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Abstract—There exist large amounts of complex networks 
in different areas nowadays, which have aroused great 
interest in detecting community structures. Although diverse 
community detection algorithms have been proposed, most 
of them perform poorly in large scale complex networks. 
According some social principles, we proposed a scalable 
Community Detection method based on Threshold Random 
walkers, which is called CD-TRandwalk. CD-TRandwalk 
selects active nodes with high degree as seed nodes, and 
detects the core communities through random walkers 
according to predefined thresholds at first. Because the 
threshold random walkers start from the active seed nodes 
and only randomly walk to those nodes which association 
degrees are larger than a given threshold, the processes of 
detecting core communities work quickly. After that, the 
remaining non-core nodes are allocated into the core 
communities according their common degrees between these 
nodes and the core communities with a voting strategy. 
Compared with some other community detection algorithms 
such as Affinity Propagation (AP), Walktrap, Newman Fast, 
and ComTector in several social networks, the experimental 
results show that CD-TRandwalk is faster than the other 
methods without worse quality of community detection 
quality. Furthermore, CD-Trandwalk is adaptable to large 
scale networks and unbalance networks. CD-TRandwalk 
also has some other advantages, such as it is unsupervised 
and not need to set the community number beforehand, and 
it only needs local information of the networks to support 
local community detection. 
 
Index Terms—community detection; threshold random walk; 
social network analysis; complex networks;  

I. INTRODUCTION 

Nowadays, there exist large amounts of complex 
networks in different areas, such as social networks, 
Internet networks, biological networks, mobile phone 
communication networks, and micro-blogs networks. 
Despite the diverse physical meaning behind those 

networks, they usually exhibit common topological 
properties. For example vertexes of the networks are 
often organized into communities or groups with dense 
connections within groups and sparse connections 
between groups. Efficiently detecting communities can 
help us to understand the nature of those networks better 
and facilitate the analysis on large scale complex 
networks. 
  During the last decades, community detection methods 
have received an enormous amount of attention in many 
disciplines. Examples range from social network 
analysis[1] to Natural language processing[2], and from 
analyzing protein interaction networks[3] to the 
distributed Very-large-scale integration (VLSI) simulation 
[4]. Because community detection is very important, 
many methods have been proposed in the literature. 
Fortunator divided the existing community detection 
methods roughly into traditional methods, divisive 
methods, modularity based methods, spectral methods 
and dynamic methods et al[5]. The idea of divisive 
algorithms is to detect the edges that connect vertexes of 
different communities and remove them, and disconnect 
the clusters from each other. The most popular algorithm 
is that proposed by Girvan and Newman[6, 7]. A notable 
work of them defines betweenness and introduces 
modularity as a posterior measure of network structure, 
which is very important significance to community 
detection and gains success in many applications. 
Modularity is a best known quality function to measure 
the community structure. The modularity based methods 
use different clustering technique such as greedy 
techniques[8], simulated annealing, external optimization, 
spectral optimization to maximize the modularity. Some 
researchers also proposed improved modularity 
measurement such as extension to directed graph, 
accounts for positive and negative edges. Spectral 
methods detect communities according the eigenvectors 
and eigenvalues of the graphs’ feature matrixes. And 
dynamic methods employ processes running on the graph, 
such as spin-spin interactions, random walks and 
synchronization. The detailed survey of community 
detection can be found in Fortunator’s paper[5]. 
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  Although we have got many research results, there are 
some unresolved problems of community detection. For 
example, the concept of community is still not unified 
and has no rigorous mathematical definition. Most 
existing methods perform poorly in large scale networks 
because of the cost in memory space or time.  

We have proposed a scalable community detection 
method based on threshold random walk which is called 
CD-Trandwalk [9]. CD-TRandwalk implements two 
intuitions in our social life: (1) there always exists some 
people which are more active than others, and the active 
people generally have much more connections to others; 
(2) if two persons have many common friends, the two 
persons belong to the same social community with large 
probability. CD-TRandwalk is a two-stage community 
detection method. At first, the core nodes of the 
communities are detected by the threshold random walk; 
and then the remaining non-core nodes are allocated by a 
voting policy. Because the active nodes are selected as 
the seed node of the threshold random walkers 
beforehand, and the community detection process is 
executed at the same time of the random walk, the time 
cost of CD-TRandwalk is not high. So it is scalable to 
large scale social networks. Moreover, CD-TRandwalk 
has some other advantages, such as it is unsupervised and 
not need to set the community number beforehand. 
CD-TRandwalk only needs local information of the 
networks to support local community detection. In this 
paper, we will give more detail of CD-Trandwalk 
algorithm and experiment results. 

This paper is organized as follows. In section 2 we 
mainly review some related work. Section 3 introduces 
Preliminaries of random walk on community detection. In 
section 4 we describe our CD-TRandwalk method. The 
experiment results and analysis are presented in section 5, 
and the conclusions are given in section 6.  

II. RELATED WORKS  

The most related works are the random walk based 
community detection methods. A widely popular 
approach in graph mining and machine learning literature 
is to compute proximity between nodes by using random 
walk on graphs: diffusion of information from one node 
to another. Given a graph and a start node, random walk 
algorithm finds next node by transition probability. The 
sequence of random walk is a Markov chain. Random 
walk provides a simple framework for unifying the 
information from ensembles of paths between two nodes.  

Random walk has been used for community detection 
by many methods, where the measure of vertexes 
similarity is based on the properties of random walk on 
graphs. Such as Zhou and Lipowsky[10] proposed to 
calculate the similarities matrix of vertexes by random 
walk at first, and then cluster communities with the 
similarities matrix. Pons and Latapy proposed the 
Walktrap method[11] alike with Zhou and Lipowsky, but 
the transition probability of the random walk is different. 
Saerens and his coworkers[12] used commute-time as 
similarity measure: the larger the time, the farther the 

vertexes. Another similarity measure is the escape 
probability[13], which defined as the probability that the 
walker reaches the target vertex before coming back to 
the source vertex. Delvenne [14] introduce the quality 
measurement function of network partition, which 
defined in terms of the clustered autocovariance of a 
Markov process taking place on the graph. And 
Backstrom and Leskovec [15] developed an algorithm 
based on Supervised Random Walks that naturally 
combines the information from the network structure with 
node and edge level attributes. The goal of the supervised 
learning task is to learn a function that assigns strengths 
to edges such that a random walker tends to visit those 
nodes to which new links will be created in the future.  

Unlike above random walk based methods, Alamgir et 
al[16] proposed a multi-agent random walk to improve 
the problem of local graph clustering. All agents move 
independently like a standard random walk on the graph, 
but they are constrained to have distance at most l from 
each other. In multi-agent random walk, the node 
sequence of random walk is directly selected as the 
community members. This idea is very like our 
CD-TRandwalk method. CD-TRandwalk also identifies 
the community members at the same time of the random 
walk. The difference is that our threshold random walkers 
start from the active seed nodes and only random walk to 
the nodes which association degrees are larger than a 
given threshold. Of course our CD-TRandwalk also can 
be modified as a version of multiple random walkers.  

The other related works are the large scale community 
detection methods. In order to processing large scale 
networks, some novel methods are proposed recently, 
such as probability model based method[17], Heuristic 
based method[18], and local community detection 
method[16]. Henderson et al[17] introduced the Latent 
Dirichlet Allocation model (LDA) for graphs clustering, 
where the edges are viewed as words and vertexes are 
viewed as documents. Waikita et al [18]showed that the 
inefficiency of CNM method is caused from merging 
communities in unbalanced manner, and they found a 
simple heuristics that attempts to merge community 
structures in a balanced manner can dramatically improve 
community structure analysis. The proposed techniques 
are tested using datasets obtained from existing social 
networking service that hosts 5.5 million users. Satuluri 
et al [1] presented a multi-level algorithm for graph 
clustering using flows that delivers significant 
improvements in both quality and speed.  

Furthermore, the research works of community 
detection are diversification. Such as Katzir et al [19] 
focused their attention on assessing the size of the online 
community. They did this work with the API of the online 
community. They selected the samples randomly and 
assess the size of online community by the number of 
Non-unique nodes. Kim and Leskovec[20] wanted to 
solve the problem that data collection is incomplete. They 
put the graph data into the kronecker graphs model and 
evaluate the expectation until the expectation is 
maximization. Simultaneously, they predicted the link 
with this idea. Link prediction is also a hot spot in 

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 287

© 2013 ACADEMY PUBLISHER



 

 

community detection. Many scholars are studying this 
aspect. Jure Leskovec et al [21] divided the link into 
passive and active links and found that link prediction can 
have high accuracy. 

III. PRELIMINARIES OF RANDOM WALKERS ON 
COMMUNITY DETECTION 

Let ( , )= EG V  be our input network, where V  
denotes the node set and E  denotes the edge set. We 
only consider undirected graph in this paper. Let A  be 
the adjacency matrix of the input network with 

|| | |×V V  elements, and any element ijA  denotes the 
weight of the edge between the vertex iv  and the 
vertex jv . In unweighted network, if the vertex iv  
connects with the vertex jv , then 1ijA = ; otherwise 

0ijA = . Let ( )iN  denote the neighbors set of the node 

iv , and ( )d i  denote the degree of the vertex iv , where 
( ) ijj

d i A= ∑ , and ( )d i  is the size of ( )iN .  

D  is a || | |×V V  diagonal matrix, where ( )iiD d i= . 
Let P denote the transition probability matrix, if 
( , )i jv v ∈E , then /ij ij iiP A D= ; otherwise 0ijP = . A 
random walk on this graph is a Markov chain with 
transition probabilities specified by this matrix. The 
random walk process is driven by the powers of the 
matrix P : the probability of going from iv  to jv  

through a random walk of length t  is ( )t
ijP . In the 

subsequent part, we will denote this probability with t
ijP . 

It satisfies two well-known properties of the random walk 
process [11]:  

Property 1: When the length t  of a random walker 
starting at the vertex iv  to the vertex jv  tends towards 
infinity, the probability of being on a vertex jv  only 
dependents on the degree of the vertex jv :    

( ),lim
( )

t
i ij

t k

d jv P
d k→+∞

∀ =
∑

                    (1) 

Property 2: the probabilities of going from iv  to jv  
and from jv  to iv  through a random walker of a fixed 
length t  have a ration that only depends on the degree 

( )d i  and ( )d j : 
, , ( ) ( )t t

i j ij jiv v d i P d j P∀ ∀ =                 (2) 
The standard random walker based community 

detection methods calculate the measure of vertex 
similarity based on the properties of random walks on 
graphs, such as Zhou and Lipowsky[10], Pons and Latapy 
[11]. For example, in Walktrap algorithm of Pons and 
Latapy, a similarity matrix between vertexes is calculated 
based on random walks at first, and then an 
agglomerative algorithm is used to compute the 
community structure of the network. The distance of two 
vertexes in Walktrap is defined as: 

2 1 1
2 2

1

( )
|| ||

( )

t tn
ik jk t t

ij i j
k

P P
r D P D P

d k
− −

• •
=

−
= = −∑     (3) 

And let 1C  and 2C  denote two different communities, 
the distance between two communities can be defined as: 

   1 2

1 2 1 2

21 1
2 2

1

( )
|| ||

( )

t tn
k kt t

k

P P
r D P D P

d k
− −

• •
=

−
= − = ∑ C C

C C C C    (4) 

Where 
j

tPC  denotes the probability of going from 

community C to vertex jv in t  steps, and 

1
| |j

i

t t
ij

v
P P

∈

= ∑C
CC

. 

The time complexity of calculating the vertex 
similarity is ( | || |)O t E V , the time complexity of the 
agglomerative algorithm is (| |)O V . So in the worst case, 
the time complexity of Walktrap is 2( | || | )O t E V .  

IV. COMMUNITY DETECTION BASED ON THRESHOLD 
RANDOM WALKERS 

A. Problem Formulation 
The goal of community detection in networks is to find 

groups of vertexes connected densely. In our real social 
life, we associate with other people and build our social 
circles through our social interaction activities. The 
process of community detection can be viewed as a 
process to build social circles. Usually we try to associate 
with new friends based on our existing friends randomly. 
Furthermore, we would rather to associate with those 
active people who have big power or large influence.  
  According above the property 1 of the random walk 
process, the degree of a node represents the node’s power 
or its influence. The larger degree means the larger 
attraction to other nodes to associate with it. The larger 
degree also means more easily to become the core 
member of a community. And the property 2 of the 
random walk process shows that the random walk is not 
symmetrical. It is also consistent with our social 
interaction activities. The average persons have greater 
desire to associate with the power persons. Based on 
those social principles, we propose a scalable community 
detection method based on the threshold random walks.  

Given a network ( , )= EG V , we first define some 
concepts as following. 

Definition 1. Active degree: iv∀ ∈V , the active 
degree of iv  denotes as ( )a i , which is proportional to 
the degree of iv . That is ( ) ( )a i a d i= ⋅ , where a  is a 
constant number.  

For simplicity, we can set ( ) ( )a i d i= . The average 
active degree of the network G  denotes as ( )a G , 

( ) ( )/ | | 2 | | / | |
k

a d k= =∑G V E V . 
Definition 2. Active node: iv∀ ∈V , if ( ) ( )a i a> G , 

we called it is an active node. 
Definition 3. Common degree: ,i jv v∀ ∈V , the set of 

their common neighbor nodes is ( , ) ( ) ( )i j i j= ∩N N N . 
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So the common degree ( , )C i j  of iv  and jv  can be  
defined as ( , ) ( )ik jkk

C i j A A= =∑ . The common degree 
between a node and a community also can be defined 
analogously. 

Definition 4. Association degree: ,i jv v∀ ∈V , the 
association degree from the node iv  to the node jv  is 
defined as: ( , ) ( , ) ( )R i j C i j a jβ= + ⋅ .  

The association degree is asymmetric. It is different 
with other random walk based similarity measure. 
Besides the common degree of two nodes, the node’s 
active degree also is considered in our association degree. 
In social community, it is reasonable that we much more 
want to associate with the active person.  

Definition 5. Core community: Given a community 
C , the core community ( )core C  is a subset of the 
community, where the nodes’ association degrees are 
larger than others. i.e. ( )core ⊂C C , , ( )i jv v core∀ ∈ C , 

( , )R i j TR≥ , where TR  is a threshold. The nodes in the 
core communities are called core nodes, and the others 
are called non-core nodes. 

In our threshold random walk, some active seed nodes 
are selected according their active degrees. The threshold 
of the seed nodes is defined as: ( )seedTR aα= ⋅ G , where 
α  is an adjustable parameter. When the value of α  
increments, the number of the seed nodes decrements.  

The transition probability of a threshold random walk 
changes from one node to next according the association 
degree, which is defined as: ( , )transitionTR R i jξ= ⋅ , where 
ξ  is another adjustable parameter. When the value of ξ  
increments, the number of the non-core nodes increments. 

B. Algorithm Description 
Because the nodes in a core community connect 

closely, it is relative easy to identify the core 
communities. CD-TRandwalk detects communities with 
two stages: detecting the core communities according the 
threshold random walk at first, and then allocating the 
non-core nodes into the core communities. 

The seed nodes of the threshold random walk are 
selected according the nodes’ active degree. We believe 
that the core members of a community should be active 
nodes. To detect the core communities, the random 
walkers start from the seed nodes and only accesses those 
nodes with large associate degree. This strategy will 
reduce time cost.  

At the start time, a seed node is selected randomly. 
Then the random walker looks for the next node from the 
neighbors of the current node. The next node must satisfy 
following conditions: it has not been accessed, and the 
associated degree from the current node to the next node 
is larger than the threshold. We can set a tag to represent 
whether a node has been accessed. The nodes accessed by 
the random walker are added into the same core 
community. If there are not nodes meet these conditions, 
this random walker finishes. And if there are remaining 
seed node, then a new seed node is selected to start a new 
random walker. When all the seed nodes are accessed, the 

core community detection process finishes. To those 
non-core nodes, by a voting strategy, we allocate them to 
a core community which has the maximum common 
degree with it.  

The community detection algorithm based on the 
threshold random walk can be described as following.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
 

In our CD-TRandwalk, the time complexity of 
selecting seed nodes is (2 | |)O E , the time complexity of 
identifying core community is ( ( ) | |) (2 | |)a ⋅ =O G V O E , 
the time complexity of allocating non-core node is lower 
than 2(| | /4)O V . So the total time complexity of 
CD-TRandwalk is 2(| | /4 4 | |)+O V E .  

V. EXPERIMENT RESULTS AND ANALYSIS 

In this section, we present several applications with our 
CD-TRandwalk. The algorithm is test on the Zachary 
Karate Club [22], Dophins [23] and Polbooks [24] to 
uncover the performance influence of the parameters 
α , β and ξ . Then we compare our CD-TRandwalk with 
some other algorithms such as Newman Fast[25], 
ComTector[26], Affinity Propagation (AP) [27, 28] and 
Zhou[10] on the Zachary Karate Club, American College 

// select seed nodes 
FOR iv∀ ∈V , 

IF ( ) seeda i TR≥ , THEN push iv  into the seed node stack seedS . 
END IF 

END FOR 
 

// identify the core community 
WHILE seed ≠ ∅S ，DO  

Pop a seed node i seedv ∈S . 

IF iv  has been accessed, THEN reselect another node from 

seedS . 
ELSEIF 

 Create a new stack coreS , maxR = ∞  

push iv  into the core node stack coreS . 
END IF 
WHILE core ≠ ∅S , Pop a node i corev ∈S , add iv into a core 

node set coreC  . 

FOR ∀ jv , ( )jv i∈N , Calculates ( , )R i j . 

IF ( , ) transitR i j TR≥ , THEN 

Label jv  has been accessed.  

Let i jv v=  and random walk with probability ( , )/ | |R i j V| . 

push jv  into coreS with probability (1 ( , )/ | |)R i j− V . 

 END IF 
End FOR 
END WHILE  

END WHILE 
    
// allocate non-core nodes 
FOR iv∀ ∈V , 

core

j
iv ∉UC   

Calculates the common degree ( , )j
coreC i C . 

Add iv  into the core community j
coreC which has the maximum 

common degree. 
END FOR 
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Football[6], Netscience[29], Celegansneural[30], 
ErdÄos[29], CA-GrQc[31], Ca-HepPh[31] and 
Email-EuAll[31] et al.  

A. Experiment Setup 
Several datasets with different scales are selected to 

evaluate our CD-TRandwalk and other algorithms. The 
datasets used in our experiments are list in the following 
Table 1.  

TABLE I.   
THE DATA USED IN EXPERIMENT 

Data Name Node Edges 
Zachary Karate Club 34 78 
Dolphins 62 159 
Polbooks 105 441 
American College Football 115 613 
Celegansneural 297 2345 
Netscience 1641 2742 
Ca-HepPh 5242 28980 
Erodas97 5482 8972 
Erodas98 5816 9505 
Erodas99 6094 9939 
CA-GrQc 9877 51971 
Scientific Collaboration Networks 39577 175693
Email-EuAll 265214 420045

 
The data of Zachary Karate Club[22] contains the 

network of friendships between the 34 members of a 
karate club at a US university, as described by Wayne 
Zachary in 1977. Wayne Zachary thinks that there are two 
communities in this club by actual observation.  

The data of Football [6] contains the network of 
American football games between Division IA colleges 
during regular season Fall 2000, which compiled by M. 
Girvan and M. Newman. 

The data of Netscience [29] contains a coauthorship 
network of scientists working on network theory and 
experiment, which compiled by M. Newman in May 
2006. The network was compiled from the bibliographies 
of two review articles on networks, M. E. J. Newman, 
SIAM Review 45, 167-256 (2003) and S. Boccaletti et al., 
Physics Reports 424, 175-308 (2006), with a few 
additional references added by hand. The version given 
here contains all components of the network, for a total of 
1589 scientists, and not just the largest component of 379 
scientists previously published. 

The data of Celegansneural [30] describes a weighted, 
directed network representing the neural network of C. 
Elegans. The data were taken from the web site of Prof. 
Duncan Watts at Columbia University. The nodes in the 
original data were not consecutively numbered, so they 
have been renumbered to be consecutive. The original 
node numbers from Watts' data file are retained as the 
labels of the nodes. 

The data of Dolphins [23] contains an undirected social 
network of frequent associations between 62 dolphins in 
a community living off Doubtful Sound, New Zealand, as 
compiled by Lusseau et al. (2003). 

The data of Polbooks [24] contains a network about 
US politics published around the time of the 2004 
presidential election and sold by the online bookseller 
Amazon.com. Edges between books represent frequent 

copurchasing of books by the same buyers. The network 
was compiled by V. Krebs and is unpublished, but can 
found on Krebs' web site. 

The data of Scientific Collaboration Networks [29] 
contains an updated version of cond-mat, the 
collaboration network of scientists posting preprints on 
the condensed matter archive at www.arxiv.org. This 
version is based on preprints posted to the archive 
between January 1, 1995 and March 31, 2005. 

Paul ErdÄos [32] was one of the most prolific 
mathematicians in the history, with more than 1500 
papers to his name. He is also known as a promoter of 
collaboration and as a mathematician with the largest 
number of different co-authors, which was a motivation 
for the introduction of the ErdÄos number collaboration 
network [29]. 

The data of CA-GrQc [31] is come from e-print arXiv 
and is about the general relativity and quantum universe. 
This version is based on preprints posted to the archive 
between January 1, 1993 and April 31, 2003. 

The data of Ca-HepPh [31] is come from e-print arXiv 
and is about the theory of high energy physics. This 
version is based on preprints posted to the archive 
between January 1, 1993 and April 31, 2003. 

The data of Email-EuAll [31] is come from[5] . This 
data is the graph of the email of members in Europe a 
large research institution between October 1, 2003 and 
May 31, 2005. 

In all the above datasets, the real community structures 
of some dataset are known, such as Zachary Karate Club, 
Football; and the exact community structures of some 
dataset are unknown, such as Netscience and Scientific 
Collaboration Networks. To the dataset which community 
structures we have known, it is easy to evaluate the 
performance of the community detection algorithm. To 
those dataset which community structures we have not 
known, we need a quality function to evaluate the 
algorithms. The most popular quality function is the 
modularity of Newman and Girvan[7]. We also use the 
modularity to measure the community quality. Modularity 
can be written as following equation: 

1 2

cn
c c

c

l dQ
m m=

⎡ ⎤⎛ ⎞= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑                        (5) 

Here, m  is the total number of edges of the graph, 
cn is the number of clusters, cl  the total number of edges 

joining vertexes of the module C  and cd  the sum of 
the degrees of the vertexes of C . The first term of each 
summand is the fraction of edges of the graph inside the 
module, whereas the second term represents the expected 
fraction of edges that would be there if the graph were a 
random graph with the same expected degree for each 
vertex. 

The computer environment of the experiments is : 
AMD Dual-Core 2.2GHz CPU, 2.00GB memory and 
windows 7 OS. We analyze the influence of parameters α 
and ξ at first, then confirm the accuracy of our 
CD-TRandwalk in the data of Zachary Karate Club and 
American College Football, at last compare our 
CD-TRandwalk with other algorithms such as Newman 
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Fast, ComTector, Walktrap, AP and Zhou. 

B. Parametric Analysis 
CD-TRandwalk has three parameters α , β and ξ . To 

analyze their influence to the community detection, We 
run CD-TRandwalk in the datasets of Zachary Karate 
Club [22], Dophins [23], Polbooks [24] and 
Dophines[23]. In our experiments, α  changes between 
0 to 3, ξ changes between 0 and 5. Each parameter starts 
from 0, and increase with a step 0.5. Every combination 
with different values of the parameters α , β and ξ  is 
tested in the four datasets. Each value combination is 
executed with ten times, and the average modularity is 
calculated. Because the influence of β  is relatively 
small, in order to present visually, we only show the 
average modularity with different value combination of 
α and ξ  as following figure 1-4.  

 
 

 
Figure 1. The modularity of different α and ξ in Zarachy Karate Club 

 
Figure 2. The modularity of different α and ξ in American College 

Football 

 
Figure 3. The modularity of different α and ξ in Dolphins 

 
Figure 4. The modularity of different α and ξ in Polbooks 

From figure1-4, we can see that α has a big influence 
to the modularity measures. And it also influence the run 
time greatly. The reason is that α  determines the 
number of seed nodes. If we set α  a small value, there 
will be a lot of seed nodes, and it will increase the run 
time. But if we set α a too large value, we cannot find 
all the core communities. The value of ξ  is useful to 
control the number of the communities. Increasing the 
value of ξ  will increase the number of the communities. 
In our experiments, we find that when the value of α is 
between 1 and 2, and the value of ξ  is between 1.5 and 
3, the CD-TRandwalk can get the best modularity. So in 
our following experiments, the value of α is 1.5 and the 
value of ξ  is 3. Besides the value of β  is 0.8. 

C. Experimental Comparison with Other Algorithms 
In this section, we compare our CD-TRandwalk with 

some other algorithms in the datasets of Zarachy Karate 
Club, American College Football, Netscience, CA-GrQc, 
ca-HepPh and Email-EuAll. Because the community 
structures of these datasets are known, we can see the 
results of community detection directly. Figure 5 is the 
community detection result of Zarachy Karate Club with 
our CD-TRandwalk, where the nodes with green color 
belong the same community, and the nodes with yellow 
color belong another community. In all of 34 nodes, 
comparing with the real club relationship, we find that 
only node 9 and node 10 are allocated wrongly. Figure 7 
is the community identification result of our 
CD-TRandwalk in American College Football. 
CD-TRandwalk detects all the 115 teams into 7 
communities exactly. Moreover, we can see the visual 
result has small world features and obvious community 
structures.  

 
Figure 5. The community structures detected by CD-TRandwalk in 

Zarachy Karate Club 
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Figure 6. The community detection results by AP in Zarachy Karate 

Club 
We select AP to compare with our CD-TRandwalk, the 

code of AP download from Frey Lab of PSI Group in 
University of Toronto1. AP is an efficient algorithm for 
identifying communities in social and biological 
networks[27, 33]. We find that AP is fast and effective for 
detecting spherical community; however it is not suitable 
for small networks. Figure 6 is the community 
identification result of AP in Zarachy Karate Club. We 
can see that all the nodes in Zarachy Karate Club are 
allocated into 5 different communities. Obviously it is not 
consistent with the real community structures. Figure 8 is 
the result of AP in American College Football. All the 115 
teams are divided into 9 communities. Although it is not 
consistent with the real communities, it is better than the 
community identification result in Zarachy Karate Club.  

Figure 9 shows the community structures detected by 
our CD-TRandwalk in the data of Netscience. There are 
1461 nodes and 2742 edges. All the nodes are allocated to 
95 communities. The modularity of this data is 0.73. 
Because there are too many edges and nodes in 
Netscience, it is not easy to see the community structure 
clearly in Figure 9. We give an enlarged local view of 
Netscience in Figure 10. From the zoom local view, we 
find that CD-TRandwalk also can detect many small 
communities, and reduces the number of isolated nodes. 
Moreover, the unbalanced community structure is a basic 
feature of social networks. CD-TRandwalk also can 
identify unbalanced community structures. Such as in the 
communities in Netscience, some communities detected 
by CD-TRandwalk only have four nodes, and some 
communities detected by CD-TRandwalk have more than 
100 nodes. So CD-TRandwalk is scalable and has good 
performance for unbalanced community structure 
detection. 

 
Figure 7. The community structures detected by CD-TRandwalk in 

American College Football 

                                                        
1 http://www.psi.toronto.edu/affinitypropagation/ 

 
Figure 8. The community detection results by AP in American College 

Football 

 
Figure 9. The overall community structures detected by CD-TRandwalk 

in Netscience 

       
Figure 10. A local community structures detected by CD-TRandwalk in 

Netscience 
 

Zhou and Walktrap are standard random walk based 
algorithms. They calculate the similarities between nodes 
with random walk, and then hierarchically clustering 
communities according the similarity matrix. In fact to 
compute the similarity will consume a lot of time. We 
compare our CD-TRandwalk with Zhou in Zarachy 
Karate Club, American College Football and 
Celegansneural. The experiment results are listed in Table 
2. We can see that in the three datasets, CD-TRandwalk is 
faster than Zhou’s algorithm. In Celegansneural, Zhou’s 
algorithm runs 39 minutes, but CD-TRandwalk only runs 
4.5 seconds. It shows that Zhou’s algorithm and Walktrap 
are not adaptive to large scale network.  
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TABLE II.   
TIME COST COMPARED WITH ZHOU’S ALGORITHM 

Algorithm Data Time 
Zhou Zarachy Karate Club 8.9s 
CD-TRandwalk Zarachy Karate Club 0.375s
Zhou American College Football 54s 
CD-TRandwalk American College Football 1.6s 
Zhou Celegansneural 39min
CD-TRandwalk Celegansneural 4.5s 

 
Although the similarity calculated by Zhou is very 

accurate, we find that there exists incorrect community 
merge phenomenon in Zhou’s algorithm during the 
process of hierarchical clustering. For example, figure 11 
gives the hierarchy community structures detected by 
Zhou’s algorithm in Zarachy Karate Club. It is obviously 
that the hierarchical clusters are not corresponding with 
the actual relationships. 

We also compare our algorithm with Newman Fast and 
ComTector in some large networks. In the literatures, 
both the author of the Newman Fast and ComTector Next 
present that their algorithms can handle large scale 
networks. We run CD-TRandwalk, Newman Fast and 
ComTector in the data of Scientific Collaboration 
Network, ErdÄos 99, ErdÄos 98 and ErdÄos 97. The 
modularity and the run time are tested in our experiments. 
The results are listed in Table 3 and Table 4. In Scientific 
Collaboration Network, the Newman Fast runs 3.7 hours, 
and ComTector runs 2.2 hours. Our CD-TRandwalk is 
much faster than Newman Fast and ComTector, it only 
run 3 minutes. Moreover, the modularity of our algorithm 
is 0.73, which better than Newman Fast’s 0.31 and 
ComTector’s 0.65.  

 
Figure 11. The hierarchy community structures detected by Zhou’s 

algorithm in Zarachy Karate Club 

TABLE III.   
EXPERIMENT RESULTS COMPARED WITH NEWMAN FAST AND 

COMTECTOR IN SCIENTIFIC COLLABORATION NETWORK 

Algorithm Data Q value Time
Newman Fast Science Collaboration Network 0.31 3.7h
ComTector Science Collaboration Network 0.65 2.2h

CD-TRandwalk Science Collaboration Network 0.73 3min

TABLE IV.   
EXPERIMENT RESULTS COMPARED WITH NEWMAN FAST AND 

COMTECTOR IN ERDÄOS NETWORKS 

Algorithm Data Q value Time
Newman Fast ErdÄos 99 0.35 29s 
ComTector ErdÄos 99 0.69 23s 
CD-TRandwalk ErdÄos 99 0.76 15s 
Newman Fast ErdÄos 98 0.34 35s 
ComTector ErdÄos 98 0.69 26s 
CD-TRandwalk ErdÄos 98 0.76 15s 
Newman Fast ErdÄos 97 0.43 40s 
ComTector ErdÄos 97 0.69 27s 
CD-TRandwalk ErdÄos 97 0.73 12s 

TABLE V.   
EXPERIMENT RESULTS RUNNING ON SOME OTHER DATASETS 

Algorithm Data Communities Q value Time
CD-TRandwalk email-EuAll 128 0.78 0.5h 
CD-TRandwalk CA-GrQc 75 0.85 13s 
CD-TRandwalk ca-HepPh 147 0.7 2m 

 
In Table 4, all the experiment results in ErdÄos 99, 

ErdÄos 98 and ErdÄos 97 show that CD-TRandwalk is 
better than Newman Fast and ComTector. So we can 
conclude that CD-TRandwalk is also adaptive to large 
scale networks. To verify this conclusion, we run 
CD-TRandwalk in some other large network, such as 
email-EuAll, CA-GrQc and ca-HepPh, the experiment 
results show in Table 5. The modularity is from 0.7 to 
0.85, and the run time is not long. Although email-EuAll 
have 265214 nodes and 420045 edges, the run time is 
only 0.5h. The experiment results in table 5 indicate that 
our CD-TRandwalk can adapt to different types of social 
networks.  

VI. CONCLUSIONS AND FUTURE WORKS 

The CD-Trandwalk is different with the traditional 
random walk based methods, where the random walk is 
used to calculate the node similarity. CD-TRandwalk 
selects active nodes as seed nodes, and detects the core 
communities through threshold random walkers at first. 
Because the threshold random walkers start from the 
active seed nodes and only random walk to those nodes 
which association degrees are larger than a given 
threshold, the core community can be detected fast. After 
that, the remaining non-core nodes are allocated into the 
core communities according the common degrees 
between the nodes and the core communities. This has 
been implemented by simple voting strategy in our 
CD-TRandwalk.  
  We have compared our CD-TRandwalk with several 
community detection algorithms such as Affinity 
Propagation (AP), Newman Fast, and ComTector in many 
social networks. The experiment results show that 
CD-TRandwalk is better than the other methods both in 
the quality of community detection and run time. Our 
algorithm also has good adaptation to large scale 
networks. It also can adapt to unbalance networks, from 
little communities with only several nodes to large 
communities with thousands of nodes. Moreover, our 
CD-TRandwalk is an unsupervised method; it is not need 
to give the number of communities beforehand the 
community detection. 
  There also exist some disadvantages of our algorithm. 
The first problem is how to select reasonable parameters.  
There is not automatic technique to implement it now. We 
can optimize the parameters through maximize the 
modularity or other community quality measurement; 
however this will lead to large cost of run time. The 
second problem is that there possibly generate many 
isolated nodes with our CD-TRandwalk. In our future 
work, we will continue our research to resolve these 
problems. We will also to analyze our CD-TRandwalk 
algorithm from the theoretical viewports.  
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