get those elements closest to X, 
two factors should be considered, one is distance and the 
other is its cluster. We can get a revised distance between 
elements within a cluster according to Figure 1. The 
pentagram represents the virtual element with the 
retrieval condition. The outmost curve is the convex hull 
of the cluster hitted by retrieval condition. The inner 
curve is equidistance curves. How to revise the distance 
is the vital problem. The upper right window shows the 
target distance mapped from the equidistance curves and 
the pentagram is located in a central location. This is a 
typical interpolation problem. 

 
Figure 1.  Revised distance  within a cluster 

Radial functions have proven to be an effective tool in 
multivariate interpolation problems of scattering data. 
Given the set of values 1 2( , ,..., )nY Y Y Y=  at the distinct 
points 1 2( , ,..., ) d

nX X X X R= ⊂ , we want to 
approximate the real valued function f(X) by an 
interpolator S(X); such that 

( )    1,..., .i i iS X Y i N= =  
We choose S(X) to be a RBF of the form 

1
( ) ( ) ( ),   ,

N
d

i i
i

S X p X X X X Rλ
=

= + Φ − ∈∑    (15) 

where p is a polynomial of low degree and the basic 
function Φ is a real valued function on [0, ∞], usually 
unbounded and of non-compact support. λi is a real-
valued weight, |.| denotes the Euclidean norm and |X-Xi| 
is simply a distance which shows how far X is from Xi. 
Actually, a RBF is a weighted sum of translations of a 

radially symmetric basic function augmented by a 
polynomial term. 

The mapping function S is actually an interpolator. The 
number of the constraints is N. Literature [34] showed 
that the smoothest interpolation function, which has the 
minimum semi-norm, has the simple form 

*

1

( ) ( ) ,
N

i i
i

S X p X X Xλ
=

= + −∑            (16) 

where p is a linear polynomial, which has the form 
1 2 1 1( ) ... d dp X c c x c x+= + + + . The coefficients λi are real 

numbers and |.| is the Euclidean norm on Rd. Take into 
account the orthogonality condition 

1 2
1 1 1 1

... 0
n n n n

i i i i i i di
i i i i

x x xλ λ λ λ
= = = =

= = = = =∑ ∑ ∑ ∑ .   (17) 

These side conditions along with the interpolation 
conditions of Eq. (16) lead to a linear system to solve the 
coefficients that specify the RBF. The linear system has 
the following form: 

11 12 1 11 1 1 11

12 22 2 12 2 2 21

1 2 1 1

11 21 1 1

1 2 1

1
1

1 ,
1 0 0 0
1 0 0
1 0 0 0

n d

n d

n n nn n dn n n

n

d d nd d

x x y
x x y

x x y
x x x c

x x x c

φ φ φ λ
φ φ φ λ

φ φ φ λ

+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

L L

L L

M M O M M M O M M M

L L

L L

M M O M L M M

L L

 (18) 

where , , 1, ,ij i jX X i j nφ = − = K . 
Solving the linear system determines λi and ci, and 

hence S(X). Note the above linear system only resolves 
the mapping function yi1, substituting yi1(i=1, …, n) with 
yij (i=1, …, n; j=2, …, d) will give the linear system that 
determines Sj. In our method, target coordinate can be 
determined by the following method: the virtual element 
move to the centroid of the cluster, and elements locating 
at the convex hull are projected radially to the outer circle. 

Based on the above interpolator, we can get a 
discernment formula: 

' '
1

'' ' ''
'

' ''
1

'

( ( ), ( )),         , cluster  ;

( ( ), ( )) ( , ) 
( , )

    , cluster ,    is the intersection

    of envelope circle and the line ( ).  

dist S X S X X X

dist S X S X dist X X
Disc X X

X X X

XS X

⎧ ∈
⎪

+⎪= ⎨
∉⎪

⎪
⎩

 (19) 

where dist(.,.) is the common distance function. 
On the basis of cluster analysis, we can calculate the 

revised distance Disc between each element and X, and 
select m smallest Disc elements as the query results. 

Ⅴ. 3D OBJECT SEMANTIC RETRIEVAL AND EXPERIMENT 

We first verify the K-P-modes algorithm. We use two 
measures to evaluate the quality of our methods.  

We use the corrected Rand index[35] to assess the 
recovery of the underlying cluster structure. Let 

11 2, , , kP C C C⎡ ⎤= ⎣ ⎦K  and 
21 2' ', ', , 'kP C C C⎡ ⎤= ⎣ ⎦K  be two 

clustering results of D. The number of points, denoted by 
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nij, simultaneously in iC  and 'jC , i.e. 'ij i jn C C= ∩ , then 
the corrected rand index is defined as 

1 2 1 2

1 2 1 2

1 1 1 1

1 1 1 1

'
2 2 2 2

.
' '1

22 2 22 2

k k k k
ij i j

i j i i

k k k k
i j i j

i i i i

n C Cn

C C C Cn
γ

= = = =

= = = =

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟− ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠=
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟+ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

∑∑ ∑ ∑

∑ ∑ ∑ ∑
(20) 

TABLE III.   
COMPARISON BETWEEN THE RESULTS OF K-P-MODES AND GF K-MODES 

 Max F Ave. F Best 
γ 

Ave. 
γ 

the number of 
times γ=1 

GF k-
modes 193.833 209.083 1.000 0.771 24 

K-P-
modes 120.31 126.5 1.000 0.982 82 

 
The corrected rand index γ  ranges from 0 when the 

two clustering have no similarities, to 1 when the two 
clustering are identical. Because we know the true 
clustering of the data set, the true clustering and the 
resulting clustering are used to calculate γ . 

Our data set is the well-known soybean data set[36]. The 
soybean data set has 47 records, each of which is 
described by 35 attributes. Each record is labeled as one 
of the four diseases: diaporthe stem rot, charcoal rot, 
rhizoctonia root rot and phytophthora rot. Except for the 
phytophthora rot which has 17 instances, all other 
diseases have 10 instances each. Since there are 14 
attributes that have only one category, we only selected 
other 21 attributes for the purpose of clustering. 

Results are shown in TABLE Ⅲ. We specify k =4, 
s =20, 1c = 2c =2, w =0.5, and max = 200. After running a 
hundred times, the misclassification rate is 1.91 using our 
algorithm, and 3.76 using genetic fuzzy k-Modes 
algorithm for clustering categorical data (GF k-modes). 

Compared the value of ( , )F W Z , Ave. γ , The number 
of times γ =1, we know, the one by our algorithm is 
better than the one by GF-k-modes. And The 
misclassification rate by ours is much lower. 

We provide eleven attributes for the user to describe 
3D objects, including functionalities(food, clothing, 
housing, transport, other), shape(smooth, angular, 
acuminate), natural property (natural and artificial). At 
the clustering stage, we perform clustering analysis of the 
3d model. At retrieval stage, given every attribute value, 
we can decide the category of the object with the attribute 
value, and can get retrieval result. Certainly, if the result 
set is too large, we can use multi-tier clustering, and get 
smaller category and acute result. Our 3D retrieval data 
set is the all 1814 models of the Princeton Shape 
Benchmark [22]. 3D model retrieval results are shown in 
figure 2-4. When we specify the attribute vector (function, 
shape, natural property) is equal to (transport, angular, 
artificial), and a retrieval result can be got in figure 2. If 
let (function, shape, natural property) is equal to (other, 
angular, artificial), and a retrieval result can be got in 
figure 3. If (function, shape, natural property) is equal to 

(transport, smooth, artificial), we can get a retrieval result 
shown in figure 4. 

 
Figure 2.  Retrieval result specifying angular artificial transport model 

 
Figure 3.  Retrieval result specifying acuminate artificial model 

 
Figure 4.  Retrieval result specifying smooth artificial transport model 

Ⅵ. CONCLUSION 

In this paper, we have present a user-friendly 3D 
object retrieval system. With this system, the user is able 
to search the database using semantic attributes to 
describe targeted objects, instead of finding or sketching 
a 3D object as the query. So far there are eleven attributes 
in our system. This set can be enriched in future work. To 
obtain a better retrieval result, and we integrate the PSO 
algorithm and the k-Modes algorithm to find the global 
optimization method. Thinking of that the PSO is often 
used to solve the continuous problem, while the 
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categorical data are discrete, we integrate the two by 
expanding the categorical data into numerical and 
continuous data. Two experiments show that the k-p-
modes is promising and effective. It also points out a 
novel method to resolve the problem like this. 
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