
An Effective Computational Algorithm for a
Class of Linear Multiplicative Programming

Jingben Yin

Department of Mathematics, Henan Institute of Science and Technology, Xinxiang 453003, China
Email: jingbenyin@163.com

Yutang Liu

Henan Mechanical and Electrical Engineering College, Xinxiang 453002, China
Email: liuyutang168@126.com

Baolin Ma

School of Mathematical Sciences, Henan Institute of Science and Technology, Xinxiang 453003, China
Email: xxdsmbl@163.com

Dongwei Shi

Department of Mathematics, Henan Institute of Science and Technology, Xinxiang 453003, China
Email:shidw99@163.com

Abstract—In this paper, an effective computational
algorithm is proposed for a class of linear
multiplicative problem (P), which have broad
applications in financial optimization, economic plan,
engineering designs and stability analysis of nonlinear
systems, and so on. By utilizing piecewise linearization
technique underestimates the objective function,
linear relaxation programming of the original linear
multiplicative programming problem (P) is
established, and the proposed global optimization
algorithm is convergent to the global optimal solution
of the original problem (P). And finally the numerical
experiments are given to illustrate that the feasibility
of proposed algorithm and can be used to globally
solve the class of linear multiplicative programming
problem (P).

Index Terms—linear multiplicative programming, global
optimization, effective computational algorithm

I. INTRODUCTION

Consider the following a class of linear multiplicative
programming problem:

1 1 1
min () ()()

(P) :
. .

p n n

ji j ji i j
j i i

f x c x d e x f

s t Ax b
= = =

⎧
= + +⎪

⎨
⎪ ≤⎩

∑ ∑ ∑

where , .m n mA R b R×∈ ∈ In general, the problem (P)
corresponds to a nonlinear optimization problem with
non-convex objective function.

When 2p = , the problem (P) is linear multiplicative
programming problems (abbreviated as LMP), which is a
special type of nonconvex quadratic programming
problems whose objective function is the product of two
linear functions [1, 2, 3]. We introduced an auxiliary
variable and defined the master problem which is
equivalent to the original one. Then we applied a
parametric simplex algorithm to the master problem. We
demonstrated that our algorithm can solve LMP in a little
more computational time than needed for solving the
associated linear program (i.e., a linear program with the
same constraints).

When 3p ≥ , problem (P) is generalized linear
multiplicative programming problems (GLMP), whose
objective function is the sum of a convex function and a
product of two linear functions [3, 4]. We showed that a
parametric programming approach gives us a practical
method to calculate a global minimum of GLMP.

 Linear multiplicative programming (P) has attracted
considerable attention in the literature because of their
large number of practical applications in various fields of
study [5, 6], including financial optimization [1, 7, 8],
plant layout design [2, 9, 10], robust optimization [3, 11,
12], and so on [13, 14]. Hence, it is very necessary to
present effective algorithm for solving linear
multiplicative programming problem (P) [15, 16, 17].

Since problem (P) may possess many local minima, it
is known to the hardest problems [18, 19, 20]. In the last
decade, many solution algorithms have been proposed for
locally solving linear multiplicative programming
problem (P) [21, 22]. They can be classified as follows:
outer-approximation methods [4, 23, 24], decomposition
method [5, 25, 26], finite branch and bound algorithm [6,

Corresponding author E-mail: jingbenyin@163.com (J. Yin);

110 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.1.110-117

7, 27], primal and dual simplex method [8], cutting plane
method [9, 28], heuristic methods [10], etc. [11, 12, 29].

Though local optimization methods for solving linear
multiplicative programming (P) are ubiquitous, the global
optimization algorithm of the class of linear
multiplicative programming problems has been little
studied in the literatures.

In the paper, a new branch and bound algorithm is
given via solving a sequence of linear relaxations over
partitioned subsets to find a global optimal solution of the
(P). By utilizing new linearization technique, the initial
nonconvex nonlinear programming problem (P) is
systematically converted into a series of linear
programming problems. The solution of these converted
problems can be as close as possible to the globally
optimal solution of the (P) by successive refinement
process. In this method, (1) a new linear relaxation for the
original problem of the (P) is proposed, thus any effective
linear programming algorithm can be used to solve
nonlinear programming problem (P); (2) the generated
relaxed linear programming problems are embedded
within a branch-and-bound algorithm without increasing
new variables and constraints; (3) numerical computation
shows that the proposed method is feasible.

This paper is organized as follows. In Section 2
linearization relaxation technique is presented for
generating the relaxation linear programming. In Section
3 the proposed branch-and-bound algorithm in which the
relaxed sub-problems are embedded is described, and the
convergence of the algorithm is established. Numerical
results of some problems in the area of application are
considered in Section 4 and Section 5 provides a
summary.

II. LINEAR RELAXATION PROGRAMMING

In order to saving the problem (P), the principal
structure in the development of a solution procedure for
solving problem (P) is the construction of lower bounds
for this problem, as well as for its partitioned sub-
problems. A lower bound on the solution of problem (P)
and its partitioned sub-problems can be obtained by
solving a linear programming relaxation problem.

Firstly, we solve the following 2n linear programming
problems:

min
. . ,

i
i

x
l

s t Ax b
⎧

= ⎨ ≤⎩

and
max
. . ,

i
i

x
u

s t Ax b
⎧

= ⎨ ≤⎩

where 1, , .i n= K Then we can get the initial interval
vector

0 { }nX x R l x u= ∈ ≤ ≤ ,

1 2(, , ,) ,T
nl l l l= L

1 2(, , ,) .T
nu u u u= L

Next, the problem can be rewritten as follows:

1 1 1

0

min () ()()

(P) : . . ,

p n n

ji j ji i j
j i i

f x c x d e x f

s t Ax b
x X

= = =

⎧
= + +⎪

⎪⎪ ≤⎨
⎪ ∈⎪
⎪⎩

∑ ∑ ∑

The linear relaxation of the problem (P) can be realized
by underestimating every objective function with a linear
function. All the details of this linearization technique for
generating relaxations will be given as follows.

Let
0{ : }k n k kX x R l x u X= ∈ ≤ ≤ ⊆ ,

1 2 1 2(, , ,) , (, , ,)k k k k T k k k T
n nl l l l u u u u= =L L ,

then

()

1 1 1

1 1 1 1 1 1

1

2 2 2

1 1 1

1 1 1 1

() ()()

()

1 ()
2

()

1
2

p n n

ji i j ji i j
j i i

p pn n n n

ji jk i k j ji i j ji i
j i k j i i

p

j j
j

p n n

ji jk i k i k
j i k

p pn n

j ji i j ji i j j
j i i j

ji j

f x c x d e x f

c e x x d e x f c x

d f

c e x x x x

d e x f c x d f

c e

= = =

= = = = = =

=

= = =

= = = =

= + +

= + +

+

= + − −

+ + +

=

∑ ∑ ∑

∑∑∑ ∑ ∑ ∑

∑

∑∑∑

∑ ∑ ∑ ∑

2

1 1 1

2

1 1 1

2

1 1 1

1 1 1

1

()

1
2

1
2

()

p n n

k i k
j i k

p n n

ji jk i
j i k

p n n

ji jk k
j i k

p n n

j ji i j ji i
j i i

p

j j
j

x x

c e x

c e x

d e x f c x

d f

= = =

= = =

= = =

= = =

=

+

−

−

+ +

+

∑∑∑

∑∑∑

∑∑∑

∑ ∑ ∑

∑

In the following, we proved that for [,]i i ix l u∀ ∈ , we
have

2
2()

() () ,
4

i i
i i i i i i i i i

l u
l u x x l u x l u

+
+ − ≤ ≤ + −

And

()

2
2

2

()
max [()]

4

max ()

()
4

i i
i i i il x u

i i i i i il x u

i i

l u
x l u x

l u x l u x

u l

≤ ≤

≤ ≤

⎛ ⎞+
− + −⎜ ⎟

⎝ ⎠

= + − −

−
=

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 111

© 2013 ACADEMY PUBLISHER

In fact, according to the geometric property of 2
ix in

the region [,]i il u , the conclusion is very clear.
On a one hand, for [,]i i ix l u∀ ∈ , since

2
2 ()

[()]
4

i i
i i i i

l u
x l u x

+
− + −

is a convex function, so the maximum value can be got at
il or iu , so we can know

2()2max ()
4

()
4

l ui ix l u xi i iil x u

u li i

⎛ ⎞⎡ ⎤+⎜ ⎟⎢ ⎥− + −⎜ ⎟⎢ ⎥≤ ≤ ⎣ ⎦⎝ ⎠
−

=

On the other hand, for [,]i i ix l u∀ ∈ , since
2()i i i i i il u x l u x+ − −

is a concave function, so its maximum value can be got

at
2

i il u+ , so we can get

()2 ()
max ()

4
i i

i i i i i il x u

u l
l u x l u x

≤ ≤

−
+ − − = .

In the following, we consider
2 2 22 ()i k i k i kx x x x x x= + − − .

 Let

2

() , 0
() ,()

() , 0
4

i i i i i ji jk

ijk i i i
i i i ji jk

l u x l u c e
f x l u

l u x c e

+ − >⎧
⎪= ⎨ +

+ − <⎪
⎩

2

()()
()(), 0;

(,) ()()

()
, 0.

4

i k k i i k

i k i k ji jk

ijk i k i k k i i k

i k k i
ji jk

l l u u x x
l l u u c e

f x x l l u u x x

l l u u
c e

+ + + + −⎧
⎪ + + <⎪⎪= + + + +⎨
⎪

+ + +⎪− >⎪⎩

Let

()
1 1 1

1 1 1

1

1() (,) () ()
2

() ()

p n n

ji jk ijk i k ijk i ijk k
j i k

p n n

j ji i j j ji i j
j i i

p

j j
j

x c e f x x f x f x

d e x f f c x d

d f

ϕ
= = =

= = =

=

= − −

⎛ ⎞+ + + +⎜ ⎟
⎝ ⎠

−

∑∑∑

∑ ∑ ∑

∑

,

we can get a linear relaxation programming of problem (P)
in kX :

min ()

. .() :

{ : }

k

k k k

x

s t Ax bRLP S

x X x l x u

ϕ⎧
⎪
⎪ ≤⎨
⎪
⎪ ∈ = ≤ ≤⎩

Theorem 1. For [,]i i ix l u∀ ∈ , we have
 (i) () ()x f xϕ ≤ ;
 (ii)

|| || 0

[() ()] 0, .lim
k k

u l

kf x x x Xϕ
− →

− = ∈

where

()
1 1 1

1 1 1 1

1() (,) () ()
2

() ()

p n n

ji jk ijk i k ijk i ijk k
j i k

p pn n

j ji i j j ji i j j j
j i i j

x c e f x x f x f x

d e x f f c x d d f

ϕ
= = =

= = = =

= − −

⎛ ⎞+ + + + −⎜ ⎟
⎝ ⎠

∑∑∑

∑ ∑ ∑ ∑

and

1 1 1

2

1 1 1

2 2

1 1 1 1 1 1

1 1 1

1

() ()()

1 ()
2

1 1
2 2

()

p n n

ji i j ji i j
j i i

p n n

ji jk i k
j i k

p pn n n n

ji jk i ji jk k
j i k j i k

p n n

j ji i j ji i
j i i

p

j j
j

f x c x d e x f

c e x x

c e x c e x

d e x f c x

d f

= = =

= = =

= = = = = =

= = =

=

= + +

= +

− −

+ +

+

∑ ∑ ∑

∑∑∑

∑∑∑ ∑∑∑

∑ ∑ ∑

∑

Proof. (i) by the definition of ()xϕ , we have

()
1 1 1

1 1 1 1

2

1 1 1

2 2

1 1 1 1 1 1

1() (,) () ()
2

() ()

1 ()
2

1 1
2 2

p n n

ji jk ijk i k ijk i ijk k
j i k

p pn n

j ji i j j ji i j j j
j i i j

p n n

ji jk i k
j i k

p pn n n n

ji jk i ji jk k
j i k j i k

x c e f x x f x f x

d e x f f c x d d f

c e x x

c e x c e x

ϕ
= = =

= = = =

= = =

= = = = = =

= − −

⎛ ⎞+ + + + −⎜ ⎟
⎝ ⎠

≤ +

− −

∑∑∑

∑ ∑ ∑ ∑

∑∑∑

∑∑∑ ∑∑∑

()

1 1 1 1

2 2 2

1 1 1

1 1 1 1

1 1 1 1 1

() ()

1 ()
2

(() ())

(()

p pn n

j ji i j j ji i j j j
j i i j

p n n

ji jk i k i k
j i k

p pn n

j ji i j j ji i j j j
j i i j

p pn n n

ji jk i k j ji i j
j i k j i

d e x f f c x d d f

c e x x x x

d e x f f c x d d f

c e x x d e x f

= = = =

= = =

= = = =

= = = = =

⎛ ⎞+ + + + −⎜ ⎟
⎝ ⎠

= + − −

+ + + + −

= + +

∑ ∑ ∑ ∑

∑∑∑

∑ ∑ ∑ ∑

∑∑∑ ∑ ∑

1 1

1 1 1

())

()()

()

pn

j ji i j j j
i j

p n n

ji j ji i j
j i i

f c x d d f

c x d e x f

f x

= =

= = =

+ + −

= + +

=

∑ ∑

∑∑ ∑

Therefore, we have

() ()x f xϕ ≤ for [,]i i ix l u∀ ∈ .

 (ii) for [,]i i ix l u∀ ∈ , and the definition of ()xϕ and ()f x ,
we can get

112 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

2

1 1 1

2 2

1 1 1

2

1 1 1

2 2

1 1 1 1 1 1

1

| () () |

()1
2 4

() ()1
2 4 4

1 ()
2

1 1
2 2

()

p n n
k k i i

ji jk
j i k

p n n
i i k k

ji jk
j i k

p n n

ji jk i k
j i k

p pn n n n

ji jk i ji jk k
j i k j i k

n

j ji i j j
i

f x x

u l u l
c e

u l u l
c e

c e x x

c e x c e x

d e x f f

ϕ

= = =

= = =

= = =

= = = = = =

=

−

− + −
≤

− −
+ +

= +

− −

+ + +

∑∑∑

∑∑∑

∑∑∑

∑∑∑ ∑∑∑

∑

()

1 1

1

1 1 1

1 1 1 1

2

2 2

()

1 (,) () ()
2

() ()

[() (,)]1
2 [()] [

p n

ji i j
j i

p

j j
j

p n n

ji jk ijk i k ijk i ijk k
j i k

p pn n

j ji i j j ji i j j j
j i i j

i k ijk i k
ji jk

i ijk i k i

c x d

d f

c e f x x f x f x

d e x f f c x d d f

x x f x x
c e

x f x x f

= =

=

= = =

= = = =

⎛ ⎞+⎜ ⎟
⎝ ⎠

−

− − −

⎛ ⎞− + + + +⎜ ⎟
⎝ ⎠

+ −
=

− − − −

∑ ∑

∑

∑∑∑

∑ ∑ ∑ ∑

1 1 1 ()]

p n n

j i k jk kx= = =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑∑∑

Since
2

2

2

2

2

() (,)

()()
()(), 0;

=() ()()

()
, 0.

4

() [()()
()()], 0;

= () [(

i k ijk i k

i k k i i k

i k i k ji jk

i k i k k i i k

i k k i
ji jk

i k i k k i i k

i k i k ji jk

i k i

x x f x x

l l u u x x
l l u u c e

x x l l u u x x

l l u u
c e

x x l l u u x x
l l u u c e

x x l

+ −

+ + + + −⎧
⎪ + + <⎪⎪+ − + + + +⎨
⎪

+ + +⎪− >⎪⎩

+ − + + + + −
+ + <

+ −
2

)()

()
], 0.

4

k k i i k

i k k i
ji jk

l u u x x

l l u u
c e

⎧
⎪
⎪⎪
⎨ + + + +
⎪

+ + +⎪− >⎪⎩

By the Theorem 1, we have
2() [()()

()()] 0
i k i k k i i k

i k i k

x x l l u u x x
l l u u
+ − + + + +

− + + →

as 0k ku l− → ,
and

2

2

() [()()

()
] 0

4

i k i k k i i k

i k k i

x x l l u u x x

l l u u

+ − + + + +

+ + +
− →

as 0k ku l− → .
So that we have

2() (,) 0i k ijk i kx x f x x+ − → as 0k ku l− → .

Since
2

2 2

2

2
2

()

() , 0

()
() , 0

4

[()], 0

()
[()] , 0

4

i ijk i

i i i i i ji jk

i i i
i i i ji jk

i i i i i i ji jk

i i
i i i i ji jk

x f x

l u x l u c e
x l u

l u x c e

x l u x l u c e

l u
x l u x c e

−

+ − >⎧
⎪= − ⎨ +

+ − <⎪
⎩

⎧ − + − >
⎪= ⎨ +

− + − <⎪
⎩

By the Theorem 1, we have
2() () 0i ijk ix f x− → as 0k ku l− → .

Since
2

2 2

2

2
2

()

() , 0

()
() , 0

4

[()], 0

()
[()] , 0

4

k ijk k

i i k i i ji jk

k i i
i i k ji jk

k i i k i i ji jk

i i
k i i k ji jk

x f x

l u x l u c e
x l u

l u x c e

x l u x l u c e

l u
x l u x c e

−

+ − >⎧
⎪= − ⎨ +

+ − <⎪
⎩

⎧ − + − >
⎪= ⎨ +

− + − <⎪
⎩

By the Theorem 1, we have
2() () 0k ijk kx f x− → as 0k ku l− → ,

Therefore, we have

|| || 0

|| || 0

|| || 0

2

2 2
1 1 1

2

2 2

[() ()]

[() (,)]1
2 [()] [()]

[() (,)]1
2 [()] [()]

lim

lim

lim

k k

k k

k k

u l

u l

u l

p n n
i k ijk i k

ji jk
j i k i ijk i k ijk k

i k ijk i k
ji jk

i ijk i k ijk k

f x x

x x f x x
c e

x f x x f x

x x f x x
c e

x f x x f x

ϕ
− →

− →

− →

= = =

−

⎛ ⎞+ −
⎜ ⎟=
⎜ ⎟− − − −⎝ ⎠

⎛ + −
=

− − − −⎝

∑∑∑

1 1 1

0, .

p n n

j i k

kx X

= = =

⎞
⎜ ⎟
⎜ ⎟

⎠

→ ∈

∑∑∑

Based on the above linear under-estimators, every
feasible point of the (P) in sub-domain kX is feasible in
(RLP); and the value of the objective function for the
(RLP) is less than or equal to that of the (P) for all points
in kX . Thus, the (RLP) provides a valid lower bound for
the solution of the (P) over the partition set kX . It should
be noted that problem (RLP) contains only the necessary
constraints to guarantee convergence of the algorithm.

III ACCELERATING TECHNIQUE

In this following, we propose an accelerating method
for global optimization algorithm of problem (P) using a
suitable deleting technique. This technique offers a
possibility to cut away a large part of the currently
investigated region in which the globally optimal solution
of the (P) does not exist, and can be seen as an
accelerating device for global optimization algorithm of
problem (P). We can give the following accelerating
theorem.

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 113

© 2013 ACADEMY PUBLISHER

Since ()xϕ and ()u xϕ are all linear functions over
0

1[,]i i nX x x X×= ⊆ , in the following, for convenience of
expression, without loss of generality, we let

0
1

0
1

() ,

min{ , } ,

min{ , }
, 0,

n

i i
i

n
l l

i i i i
i

l l
i i i i

i i
i

x c x c

c x c x c

UB c x c x
s with c

c

ϕ

ϕ

ϕ

=

=

= +

= +

− +
= ≠

∑

∑

where 1, , .i n= K
Theorem 2. (Ref. [23]). For any 0

1[,]i i nX x x X×= ⊆ ,
the following conclusions holds:

 (i) If l l UBϕ > , then there exists no optimal solution
of problem (P) over X ;

 (ii) If l l UBϕ ≤ , then:
If there exists some index {1, , }v n∈ K satisfying

0vc > and v vs x< , then there is no optimal solution of
problem (P) over 1X ;

Conversely, if 0vc < and v vs x> for some index
{1, , }v n∈ K , then there does exit optimal solution of

problem (P) over 2 ;X
where

1 1 1 1[,]i i nX x x X×= ⊆
with

1 1

[,], ,
[,]

(,] [,], ,
i i

i i
v v v v

x x if i v
x x

s x x x if i v

≠⎧⎪= ⎨
=⎪⎩ I

2 2 2 1[,]i i nX x x X×= ⊆ .
with

2 2

[,], ,
[,]

[,) [,], ,
i i

i i
v v v v

x x if i v
x x

x s x x if i v

≠⎧⎪= ⎨ =⎪⎩ I

Proof. The proof of the theorem is omitted.

IV ALGORITHM AND ITS CONVERGENCE

In this section a branch and bound algorithm is
proposed to globally solve the (P) based on the former
linear relaxation method. This algorithm needs to solve a
sequence of relaxation linear programming over the
initial rectangle 0X or partitioned sub-rectangle kX in
order to find a global optimum solution.

The branch and bound approach is based on
partitioning the set 0X into sub-hyper-rectangles, each
concerned with a node of the branch and bound tree, and
each node is associated with a relaxation linear sub-
problem in each sub-hyper-rectangle. Hence, at any stage
k of the algorithm, suppose that we have a collection of
active nodes denoted by kΩ , say, each associated with a
hyper-rectangle

0 ,X X⊆ kX∀ ∈Ω .
For each such node X , we will have computed a lower
bound of the optimal value of the (P) via the solution

()LB X of the (RLP), so that the lower bound of optimal
value of the (P) on the whole initial box region 0X at
stage k is given by

{ }min (), .k kLB LB X X= ∀ ∈Ω
Whenever the lower bounding solution for any node sub-
problem, i.e., the solution of the relaxation linear
programming (RLP) turns out to be feasible to the (P), we
update the upper bound of incumbent solution UB if
necessary. Then, the active nodes collection kΩ will
satisfy

() , ,kLB X UB X< ∀ ∈Ω
for each stage k . We now select an active node to
partition its associated hyper-rectangle into two sub-
hyper-rectangles as described below, computing the
lower bounds for each new node as before. Upon
fathoming any non-improving nodes, we obtain a
collection of active nodes for the next stage, and this
process is repeated until convergence is obtained.

Let ()kLB X refer to the optimal objective function
value of (RLP) for the sub-hyper-rectangles kX and

()k kx x X= refer to an element of corresponding argmin.
The basic steps of the proposed algorithm are
summarized as follows.

Algorithm statement
Step 0. (Initialization)
Initialize the iteration counter : 0k = ; convergence

tolerance 0ε > ; the set of all active node 0
0 { }XΩ = ; the

upper bound UB = ∞ , and the set of feasible points
:F = ∅ .
Solve the (RLP) for 0X X= , obtaining

0 : ()LB LB X=
and

0 : ()x x X= .
If 0x is feasible to the (RLP) update F and UB , if
necessary. If

0UB LB ε≤ + ,
then stop with 0x as the prescribed solution to the (P).
Otherwise, proceed to Step 1.

Step 1. (Updating upper bound)
Select the midpoint mx of kX , if mx is feasible to the

(P) then
: { }mF F x= U .

Define the upper bound
: min ()x FUB xϕ∈= .

If F ≠ ∅ , the best known feasible point is denoted by
: arg min ()x Fb xϕ∈= .

For the investigated sub-rectangle kX , we using deleting
technique to deleting a part of kX , denote the remaining
as kX .

Step 2. (Accelerating)
For the investigated sub-rectangle kX , we can use

accelerating technique to delete a part of kX , denote the
remaining as kX .

114 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

Step 3. (Branching)
Choose a branching variable qx to partition kX to get

two new sub-hyper-rectangles according to the above
selected branching rule. Call the set of new partition
rectangles as kX .

For each kX X∈ , calculate the lower bound Lϕ of
()xϕ over the rectangle X , i.e.,

: min ().L
x X xϕ ϕ∈=

If
L UBϕ > ,

then remove the corresponding sub-rectangle X from
kX , i.e.

: \k kX X X=
and skip to next element of kX .

If kX ≠ ∅ , solve the (RLP) to obtain ()LB X and
()x X for each kX X∈ . If

()LB X UB> ,
set

: \k kX X X= ;
otherwise, update the best available solution UB , F and
b if possible, as in Step 1.

Step 4. (Updating lower bound)
The partition set remaining is now

: (\)k k
k k X XΩ = Ω U

giving a new lower bound
: inf ()

kk XLB LB X∈Ω= .
Step 5. (Fathoming)
Fathom any non-improving nodes by setting

1 \{ : () , },k k kX UB LB X Xε+Ω = Ω − ≤ ∈Ω
If

1k+Ω = ∅ ,
then stop with UB is an optimal solution. Otherwise,

: 1k k= + , and select an active node kX such that
: arg min (), : ()

k

k k k
XX LB X x x X∈Ω= = ,

and return to Step 1.
Theorem 3. (convergence result). The above algorithm

either terminates finitely with the incumbent solution
being optimal to the (P), or generates an infinite sequence
of iteration such that along any infinite branch of the
branch and bound tree, any accumulation point of the
sequence { }kx will be the global solution of the problem
(P), i.e.

lim min ().kk x D
LB LB f x

→∞ ∈
= =

Proof.
A sufficient condition for a global optimization to be

convergent to the global minimum, stated in Horst and
Tuy [27] requires that the bounding operation must be
consistent and the selection operation bound improving.

A bounding operation is called consistent if at every
step any unfathomed partition can be further refined, and
if any infinitely decreasing sequence of successively
refined partition elements satisfies:

lim() 0.kk
UB LB

→∞
− =

where LB (s) is a computed lower bound in stage s and
UB is the best upper bound at iteration s not necessarily
occurring inside the same sub-rectangle with LB (s). In
the following we will demonstrate the above formulation
holds.

Since the employed subdivision process is the
bisection, the process is exhaustive. Consequently, from
Lemma 1 and Theorem 2 and the discussion in [27] the
formulation holds, and then it means that the employed
bounding operation is consistent.

A selection operation is called bound improving if at
least one partition element where the actual lower bound
is attained is selected for further partition after a finite
number of refinements. Clearly, the employed selection
operation is bound improving because the partition
element where the actual lower bound is attained is
selected for further partition in the immediately following
iteration.

In summary, we have shown that the bounding
operation is consistent and that the selection operation is
bound improving, therefore according to Theorem.

V. NUMERICAL EXPERIMENT

To verify performance of the proposed algorithm, the
algorithm is coded in C++ language on Pentium IV (433
MHZ) microcomputer and each linear programming is
solved by simplex method, and the convergence tolerance
ε is set to 810− in our experiment.

Example 1.
0 1 2 3 1 2 3

1

2

3

min () () (2)
. . 1 3,

1 3.5,
1 3.

G x x x x x x x
s t x

x
x

= + + + +⎧
⎪ ≤ ≤⎪
⎨ ≤ ≤⎪
⎪ ≤ ≤⎩

Using the above proposed algorithm we can globally
solve the example 1 on microcomputer, the result is given
as follows. Numerical results of the example 1 are
optimal value 12v = .

Example 2.
0 1 2 3 1 2 3

1

2

3

min () (1.5)(2 2)
. . 1 3,

1 3.5,
1 3.

G x x x x x x x
s t x

x
x

= + + + +⎧
⎪ ≤ ≤⎪
⎨ ≤ ≤⎪
⎪ ≤ ≤⎩

Using the above proposed algorithm we can globally
solve the example 2 on microcomputer. Numerical results
of the example 2 are optimal value 17.5v = .

Example 3.
0 1 2 3 1 2 3

1

2

3

min () (2) (2 2)
. . 1 2.5,

1 3.5,
1 3.5.

G x x x x x x x
s t x

x
x

= + + + +⎧
⎪ ≤ ≤⎪
⎨ ≤ ≤⎪
⎪ ≤ ≤⎩

Using the above proposed algorithm we can globally
solve the Example 3 on microcomputer. Numerical
results of the example 3 are optimal value 20.v =

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 115

© 2013 ACADEMY PUBLISHER

Example 4.
0 1 2 3 1 2 3

1

2

3

min () (2 1.5) (2 2)
. . 1 2,

1 2,
1 2.

G x x x x x x x
s t x

x
x

= + + + +⎧
⎪ ≤ ≤⎪
⎨ ≤ ≤⎪
⎪ ≤ ≤⎩

Using the above proposed algorithm we can globally
solve the Example 4 on microcomputer. Numerical
results of the example 4 are optimal value 27.5.v =

From numerical experiments, it is seen that our
algorithm can globally solve the problem (P) effectively.

VI. CONCLUDING REMARKS

In this paper, a global optimization algorithm is
presented for a class of linear multiplicative programming
problems with linear constraints. By utilizing
linearization technique, a linear relaxation programming
of the (P) is then obtained based on the linear lower
bounding of the objective function. The algorithm was
shown to attain finite ε convergence to the global
minimum through the successive refinement of a linear
relaxation of the feasible region and the subsequent
solution of a series of linear programming problems. The
proposed approach was applied to several test problems.
In all cases, convergence to the global minimum was
achieved. The numerical results are given to illustrate the
feasibility and the robust stability of the present algorithm.

ACKNOWLEDGMENT

This paper is supported by the National Natural
Science Foundation of Henan Province of China, Natural
Science Research Foundation of Henan Institute of
Science and Technology.

The work was also supported by Foundation for
University Key Teacher by the Ministry of Education of
Henan Province and the Natural Science Foundation of
Henan Educational Committee (2010B110010).

REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, “On certain
integrals of Lipschitz-Hankel type involving products of
Bessel functions”, Phil. Trans. Roy. Soc. London, vol.
A247, pp. 529–551, April 1955.

[2] I. Quesada and I.E. Grossmann, Alternative bounding
approximations for the global optimization of various
engineering design problems. In I.E. Grossmann, (ed.),
Global Optimization in Engineering Design, Vol. 9
Nonconvex Optimization and Its Applications, Kluwer
Academic Publishers, Norwell, MA, pp. 309-331, 1996.

[3] J.M. Mulvey, R.J. Vanderbei and S.A. Zenios, Robust
optimization of large-scale systems. Operations Research,
43, pp. 264-281, 1995.

[4] T. Kuno, Y. Yajima and H. Konno, An outer
approximation method for minimizing the product of
several convex functions on a convex set. Journal of
Global optimization, 3 (3), pp. 325-335, 1993.

[5] H.P. Benson, Decomposition branch and bound based
algorithm for linear programs with additional
multiplicative constraints. Journal of Optimization Theory
and Applications, 126 (1), pp. 41-46, 2005.

[6] T. Kuno, A finite branch and bound algorithm for linear
multiplicative programming. Computational Optimization
and Application, 20, pp. 119-135, 2001.

[7] H.S. Ryoo and N. V. Sahinidis, Global Optimization of
Multiplicative Programs. Journal of Global Optimization,
26, pp. 387-418, 2003.

[8] S. Schaible and C. Sodini, Finite algorithm for generalized
linear multiplicative programming. Journal of Optimization
Theory and Applications, 87 (2), pp. 441-455, 1995.

[9] H.P. Benson and G.M. Boger, Outcome-space cutting-
plane algorithm for linear multiplicative programming.
Journal of Optimization Theory and Applications, 104 (2),
pp. 301-322, 2000.

[10] X.J. Liu, T. Umegaki, and Y. Yamamoto, Heuristic
methods for linear multiplicative programming. Journal of
Global Optimization, 4 (15), pp. 433-447, 1999.

[11] H.-M. Li, K.-C. Zhang, A decomposition algorithm for
solving large-scale quadratic programming problems,
Applied Mathematics and Computation, 173 (1), pp. 394-
403, 2006.

[12] H. Wu, K. Zhang, A new accelerating method for global
non-convex quadratic optimization with non-convex
quadratic constraints, Applied Mathematics and
Computation, 197 (2), pp. 810-818, 2008.

[13] S.-T. Liu, R.-T. Wang, A numerical solution method to
interval quadratic programming, Applied Mathematics and
Computation, 189 (2), pp. 1274-1281, 2007.

[14] P. Shen, M. Gu, A duality-bounds algorithm for non-
convex quadratic programs with additional multiplicative
constraints, Applied Mathematics and Computation, 198
(1), pp. 1-11, 2008.

[15] P. Shen, Y. Duan, Y. Ma, A robust solution approach for
nonconvex quadratic programs with additional
multiplicative constraints, Applied Mathematics and
Computation, 201 (1-2), pp. 514-526, 2008.

[16] C. Wang, et al. An Acelerating Algorithm for a Class of
Multiplicative Programming, Mathematica Applicata, 24
(4), pp. 13-15, 2011.

[17] C. Xue, H. Jiao, et al., An approximate algorithm for
solving generalized linear multiplicative programming,
Journal of Henan Normal University (Natural Science), 36
(5), pp. 13-15, 2008.

[18] Y. Gao, C. Xu, Yongjian Yang, An outcome-space finite
algorithm for solving linear multiplicative programming,
Applied Mathematics and Computation, 179 (2), 494-505,
2006.

[19] R. M. Oliveira, and P. A. V. Ferreira, An Outcome Space
Approach for Generalized Convex Multiplicative Programs,
Journal of Global Optimization, 47, pp. 107-118, 2010.

[20] A. M. Ashtiani, P. A. V. Ferreira, Global Maximization of
a Generalized Concave Multiplicative Problem in the
Outcome Space, Anais do CNMAC, 3, pp. 377-383, 2010.

[21] Y. Chen, H. Jiao, A nonisolated optimal solution of general
linear multiplicative programming problems, Computers &
Operations Research, 36, pp. 2573-2579, 2009.

[22] W. Chun-Feng, L. San-Yang, S. Pei-Ping, Global
minimization of a generalized linear multiplicative
programming, Appl. Math. Modelling, 36 (6), pp. 2446-
2451, 2012.

[23] P. Shen, H. Jiao, Linearization method for a class of
multiplicative programming with exponent, Applied
Mathematics and Computation, 183 (1), pp. 328-336, 2006.

[24] C.-F. Wang, S.-Y. Liu, A new linearization method for
generalized linear multiplicative programming, Computers
& Operations Research, 38, pp. 1008-1013, 2011.

[25] H. Jiao, Y.R. Guo, P. Shen, Global optimization of
generalized linear fractional programming with nonlinear

116 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

constraints, Applied Mathematics and Computation, 183
(2), pp.717-728, 2006.

[26] H. Jiao, A branch and bound algorithm for globally solving
a class of nonconvex programming problems, Nonlinear
Analysis: Theory, Methods \& Applications, 70, pp. 1113-
1123, 2009.

[27] P. Shen, X. Bai, W. Li, A new accelerating method for
globally solving a class of nonconvex programming
problems, Nonlinear Analysis: Theory, Methods &
Applications, 71 (7-8), pp. 2866-2876, 2009.

[28] H. P. Benson, Global Maximization of a Generalized
Concave Multiplicative Function, Journal of Optimization
Theory and Application, 137, pp. 105-120, 2008.

[29] H. Mao, Q. Feng, A kind of computational method for
solving a class of fractional problems using deleting
technique, Journal of Computational Information Systems,
6 (4), pp. 1243-1250, 2010.

Jingben Yin, (1970-), male, is a associate professor at
Department of Mathematics, Henan Institute of Science and
Technology, China. He received the Master Degree from
ZhengZhou University in 2009.

His research interests include software engineering,
computer application, optimization algorithm design, product
design, manufacturing information systems, optimization
algorithm, nonlinear system, optimal control theory. He has

published over 30 research monographs. Corresponding E-
mail: jingbenyin@163.com

Yutang Liu, is a teacher at a teacher of Henan Mechanical and
Electrical Engineering College.

His research interests include computational algorithm,
numerical algorithm, software engineering, computer
application, optimization algorithm design, product design,
manufacturing information systems, optimization algorithm,
nonlinear system, optimal control theory.

Baolin Ma, male, MSc, Lecturer, Was born in February 1978,
School of Mathematical Sciences, Henan Institute of Science
and Technology, Work at optimization theory, graph theory.

His research interests include global optimization algorithm,
software engineering, computer application, optimization design,
product design, manufacturing information systems,
optimization algorithm, nonlinear system control theory.

Dongwei Shi, male, MSc, Lecturer, Was born in 1976, School
of Mathematical Sciences, Henan Institute of Science and
Technology, Work at optimization theory, graph theory.

His research interests include numerical computation, global
optimization algorithm, software engineering, computer
application, optimization design, product design, manufacturing
information systems, optimization algorithm, nonlinear system
control theory.

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 117

© 2013 ACADEMY PUBLISHER

