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Abstract— In debugging processes breakpoints are fre-
quently used to inspect and understand the run-time pro-
gram behavior. Although modern development environments
provide convenient breakpoint utilities, it mostly requires
considerable human effort to create useful breakpoints.
Before setting a breakpoint or typing a breakpoint condition,
developers usually have to make some judgements and
hypotheses based on their observations and experiences.
To reduce such kind of effort, we propose an approach
to automatically generating breakpoints for debugging. We
combine the nearest neighbor queries method, dynamic
program slicing, and memory graph comparison to identify
suspicious program statements and states. Based on this
information, breakpoints are generated and divided into
two groups, where the primary group contains conditional
breakpoints and the secondary group contains unconditional
ones. We implement the presented approach on top of
the Eclipse JDT platform. Our objective experiments and
user study indicate that the generated breakpoints can be
effective in aiding debugging work.

Index Terms— software debugging, breakpoint generation

I. INTRODUCTION

Debugging has long been a laborious task for software
developers [1], [2]. Despite the existence of various
automated debugging techniques, the practical debugging
activities are mainly manual and interactive. It is difficult
to mechanically deal with diversified bugs, some of which
may be extremely tricky. Thus the fundamental tool in
debugging is the human brain; the common debugging
process consists of several iterations of observing, making
hypotheses, and testing the hypotheses [3].

Most modern development environments provide com-
prehensive utilities to aid debugging work. Among these
utilities, breakpoint is one of the most frequently used [4].
By using breakpoints developers can suspend the program
execution and explore the program state to find clues to
bugs. During the debugging process, however, developers
usually have to ask themselves a question: where to set the
breakpoints? Setting breakpoints involves their observa-
tions, judgements and hypotheses on the current task and
even experiences of similar situations. It is common that
a veteran sets a small number of breakpoints to reveal a
bug immediately, whereas a novice sets excessive useless
breakpoints, but still fails to find the bug. Therefore, for a
developer, a set of well defined breakpoints presented in
a familiar debugger may be a quite pleasant starting point

for the subsequent debugging work. Some modern IDEs,
such as Eclipse1, provide the functionality to export and
import breakpoints, facilitating reuse and sharing of them.
Additionally, we believe that breakpoints can also be
automatically generated to further accelerate debugging
processes.

To reduce the manual effort of debugging, researchers
have proposed a variety of automated debugging tech-
niques. Some techniques [5]–[8] focus on the abnor-
mity of execution traces by collecting and analyzing
the information of executions of the passing and failing
test cases. Various measurements are taken to indicate
the statements that are more relevant to failing runs
and identify the most relevant statements as the places
where the faults reside. Another group of techniques put
emphasis on the abnormal run-time program states [9]–
[11]. They observe the selected program states at certain
locations and identify the most suspicious states which
are much more likely to appear in failing runs. Ko and
Myers [12] view the debugging process as a question
and answer session and develop the innovative Whyline
tool to prepare candidate questions and help to find
the answers by using both static and dynamic analysis
techniques. Nevertheless, developers may still encounter
problems when using these techniques for real world
debugging tasks. For example, they may want to try
different techniques to find the fault more effectively.
Then the problem is how they could use the outcomes
of different techniques. They may have to familiarize
themselves with various kinds of reports in the form of
tables of suspicious states, lists of faulty statements or
some novel visualizations. Moreover, when the reports
fail to indicate the faulty statements clearly, which is
often the case, developers probably have to switch to their
normal methods and make further effort to find the bugs.
In this case, they may need a seamless integration of the
innovative techniques and the practical productivity tools.
Thus it is helpful to improve the usability and the way
of combining automated debugging techniques to provide
continuous support for debugging.

In this paper, we propose a method to generate break-
points based on a synergy of existing fault localization
techniques. With regard to the typical situation of debug-

1http://www.eclipse.org/
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ging, where there are much fewer failing test cases than
passing ones, we first use the nearest neighbor queries
method [6] to select a passing case that is the most
similar to the failing case (in terms of execution flow) and
compare them to find the suspicious basic blocks. Then
we use backward dynamic slicing [13] to augment the
report of the nearest neighbor queries in order to reveal
the causes of the differences between the two execution
flows. Line breakpoints are generated at the conditional
statements contained in the dynamic slices. At last we
extract memory graphs at specific breakpoints, compare
the graphs to identify the most interesting differences
of program states, and generate breakpoint conditions
based on the state differences. The goal of our work is
to automatically generate useful breakpoints to aid real
world debugging activities. We have performed a group
of objective experiments to show the effectiveness of
our technique in fault localization. In addition, we have
performed a user study to demonstrate the usefulness of
our approach.

An earlier version of the proposed approach has been
implemented and publicly demonstrated [14]. By com-
parison, this paper improves the step of breakpoint con-
dition generation, making it more efficient and portable.
Different from the tool demonstration paper [14], this
paper explains the key ideas with necessary background
(Section II) and a running example (Section III). Also,
this paper gives more detailed explanations on the con-
siderations, strategies, algorithms, and trade-offs in our
approach (Section IV). In addition, a comprehensive eval-
uation has been performed and the results are shown and
discussed extensively (Section VI).

In summary, the main contributions of our work are:
• We propose the idea of automated breakpoint gen-

eration by leveraging the power of fault localization
techniques. This approach can be a viable way of
utilizing academic productions in practical debug-
ging environments.

• We implement a prototype of our approach on top
of the Eclipse JDT platform and use it to perform
objective experiments and case studies. The result
is promising.

II. BACKGROUND

A. Nearest Neighbor Queries

In [6], Renieris and Reiss adopt the k-NN algo-
rithm [15] to select from a set of passing runs the
one that most resembles the failing run (in terms of
execution trace), compare it with the failing run, and
report suspicious basic blocks from the differences. The
distance between a pair of runs (one passing and one
failing) is defined in terms of common distance metrics,
such as Hamming distance, Ulam distance, etc. Before
computing the distance, execution traces are converted to
either binary coverage spectra or exact execution counts.
In binary coverage spectra, the execution count of a
basic block is mapped to 1 or 0, indicating whether the
basic block has been executed or not; in exact execution

count spectra, how many times each basic block has been
executed matters. Take the asymmetric Hamming distance
(AHD) and binary coverage spectrum as an example.
Binary coverage spectra are usually represented as binary
vectors. Thus the Hamming distance between two runs
f (failing run) and p (passing run) is defined as the
number of positions at which the two representing binary
vectors disagree. The asymmetric Hamming distance,
which considers the non-symmetric difference f − p, is
used to report features that are only present in the failing
run f . A sample calculation is given in Table I.

TABLE I.
AHD BETWEEN TWO RUNS, USING BINARY COVERAGE SPECTRA

sample Block 1 Block 2 Block 3

Failing Run f 3 0 2
Passing Run p 0 1 3
Block Difference 1 0 0

Distance(f, p) = (1 + 0 + 0)/3 = 1/3

When all the pairwise distances have been computed,
the pair with the minimum distance value is selected and
compared. Finally, those basic blocks executed only in
the failing run will be reported as suspicious.

B. Dynamic Program Slicing
Program slicing was first introduced by Weiser [16] to

extract parts of program code corresponding to program
behaviors of interest. Since then it has been widely
applied to program testing, debugging, understanding and
other maintenance activities. During program debugging it
can be used to reduce the amount of code developers need
to inspect. In program slicing, a program is sliced with
respect to a slicing criterion, ⟨p, V ⟩, where p is a specified
program point and V is a set of variables of interest.
The conventional program slicing is static, because it is
performed based on static program dependencies and finds
all the statements that might affect the slicing criterion.
Although being helpful to debugging, static program
slicing often produces too large slices to reduce the de-
velopers’ effort. In order to narrow down the search space
further, Korel and Laski [13] proposed dynamic program
slicing which is based on dynamic program dependencies
and finds the statements that have actually affected the
slicing criterion in a specific execution. The backward
dynamic slice of a variable at a point in the execution
trace includes all the executed statements which have
directly or indirectly affected the value of the variable
at that point. In [17], Zhang et al. compare three dynamic
backward slicing methods: data slicing, full slicing and
relevant slicing. As demonstrated in their study, a full slice
can reveal dynamic data or control dependence chains
of specified statements. Therefore, it would be helpful to
perform a full backward dynamic slicing in order to locate
the root cause of a failure accurately.

C. Memory Graph
The concept of memory graph is first proposed by

Zimmermann and Zeller [18] to capture and explore
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program states. Conceptually a memory graph represents
a program’s state at a specific moment during its execution
in the form of a directed graph whose vertices contain
information of variable values and edges represent the
relations between variables. In its formal definition in
[18], a memory graph G is defined as a triple (V,E, root),
where V is a set of vertices, E is a set of edges, and
root is a dedicated vertex. Each vertex v in V is a
triple (val, tp, addr) which stands for the value, type,
and memory address of a variable. Each edge e in E
is a triple (v1, v2, op) where v1 and v2 are the source
and target nodes of e, respectively, and op constructs v2’s
name from v1’s name indicating the way of accessing v2
from v1. The variables that are not accessed by any other
variables and can be directly accessed from the current
context are called base variables. The dedicated vertex
root is designed to reference all the base variables so
that each v in G is accessible from root. The root vertex
itself contains no variable information.

As a typical application for memory graph in software
debugging, memory graph comparison finds the common
subgraph of two memory graphs and pinpoints the differ-
ences between them. Details of the comparison algorithms
can be found in [18]. In our approach, we adapt the
comparison method to generate breakpoint conditions.

1 p u b l i c i n t m e t h o d t o t e s t ( i n t a ){
2 i n t b = 5 ;
3 i f ( a < b )
4 a = methodA ( a ) ;
5 b += a ;
6 re turn b ;
7 }
8 p u b l i c i n t methodA ( i n t c ){
9 i n t d = c + 1 ;

10 c += 1 ; / / t h i s s t a t e m e n t s h o u l d be c+=2
11 i f ( c < 4)
12 re turn c ;
13 re turn d ;
14 }

Figure 1. An example Java program. The faulty statement is at line 10,
                    where the correct version should be c+=2.

III. EXAMPLE

In this section, we illustrate our approach by applying it
to a simple contrived Java program shown in Figure 1. In
the program, the correct version of the statement at line 10
should be c += 2. Suppose we have three test cases t1,
t2, and t3, whose inputs and expected outputs, described
in the form of (input, expected output), are (1, 8), (4, 10),
and (7, 12), respectively. If we run the test cases, t1 fails,
while t2 and t3 pass, because the actual output of t1 is
7 (instead of 8). Then the debugging task is to find out
why t1 fails and fix the program to make it pass.

Our approach is applied just before the manual debug-
ging session begins. Figure 2 illustrates an overview of the
process of the approach. In the first step, we instrument
the program and run the test cases, t1, t2, and t3, to
collect their execution traces. Table II shows the test

results and executed basic blocks, in the form of (begin
line, end line), for the three test cases. Then we calculate
the distances between failed and passed test cases2, and
get Distance(t1, t2) = 1/6 and Distance(t1, t3) = 3/5.
Since Distance(t1, t2) is less than Distance(t1, t3), we
identify t2 as the test case nearest to t1 and report the
difference in executed basic blocks between t1 and t2 as
suspicious. In this example, the only statement contained
in the suspicious basic block is at line 12.

TABLE II.
TEST RESULTS AND EXECUTED BASIC BLOCKS OF THE EXAMPLE

test case test
result

executed basic blocks, (begin line, end line)

t1 fail (2, 3), (4, 4), (5, 6), (9, 11), (12, 12)
t2 pass (2, 3), (4, 4), (5, 6), (9, 11), (13, 13)
t3 pass (2, 3), (5, 6)

In the second step, we perform backward dynamic
slicing using the suspicious statement and the relevant
variable c as the slicing criterion, ⟨line12, c⟩. The re-
sultant slice contains the statements at lines 2, 3, 4,
10, 11, and 12. In the third phase of our approach, we
take the strategy that generates breakpoints at conditional
statements. Thus, two breakpoints (noted as bp3 and bp11
hereafter) are generated at lines 3 and 11 , respectively.

Figure 3. Memory graphs extracted at bp11

In the last step, we re-run the test cases t1 and t2,
extract a memory graph during each run when bp11 is
hit, and compare the two memory graphs to identify the
program states which only appear in the failing memory
graph. We regard these states as suspicious program
states and generate the breakpoint condition for bp11
based on them. The memory graphs in this example are
illustrated in Figure 3 where the suspicious program states
are colored grey and irrelevant states, such as the this
reference, are not displayed. As a result, the breakpoint
condition of bp11 is set to (c == 2)&&(d == 2).
Here we choose to perform memory graph comparison at
bp11 rather than bp3, because the run-time values of the
branch predicate c < 4 (at line 11) are different between
the failing and passing runs, while those of the predicate
a < b (at line 3) are both true. Moreover, we focus on

2Here we use AHD to perform nearest neighbor queries.
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Figure 2. Overview of the automated breakpoint generation process

the variables accessible from the current context, whose
names are prefixed with frame[0], when generating
breakpoint conditions. The rules of choosing breakpoints
for memory graph comparison and generating breakpoint
conditions will be explained in Section IV-B.

So far, two breakpoints, bp11 and bp3, have been
produced. At last we classify the conditional breakpoints,
such as bp11, as primary breakpoints, and the other
unconditional ones, such as bp3 as secondary breakpoints.
When being presented to users, primary breakpoints are
enabled and secondary breakpoints are disabled (but not
removed) by default. During the subsequent debugging
work, if we run t1 (in debug mode), the execution will be
suspended at line 11 and the breakpoint condition (c ==
2)&&(d == 2) will indicate the suspicious program
states. If we enable bp3 and re-run t1, we can find out
that the value of variable a is 1 at that time. Since in
the correct program the state (a == 1) implies (c ==
3) at lint 11, the contrast between (c == 2) and (c
== 3) strongly indicates the faulty statement at line 10
that has been executed between lines 3 and 11.

IV. APPROACH

The process of our approach consists of two phases: 1)
selecting breakpoint locations, which includes the nearest
neighbor queries and the dynamic program slicing, and 2)
generating breakpoint conditions, which is mainly based
on the memory graph comparison.

A. Selecting Breakpoint Locations

There are various kinds of breakpoints, such as line
breakpoints, exception breakpoints, method entry break-
points and watch points. According to our own expe-
rience, line breakpoints are the most frequently used.
Thus, in the presented work, all the generated breakpoints
are line breakpoints. For a line breakpoint, the primary
property is its location, that is, at which line of code it is
set.

Regarding the typical debugging scenario, where there
is one failing test case (or developers usually deal with
failing test cases one by one) and several passing test
cases, we first adopt the strategy that generates break-
points at a certain type of statements. All these statements
are conditional statements where the execution flow of
the failing test case diverges from that of its nearest
passing test case. The nearest passing test case is the one
that has an execution flow most resembling that of the
failing test case. We focus on the nearest passing test
case, because, as shown in [6], [7], when the execution
traces of both failing and passing test cases are similar
(but not identical), the differences between the traces
are more likely to indicate faults. On the contrary, if
we compare two runs that are fundamentally different,
it may be difficult to find useful information from the
comparison.

We use the nearest neighbor queries method from [6]
to find the nearest passing test case for a given failing
one and identify the differences in execution traces. Com-
pared with other fault localization techniques, the nearest
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neighbor queries approach has an acceptable accuracy
of 50% and less technical complexity. As described in
Section II, it just requires execution traces of the failing
and passing test cases and suits well to the typical debug-
ging scenario which we focus on. We collect execution
traces by instrumenting the programs and then running
the test cases. In the nearest neighbor queries, we use
AHD to compute the distance between execution traces
and determine the nearest passing test case. Finally, the
differences are recorded in the form of basic blocks. The
conditional statements anterior to these basic blocks are
proper locations to set breakpoints, because they may be
close to the faulty statements and contain information
to explain the divergence of execution flow. The Java
program shown in Figure 4 presents a common case
where the faulty statement will be executed only if c
< 3 is evaluated to true. Thus it may be quite helpful
to generate a breakpoint at the if statement at line 8 to
suspend the execution just before the faulty statement and
show the value of c at that time.

1 p u b l i c i n t m e t h o d t o t e s t ( i n t a ){
2 i n t b = 5 ;
3 i f ( a < b ) a = methodA ( a ) ;
4 b += a ;
5 re turn b ;
6 }
7 p u b l i c i n t methodA ( i n t c ){
8 i f ( c < 3)
9 c += 3 ; / / f a u l t y s t a t e m e n t

10 re turn c ;
11 }

Figure 4. Another example Java program

However, it is often inadequate to generate breakpoints
only at such conditional statements. There are several
cases where control-flow based techniques, like the near-
est neighbor queries method, do not perform well. For
example, in Figure 1, the control-flow difference is found
at line 12, but it is just the late symptom of executing the
faulty statement at line 10. Although the developer may
discover the fault by manually analyzing data dependence
and searching backward, the task could be laborious if
the dependence and program structure are complex. To
address this issue, we use backward dynamic slicing to
trace back to the program points where the variable values
initially come into the incorrect program states. We add
all the statements reported by the nearest neighbor queries
method and the variables referenced by them to the slicing
criterion set, and re-run the failing test case to perform a
backward dynamic slicing. Breakpoints are then generated
at the conditional statements contained in the resultant
slice.

B. Generating Breakpoint Conditions

In most debuggers, a breakpoint can hold a condition
which is a boolean expression and will be evaluated when
the breakpoint is hit. The typical usage of a breakpoint
condition is to suspend the execution on the breakpoint hit

if the condition is evaluated to true. Thus a breakpoint
holding a proper condition can suspend the execution just
before or after the program enters an incorrect state. It is
especially useful when a breakpoint is hit for a number
of times, but only some of the hits are worth inspecting.

In our approach, we adapt the memory graph com-
parison to synthesize breakpoint conditions for some of
the generated breakpoints. Since memory graphs can
represent the run-time program states exhaustively in a
structural way, the comparison results are usually pre-
cise for presenting incorrect states and also convenient
for condition generation. In the example described in
Section III, the breakpoint condition (c == 2)&&(d
== 2) is directly composed based on the grey vertices
and their incoming edges. However, extracting a memory
graph may incur heavy performance overhead when the
program states are large in number and have complex
data structures. Therefore, it is prohibitively expensive to
extract a memory graph at every breakpoint when it is
hit. We believe that it is also unnecessary, since a large
number of duplicate meaningless breakpoint conditions
may be generated. Regarding that the breakpoint locations
are selected based on the differences in execution flow, we
propose the following rule for choosing the breakpoints
and opportunities (i.e., the hit counts of breakpoints) to
perform memory graph comparisons.

Given a set of breakpoints BP = {bp1, bp2, ..., bpN}
and a specific breakpoint bpi ∈ BP , we collect the
runtime values of the corresponding condition expression
during the executions of the failing test case and the
nearest passing test case. Since every breakpoint is located
at a conditional statement which may be executed for
several times during a single execution, there can be
one or more runtime values for each condition expres-
sion. We use V p

i = (vpi,1, v
p
i,2, v

p
i,3, ..., v

p
i,m) and V f

i =

(vfi,1, v
f
i,2, v

f
i,3, ..., v

f
i,n) to note the two sequences of val-

ues, where vpi,k (or vfi,k) stands for the value collected on
the kth hit of bpi during the passing (or failing) execution.
Then we define the set of comparison points CPi for bpi:

CPi =



{cpi,j |j = min({k|vfi,k = true, vpi,k = false})}
∪

{cpi,j |j = max({k|vfi,k = true, vpi,k = false})},
if vpi,k, v

f
i,k ∈ {true, false};

{cpi,j |j = min({k|vfi,k ̸= vpi,k})}
∪

{cpi,j |j = max({k|vfi,k ̸= vpi,k})}, otherwise

where 0 < k ≤ min(m,n), max and min compute the
maximum and minimum values of k, respectively. Since
conditional statements include if, for, while, and
switch, their condition expressions may have boolean
values or values of other types (e.g., integer and enu-
meration types), which corresponds to the two cases in
the definition of CPi. In essence, CPi contains, for the
breakpoint location of bpi, the first and last times (if
they exist) when the execution flow of the failing test case
diverges from that of the passing test case. Note that we do
not consider all the divergent points for efficiency. Based
on the definition of comparison points, we provide the
following strategy to perform memory graph comparisons
and to generate breakpoint conditions.
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For each comparison point cpi,j ∈ CPi, we extract
two memory graphs Gf

i,j and Gp
i,j when the breakpoint

bpi is hit for the jth time during the failing and passing
runs, respectively. Then we compare the two graphs using
the algorithm borrowed from [18] to find out the almost
largest common subgraph of them, the edges only in the
failing graph, and the edges only in the passing graph.
Since there can be up to two comparison points for
each breakpoint, at most two sets of graph differences
may be produced for the breakpoint during the graph
comparison. No conditions will be generated for the
breakpoints having no corresponding graph differences. If
a breakpoint has exactly one set of graph differences, this
set will be used for generating the breakpoint condition.
When there are two sets of differences for a breakpoint,
we follow the rules below to select one of them for
breakpoint condition generation:
• When nc and n′

c are both zero, we choose d if nef+
nep ≤ n′

ef + n′
ep, otherwise we choose d′.

• When nc is non-zero and n′
c is zero, we choose d.

• When nc is zero and n′
c is non-zero, we choose d′.

• When nc and n′
c are both non-zero, we choose d if

nef+nep

nc
≤ n′

ef+n′
ep

n′
c

, otherwise we choose d′.
Here d, nc, nef , and nep (d′, n′

c, n′
ef , and n′

ep) stand
for the set of edges only in the failing graph, the number
of edges in the common subgraph, the number of edges
only in the failing graph, and the number of edges in only
the passing graph for the first comparison (the second
comparison). We propose these rules based on the idea
that if two memory graphs are similar to each other, the
differences between them may be preferable for revealing
incorrect program states. Based on the set of memory
graph differences comprising a set of graph edges, we
compose the breakpoint condition using the algorithm
shown in Figure 5.

The function ConditionGeneration takes the set
of edges which only exist in the failing memory graph as
its input and outputs a breakpoint condition in the form of
a character string which is a syntactically correct boolean
expression. During condition generation we focus on the
variables accessible from the top stack frame (checked
by the function isAccessible), because only these
variables are visible and can be used to evaluate the break-
point condition when a breakpoint is hit. The function
connect composes the string output by concatenating
all the subexpressions contained in SubExprs with the
logical conjunction operator (i.e., &&).

At last each breakpoint is classified as primary or
secondary according to whether it is conditional or not.
Primary breakpoints will be enabled by default. Thus,
when they are hit during an execution, their conditions
will always be evaluated and the execution may be
suspended accordingly. On the other hand, secondary
breakpoints will be disabled by default, that is, they
will not come into effect until users enable them. We
divide the breakpoints into two groups in order to 1)
distinguish the breakpoints that are more likely to reveal
suspicious program states and 2) reduce the number of

1: function CONDITIONGENERATION(Edges)
2: SubExprs ← {}
3: for all ei ∈ Edges do
4: nodei ← getTargetNode(ei)
5: opi ← getOperation(ei)
6: if isAccessible(opi) then
7: V arName ← getVarName(opi)
8: if isArrayNode(nodei) then
9: SubExprs ← SubExprs ∪

10: {V arName.length == nodei.getLen()}
11: end if
12: if isNullNode(nodei) then
13: SubExprs ← SubExprs ∪
14: {V arName == null}
15: end if
16: if isPrimitiveNode(nodei) then
17: SubExprs ← SubExprs ∪
18: {V arName == nodei.getValue()}
19: end if
20: if isStringNode(nodei) then
21: SubExprs ← SubExprs ∪
22: {V arName.equals(nodei.getStrValue())}
23: end if
24: end if
25: end for
26: return connect(SubExprs)
27: end function

Figure 5. Algorithm for breakpoint condition generation

breakpoints that users have to inspect in the first iteration
of debugging.

V. IMPLEMENTATION

We have implemented our approach as an Eclipse plug-
in, named BPGen. As shown in Figure 6, BPGen is com-
posed of various components which can be divided, by
functionality, into two subsystems: the fault localization
subsystem and the breakpoint generation subsystem.

Figure 6. Architecture of the implementation
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A. Fault Localization Subsystem

We combine several techniques in a pipe-and-filter ar-
chitecture to implement our fault localization subsystem.
The input of the subsystem is ordinary Java bytecode,
which will be instrumented at runtime by InsECTJ [19].
InsECTJ is a generic instrumentation framework for col-
lecting dynamic information for Java programs. While
running the instrumented program, we record the number
of times each basic block is executed as traces. Then
we use NN4J to perform nearest neighbor queries on
the collected traces to select a passing test case that
most resembles the failing one, and report the differences
between their traces. NN4J is our implementation of the
nearest neighbor queries method, whose major algorithms
are borrowed from [6]. After finding out the differences
in execution traces, we re-run the failing case, using
JavaSlicer [20] to compute a backward dynamic slice
with the statements reported by NN4J and the variables
referenced by these statements as slicing criteria. The
calculated slice is the final output of the fault localization
subsystem.

B. Breakpoint Generation Subsystem

We build the breakpoint generation subsystem on top
of Eclipse JDT. One major function of this subsystem is
to generate breakpoints at branch statements contained in
the slice computed by the fault localization subsystem.
We implement this function using the Java parser and
the debug platform provided in Eclipse JDT. The parser
parses a Java source file into its AST representation, with
which we can easily point out the branch statements in the
source file. The breakpoint framework in the Eclipse JDT
debug platform provides a group of utilities to manipulate
breakpoints. We directly use the framework to generate
breakpoints. The other major function of the subsystem
is to identify comparison points, perform memory graph
comparisons and generate breakpoint conditions. We com-
pute the comparison points by analyzing the execution
traces collected by InsECTJ. In previous version, we reuse
the memory graph component of the DDstate plugin3

to implement a breakpoint listener. Once the listener
has been registered to the debug model, memory graphs
will be extracted and compared when related comparison
points are reached during a debugging session. In latest
version, we use Java Debug Interface to implement our
debugger and a simple memory graph. When the debugger
meets a breakpoint, it finds all the accessible variables
and compares them. At last we implement the condition
generation algorithm directly and leverage the breakpoint
framework to set the conditions and default status (i.e.,
enabled or disabled) of breakpoints.

VI. EVALUATION

We have performed an objective experiment and a user
study to evaluate our approach. This section describes the
designs, results, and observations.

3http://www.st.cs.uni-saarland.de/eclipse/

A. Evaluation of Fault Localization

It is reasonable that a breakpoint close to a faulty
statement will be more helpful to discover the fault
than another breakpoint far from the faulty statement.
Moreover, we believe that developers may get meaningful
information or even discover the faults directly, if they
scrutinize the automatically generated breakpoints before
running test cases. In this case, the breakpoints can be
viewed as a group of suspicious statements reported by
fault localization techniques like the nearest neighbor
queries method. Moreover, we must consider the number
of breakpoints generated. Because it makes no sense to
indicate the faulty statements by generating a breakpoint
at every line of code. Furthermore, when observing an
execution of a test case, developers may be seriously
annoyed by frequent interruptions caused by too many
breakpoints. Therefore, we carried out an experiment to
check whether the breakpoints are generated at proper
locations and whether there are too many breakpoints
generated.
Distance to Fault. For a statement in a program, we
use its distance to fault to indicate how far it is from
the faulty statements. We make use of the concept of
program dependence graph (PDG) [21] to compute the
distance to fault, which is inspired by the evaluation
framework proposed in [6]. A program dependence
graph consists of nodes and directed edges, where a
node represents a statement in the program and an edge
connecting two nodes represents the control dependence
or data dependence between them. Suppose, in a PDG,
the faulty statement is represented by node v1 and another
statement is represented by node v2, the distance to fault
of v2 is the number of edges included in the shortest
path connecting v1 and v2 in the PDG. The direction of
the path is either from v1 to v2 or from v2 to v1. The
distance to fault of a breakpoint bp is defined as that of
the statement vbp where bp is located. The distance to
fault of a set of statements (or breakpoints) is defined
as the smallest distance to fault of each statement (or
breakpoint).

We assume that developers would try to find the fault
by reading the source code of a program, starting from a
generated breakpoint and searching along the edges on
the PDG. We also assume that developers are able to
recognize the fault immediately when they see the faulty
statements. Moreover, they may pay much more attention
on the two ends of each edge than other statements. With
these assumptions, it is reasonable to use the distance to
fault of a set of breakpoints to represent the possible least
effort made by the developers, when they scrutinize the
generated breakpoints without running any test case.
Experiment Setup. We used two Java programs from
Software-artifact Infrastructure Repository (SIR) and the
Apache common collections version 3.2.1 as the subjects
which are described in Table III. We have selected some
versions of the SIR programs, because they had usable
junit tests and we could successfully compile and execute
these programs and their tests in our experimental envi-
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ronment. Since the faults in SIR programs are seeded, we
have selected the Apache program to study real bugs. For
SIR programs, each faulty version has exactly one fault
seeded, as we did not focus on localizing multiple faults in
this experiment. For the same reason, each of the selected
bugs in the Apache program has a single faulty statement.
A fault (in SIR programs) may be seeded by commenting
out a necessary statement. In this case, we preserve the
node and edges corresponding to the statement in the
PDG and mark them as virtual. During the computation
of distance to fault, a virtual node can be only used as
the starting point or end point of a path.

From Table III, we can see that there are generally more
than one failed test case for a fault. Since we do not know
a priori which failed test case is the most suitable for
performing nearest neighbor queries, we try every one of
them in turn to find out the best one in the experiments.
However, in practical debugging, the developer may easily
select the failed test case which interests her most or there
is just one failed test case assigned for her debugging
work.

TABLE III.
SUBJECT PROGRAMS. LOC AND #TESTS ARE AVERAGES PER FAULT.

Program Versions Avg. LOC Avg. #Tests (failed/all)
jtopas v1, v2 7347 1.8/127

nanoxml v1, v3, v5 6395 18.4/142
collections v3.2.1 63852 2.0/2374

In the experiment, we make a comparison between
the distances to fault of the breakpoint sets and that of
the nearest neighbor reports. Furthermore, we studied the
size of the generated breakpoint sets, with comparisons
between the nearest neighbor reports, the dynamic slices,
and the execution traces.
Experimental Results. Figure 7 shows the average dis-
tance to fault of the generated breakpoint sets and the
nearest neighbor reports. For 19 of the 30 faults, the
distances to fault of the generated breakpoints and the
nearest neighbor reports are equal or have merely minor
differences (less than 3). This is reasonable, because the
breakpoints are generated mainly based on the nearest
neighbor reports. Thus, when a report contains a faulty
statement, some breakpoints may probably be generated
very close to the statement. The minor differences are
caused by our current strategy which only generates
breakpoints at conditional branch statements. The conse-
quence is that a breakpoint is usually located at the con-
ditional branch statement nearest to the faulty statement,
rather than the faulty statement itself. However, since
most of the breakpoints have directly data and/or control
dependencies with the faulty statements, the differences
might be insignificant.

The generated breakpoints have significantly smaller
distances to fault in 11 out of 30 cases. By analyzing
source code and data, we found that the faulty state-
ments in these cases are usually executed early in the
executions of both failed and passed test cases. The
difference is that the failed test cases made assertions

Figure 7. Distance to fault of generated breakpoints and nearest
                                                 neighbor.

to check some faulty program states and failed, while
the passed test cases only checked some correct program
states and passed. Moreover, some checked states were
values get from maps with some keys, like value =
getAttribute(key). These values are often con-
tained in aggregative objects and retrieved with the keys
whose values may be determined only at runtime. Conse-
quently, the static dependencies between these assertions
and the faulty statements are usually complex. In this
case, dynamic program slicing can largely simplify the
dependence analysis by using the run-time information.
In the experiments, the nearest neighbor reports contained
merely the method calls like getAttribute(key)
and the backward dynamic program slicing accurately dis-
covered the faulty statements. Consequently, breakpoints
can be generated very close to the statements.

Table IV shows the size of the generated breakpoint
sets, the nearest neighbor reports, and the dynamic slices.
The first two lines, labeled ‘Program’ and ‘Ver.’, display
the program names and versions, respectively. The line
labeled ‘#Faults’ shows the number of seeded faults in
each version of a program. The lines ‘Avg. BP’, ‘Avg.
Con. BP’, ‘Avg. NN’, and ‘Avg. DS’ present the average
number of generated breakpoints, generated conditional
breakpoints, statements in reports of nearest neighbor
queries, and statements in dynamic slices, respectively.
The line ‘Avg. exec.’ shows the average number of ex-
ecuted statements. The lines ‘BP/exec.’, ‘NN/exec.’, and
‘DS/exec.’ present the ratio of ‘Avg. BP’ to ‘Avg. exec.’,
‘Avg. NN’ to ‘Avg. exec.’, ‘Avg. DS’ to ‘Avg. exec.’,
respectively.

By comparing the columns ‘Avg. BP’ and ‘Avg. NN’,
we can see that the breakpoint sets are smaller than
the nearest neighbor reports in most cases. It is the
consequence of the strategy to generate breakpoints only
at certain types of statements, although the reports are
enlarged with dynamic slices. The data in lines ‘BP/exec.’
and ‘NN/exec.’ indicate that both the breakpoint sets and
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TABLE IV.
SIZE OF BREAKPOINT SETS, NEAREST NEIGHBOR REPORTS, AND

SLICES.

Program jtopas nanoxml collections
Version v1 v2 v1 v3 v5 v3.2.1
#Faults 6 5 2 8 6 3
Avg. BP 11 42 45 61 49 4
Avg. Con. BP 1 1 3 2 1 0
Avg. NN 24 49 64 52 20 87
Avg. DS 60 115 193 263 209 11
Avg. exec. 22421 2907 7077 14222 12233 539
BP/exec. 0.05% 1.43% 0.61% 0.43% 0.40% 0.68%
NN/exec. 0.11% 1.69% 0.90% 0.36% 0.16% 16.19%
DS/exec. 0.27% 3.97% 2.73% 1.85% 1.71% 2.10%

the nearest neighbor reports are relatively small compared
with the dynamic slices or the executed statement. Thus,
it may be acceptable for developers to scrutinize the
breakpoint sets to locate the faults without running test
cases. However, breakpoints are supposed to suspend the
execution at runtime, so only the conditional ones are
enabled by default.

From the lines ‘Avg. DS’ and ‘DS/exec.’, we can see
that the dynamic slices are much smaller than the full
slices and the relevant slices reported by Zhang et al. [17].
The discrepancy is due to the fact that we only count the
statements contained in the code of the subjects, not in the
libraries. We count the statements in the reports of nearest
neighbor queries in the same way and breakpoints are also
generated only in the code of the subjects.

Table V shows the runtime of our approach. Each
column shows the average result of different versions
for each subject program. Each line, except for the one
labeled ‘Avg. NN4J’, presents one component of our
approach described in Section V. ‘Computing CP’ is
the step to generate breakpoints and identify comparison
points, and ‘Condition Generation’ is the step to generate
conditions for breakpoints. As each fault may lead to
different number of failed test cases, and we perform
nearest neighbor queries on each failed test case one by
one with all passed ones, so the runtime data mainly
depends on the number of failed test cases. The line
labeled ‘Avg. NN4J’ displays such an average runtime for
each failed test case in component NN4J. Therefore, the
line ‘Total’ shows the runtime taken in our experiments,
whereas, in the runtime of a real debugging case, the value
of ‘NN4J’ should be replaced with ‘Avg. NN4J’, since the
developer will probably choose the most interesting failed
test case at the beginning of the debugging task.

TABLE V.
RUNTIME OF EACH STEP OF BREAKPOINT GENERATION.

Runtime (sec.)
Step jtopas nanoxml collections
InsECTJ 125.71 2.23 71.48
NN4J 616.28 88.85 343.98
Avg. NN4J 349.65 4.55 172.30
JavaSlicer 118.43 138.09 1099.94
Computing CP 2.44 0.95 3.44
Condition Generation 2.60 1.26 4.03
Total 881.29 222.88 1522.86

We can see that the whole process may take more
than 1500 seconds. The runtime seems too long to be
acceptable, however, our approach is generally used only
once, just before the interactive debugging begins. As
the process is fully automated, it can be automatically
launched if a test case has failed. When the debugging
developer begins her work, the breakpoints have already
generated. Since human time is much more expensive
than machine time, we believe it is worthwhile to use
our approach to generate a group breakpoints which may
help accelerate the subsequent manual debugging process.
Besides, if developer chooses only one failed test case,
and not too many passed test cases which may be quite
similar to the failed one based on previous debugging
experience, our approach will be more efficient.

B. Design of the User Study
We have performed a user study to further investigate

the usefulness of our approach. Note that the study was
performed using our previous version of implementa-
tion [14] which is more stable. Since the architecture
remains the same and the difference lies only in imple-
mentation, we believe the result of the user study is still
valid for the latest version.

The user study involved six student volunteers each
of whom has at least three-year experience in Java pro-
gramming and debugging. They also use Eclipse as their
primary Java development environment. Each participant
was assigned four debugging tasks and provided with
the corresponding breakpoints generated by our tool in
two tasks. As the experimental setup, we retrieved four
programs from Apache Commons4 and SIR [22] and
manually seeded a bug in each of them. Each bug was
seeded by slightly modifying, instead of adding or delet-
ing, one line of code in the program so that there was an
explicit faulty statement for the participants to find. We
believe that these are typical bugs introduced by careless
programming or incomplete understanding of some corner
cases. In fact, the two bugs in the SIR programs are
originally seeded bugs provided in the benchmark suite.
The bugs in SIR have been seeded by following a strict
process which simulates the real bug introducing process.
Details of the programs and bugs are described in Table
VI.

TABLE VI.
SUBJECT PROGRAMS AND SEEDED BUGS

Bug Program Location Description
b1 Commons FastArrayList.java false → true

v2.0 at line 417
b2 Commons CursorableLinkedList.java || → &&

v2.0 at line 265
b3 jtopas StandardTokenizer.java 1 → -1

v0.6 at line 1658
b4 nanoxml ContentReader.java ’&’ → ’ ’

v2.2 at line 132

To avoid the bias caused by the differences between in-
dividuals, we divided the six participants into two groups

4http://commons.apache.org/

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 611

© 2013 ACADEMY PUBLISHER



so that the groups had similar programming experience.
The programming experience of a group was estimated
with the sum of every group member’s duration of pro-
gramming. In addition, we arranged the task assignments
as described in Table VII. Therefore, each group was
allowed to use the generated breakpoints in only two
debugging tasks, which reduced the chance that a better
group might amplify (diminish) the estimated usefulness
of the breakpoints by using (not using) them.

TABLE VII.
DEBUGGING TASKS ARRANGEMENT

Group Person b1 b2 b3 b4
p1 not use use use not use

g1 p2 not use use use not use
p3 not use use use not use

p4 use not use not use use
g2 p5 use not use not use use

p6 use not use not use use

As a preparation for the study, we generated the break-
points for each bug using our tool implementation before
the participants began debugging. Additionally we gave
each breakpoint user a brief introduction to the basic
idea of the breakpoint generation. The failing test case
used in our breakpoint generation was pointed out as
the symptom of the bug. Thus the participants could
check whether they made the correct fix by running the
test case. As the participants were not familiar with the
programs, it might be too difficult for them to correctly
discover and fix the bugs. Therefore, we loosely set a
time limit for each debugging task, that is, we suggested
that they could choose to give up the current task if they
had spent more than 90 minutes on it. However, they
could choose to go on debugging after 90 minutes. To
analyze and evaluate the debugging sessions, we recorded
all the actions on-screen using a screen recorder. We
evaluated the debugging performance based on the time
spent when the bug was successfully fixed. We also
asked the participants who gave up their tasks to point
out the statements they felt suspicious and evaluated the
debugging work by estimating the distance between these
statements and the faulty ones. The distance is roughly
represented by the number of lines of code between two
statements.

C. Results

Figure 8 shows the time spent on the debugging tasks.
Each bar represents the duration of a debugging session
of a participant if the bug was successfully fixed. Thus
for each of the four bugs there can be six bars which
correspond to the six participants’ debugging time. Note
that there are only three and two bars for bug3 and bug4,
respectively, because three participants failed to fix bug3
and four participants failed to fix bug4.

We can see that the group which was provided with
the generated breakpoints spent averagely less time for
three of the four bugs. We may also notice that all the
participants spent much more time on bug3 and bug4 than

Figure 8. Time spent on each debugging task. There are only three and
two bars for bug3 and bug4, respectively, because three participants
        failed to fix bug3 and four participants failed to fix bug4.

bug1 and bug2. It is because bug3 and bug4, which are
seeded in nanoxml and jtopas, are far more complicated
than bug1 and bug2, each of which involves just one
Java source file. As a result, it is very difficult for
the participants to find and fix the bugs without fully
understanding the business logics of the two real-world
applications. It is also the reason why some participants
failed to fix bug3 and bug4.

To count in the performance of all the participants in
all the debugging tasks, we rank them for each bug by
following the rules below:

1) Participants who fixed the bug are ranked higher
than those who failed to do so.

2) For successful participants, the less time they spent,
the higher they are ranked.

3) For unsuccessful participants, we ranked them
based on the evaluation of the suspicious statements
they pointed out. The way of performing this eval-
uation has been described in Section VI-B.

We assign a score to each participant for each bug.
More specifically, the score (7 − n) is assigned to the
participant who is ranked the nth place. For example, for
a specific debugging task, the top 1 participant will score
6, while the last one will score 1. From Table VIII we can
see that the participants using generated breakpoints have
a higher score in average, which means they generally
performed better than the other participants.

TABLE VIII.
SCORES OF PARTICIPANTS.

use not use
Bug p1 p2 p3 p1 p2 p3
b1 6 5 3 4 2 1
b2 6 5 3 4 2 1
b3 6 5 2 4 3 1
b4 5 3 1 6 4 2

Avg. 4.2 2.8

Avg. means the average score of one participant for finishing debugging
one bug with or without using the generated breakpoints.

We analyzed the recorded on-screen actions to inves-

612 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER



tigate how much the generated breakpoints affected the
debugging performance. During our analysis, we focused
on how many times that each participant used print state-
ments and breakpoints for debugging. Then we calculated
the using rate with the following formula:

Rateusing =
nugb

numb + nup + nugb

where nup, numb, and nugb stand for the number of
times that the participant used print statements, manually
added breakpoints, and generated breakpoints. Since print
statements and breakpoints were major debugging utilities
in the user study, we use the using rate to roughly estimate
how often the generated breakpoints were used.

Figure 9. Using rate of the debugging cases supported by generated
                                               breakpoints

Figure 9 shows the using rates of the 12 debugging
cases where generated breakpoints were provided. We can
see that the using rate is higher than 45% in 9 out of 12
cases, which indicates that the generated breakpoints were
frequently used during the debugging sessions. Moreover,
in the three cases where the using rate is 0, the generated
breakpoints were also used for many times for code
inspection. However, the participants did not use them
to suspend the program executions.

D. Additional Observations

During the analysis on the records, we found a common
pattern of using the generated breakpoints. At the begin-
ning of debugging sessions, the users usually browsed
all the breakpoints, especially the conditional ones, and
briefly inspected the source code near the breakpoint
locations. Then they performed the ordinary debugging
process, searching backwards from the failed assertion
for clues to the bug. When the users decided to check
run-time states at a program point, they tended to use a
generated breakpoint near the point, instead of writing a
print statement or setting a breakpoint by themselves.

For simple cases, such as bug1 and bug2, it was usually
adequate to use the generated breakpoints to find the bugs.
However, when the bugs was complicated, the user had to
use utilities other than the generated breakpoints. Some

participants commented that they found it helpful to open
all the source files where the generated breakpoints were
located, because they could obtain an overall impression
of the execution traces. In these cases, the breakpoints
can be viewed as a special kind of dynamic slice.

E. Threats to Validity

The main threat to the objective experimental results
is that the subjects are all small programs. The current
implementation generally suffers from high performance
overhead. Therefore, it may be too time-consuming to do
the experiments on large programs. However, in theory,
the three core components can scale with proper opti-
mization and implementations. In addition, we believe
that, even for large programs, our technique should be
used to aid fine-grained manual debugging in a relatively
small scope, because the components of large programs
are usually loosely coupled.

Since the user study was performed on a small sample
of participants with a small number of bugs, the generality
of the results is obviously limited. In addition, all the
participants were unfamiliar with the subject programs,
which deviates from practical debugging scenarios. It
indeed affected the results, as some participants failed to
accomplish their tasks. To reduce the possible bias, we
carefully grouped the participants and allocated the de-
bugging tasks, as described in Section VI-B. We also tried
to objectively evaluate the participants’ performances in
unsuccessful cases and compared them using a ranking
method.

VII. RELATED WORK

Breakpoints are generally acknowledged as a help-
ful tool in program debugging. Chern and Volder [23]
design a novel form of dynamic breakpoints named
context-flow breakpoints to improve the debugging tools.
The Control-flow Breakpoint Debugger(CBD) provides
a pointcut language to specify dynamic breakpoints in
program execution flows. Developers can use the language
to attach much more specified runtime conditions to static
breakpoints to produce dynamic ones, which are believed
to be more helpful for debugging. Our work is greatly
inspired by CBD. And we observe that although CBD
facilitates developers in specifying breakpoints, it is still
cumbersome to manually add breakpoints and describe
them in detail. Our work aims to facilitate the process
by automatically generating breakpoints based upon fault
localization techniques.

Zeller et al. develop the Delta Debugging technique to
systematically analyze the differences in program inputs,
source codes, and run-time program states to isolate
failure-inducing inputs, extract cause-effect chains, and
link cause transitions to program failures [9], [24], [25].
Compared with the fully automated Delta Debugging
techniques, our approach is primarily an aid to interactive
debugging. Moreover, we put more emphasis on finding
the locations to set breakpoints and the opportunities
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to extract and compare memory graphs, while Delta
Debugging generally performs the searches in space and
time in a divide-and-conquer style. In our approach, we
borrow the part of memory graph comparison from [25]
and reuse its DDstate implementation. Although DDstate
implementation systematically changes the memory graph
to isolate relevant states, we just compare the graphs and
analyze the graph differences to find accessible suspicious
states to generate breakpoint conditions.

As an essential step of debugging, fault localization has
been extensively studied. Particularly the spectra-based
fault localization techniques, which share the commonal-
ity of comparing program spectra, have been well inves-
tigated. Harrold et al. classify spectra-based approaches
in [26] and adopt code coverage spectra to build the
Tarantula tool [8]. Additionally, a variety of techniques,
such as [10], [27], [28], have been proposed to improve
the Tarantula approach. In [27], Hao et al. introduce
a breakpoint-based interactive debugging aid, which is
similar to our work. However, we combine different fault
localization techniques to generate breakpoints, instead of
using visualization to recommend breakpoint locations.
Moreover, we generate conditions for some breakpoints
to strengthen their usability. Another group of fault local-
ization techniques [6], [7], [29] are based on comparing
execution traces. They share the viewpoint that faults
are more probable to be disclosed by comparing two
runs that are similar rather than fundamentally different.
In [6], Renieris and Reiss develop the nearest neighbor
queries technique which adopts the k-NN algorithm to
select a passing run that most resembles the failing one.
This technique is claimed to be independent of input
structure, which is good for building tools that are widely
applicable. To achieve satisfactory report accuracy, it also
assumes the availability of a large set of test cases, which
might not always be possible in real world debugging
situations. Although the nearest neighbor queries method
is the base of our approach, we can probably overcome
this restriction since the successive steps in our approach
are capable of improving the accuracy. In addition to
the fault localization techniques which report suspicious
statements or states, Jiang and Su propose an approach
to generate faulty control flow paths which are more
useful to understand the bugs [30]. Similar to [30], our
approach focuses on conditional statements. Thus a group
of generated breakpoints are likely to convey control flow
information to users. Although not refined by machine
learning techniques, the breakpoints can also be useful in
interactive debugging.

Program slicing was first introduced in [16], and
proved to be helpful in program debugging [31], [32].
Since our breakpoint generation focuses on the dynamic
aspects of programs, we use dynamic program slicing
in our approach. While the slices are static positions in
programs, we append dynamic information by attaching
conditions to the calculated locations and producing con-
ditional breakpoints. After all the size and precision of
the slices can significantly affect the quality of the gener-

ated breakpoints. Therefore, we may further improve our
approach by leveraging recent advancement in program
slicing techniques, such as [33]. By combining dynamic
and static program slicing, Ko and Myers develop a
tool called Whyline [12] to support interrogative debug-
ging. Using Whyline developers can easily query both
dynamic and static dependencies in program elements
and execution events, which may greatly accelerate the
debugging process. Compared with Whyline, our tool is
more of an enhancement to the breakpoint utility than a
reinvented debugging approach. Thus our approach may
not be as friendly as Whyline to users, but the generated
breakpoints may be more acceptable to the developers.
By recording every state change at runtime, omniscient
debugger [34] enables the developers to debug backwards
in time. Similar to Whyline, omniscient debugger greatly
enhances the developers’ ability to query runtime events
in either direction along the time line. In contrast, our
approach aims to indicate which variables should be
inspected at which statements.

VIII. CONCLUSION AND FUTURE WORK

Breakpoint is one of the most frequently used utilities
in debugging activities. In this paper, we have proposed
an approach to generating breakpoints automatically. The
evaluation has shown that the generated breakpoints can
usually save some human effort for debugging.

In our future work, we will try to design new strategies
to select better locations to generate breakpoints. Existing
work on cause-effect relations in debugging, such as [25],
is promising to improve our current strategy. In addition,
our current approach generates the breakpoints and their
conditions in one shot. It is interesting to investigate
whether the breakpoints can be adaptively generated or
adjusted as the interactive debugging session goes on.
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