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Abstract—In this paper, an effective computational 
algorithm is proposed for a class of linear 
multiplicative problem (P), which have broad 
applications in financial optimization, economic plan, 
engineering designs and stability analysis of nonlinear 
systems, and so on. By utilizing piecewise linearization 
technique underestimates the objective function, 
linear relaxation programming of the original linear 
multiplicative programming problem (P) is 
established, and the proposed global optimization 
algorithm is convergent to the global optimal solution 
of the original problem (P). And finally the numerical 
experiments are given to illustrate that the feasibility 
of proposed algorithm and can be used to globally 
solve the class of linear multiplicative programming 
problem (P). 
 
Index Terms—linear multiplicative programming, global 
optimization, effective computational algorithm 
 

I.  INTRODUCTION 

Consider the following a class of linear multiplicative 
programming problem:  

1 1 1
min ( ) ( )( )

(P) :
. .

p n n

ji j ji i j
j i i

f x c x d e x f

s t Ax b
= = =

⎧
= + +⎪

⎨
⎪ ≤⎩

∑ ∑ ∑  

where , .m n mA R b R×∈ ∈ In general, the problem (P) 
corresponds to a nonlinear optimization problem with 
non-convex objective function. 

When 2p = , the problem (P) is linear multiplicative 
programming problems (abbreviated as LMP), which is a 
special type of nonconvex quadratic programming 
problems whose objective function is the product of two 
linear functions [1, 2, 3]. We introduced an auxiliary 
variable and defined the master problem which is 
equivalent to the original one. Then we applied a 
parametric simplex algorithm to the master problem. We 
demonstrated that our algorithm can solve LMP in a little 
more computational time than needed for solving the 
associated linear program (i.e., a linear program with the 
same constraints).  

When 3p ≥ , problem (P) is generalized linear 
multiplicative programming problems (GLMP), whose 
objective function is the sum of a convex function and a 
product of two linear functions [3, 4]. We showed that a 
parametric programming approach gives us a practical 
method to calculate a global minimum of GLMP.  

 Linear multiplicative programming (P) has attracted 
considerable attention in the literature because of their 
large number of practical applications in various fields of 
study [5, 6], including financial optimization [1, 7, 8], 
plant layout design [2, 9, 10], robust optimization [3, 11, 
12], and so on [13, 14]. Hence, it is very necessary to 
present effective algorithm for solving linear 
multiplicative programming problem (P) [15, 16, 17]. 

Since problem (P) may possess many local minima, it 
is known to the hardest problems [18, 19, 20]. In the last 
decade, many solution algorithms have been proposed for 
locally solving linear multiplicative programming 
problem (P) [21, 22]. They can be classified as follows: 
outer-approximation methods [4, 23, 24], decomposition 
method [5, 25, 26], finite branch and bound algorithm [6, 
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7, 27], primal and dual simplex method [8], cutting plane 
method [9, 28], heuristic methods [10], etc. [11, 12, 29]. 

Though local optimization methods for solving linear 
multiplicative programming (P) are ubiquitous, the global 
optimization algorithm of the class of linear 
multiplicative programming problems has been little 
studied in the literatures. 

In the paper, a new branch and bound algorithm is 
given via solving a sequence of linear relaxations over 
partitioned subsets to find a global optimal solution of the 
(P). By utilizing new linearization technique, the initial 
nonconvex nonlinear programming problem (P) is 
systematically converted into a series of linear 
programming problems. The solution of these converted 
problems can be as close as possible to the globally 
optimal solution of the (P) by successive refinement 
process. In this method, (1) a new linear relaxation for the 
original problem of the (P) is proposed, thus any effective 
linear programming algorithm can be used to solve 
nonlinear programming problem (P); (2) the generated 
relaxed linear programming problems are embedded 
within a branch-and-bound algorithm without increasing 
new variables and constraints; (3) numerical computation 
shows that the proposed method is feasible. 

This paper is organized as follows. In Section 2 
linearization relaxation technique is presented for 
generating the relaxation linear programming. In Section 
3 the proposed branch-and-bound algorithm in which the 
relaxed sub-problems are embedded is described, and the 
convergence of the algorithm is established. Numerical 
results of some problems in the area of application are 
considered in Section 4 and Section 5 provides a 
summary. 

II.  LINEAR RELAXATION PROGRAMMING 

In order to saving the problem (P), the principal 
structure in the development of a solution procedure for 
solving problem (P) is the construction of lower bounds 
for this problem, as well as for its partitioned sub-
problems. A lower bound on the solution of problem (P) 
and its partitioned sub-problems can be obtained by 
solving a linear programming relaxation problem. 

Firstly, we solve the following 2n  linear programming 
problems:  

min
. . ,

i
i

x
l

s t Ax b
⎧

= ⎨ ≤⎩
 

and 
max
. . ,

i
i

x
u

s t Ax b
⎧

= ⎨ ≤⎩
 

where 1, , .i n= K  Then we can get the initial interval 
vector  

0 { }nX x R l x u= ∈ ≤ ≤ ,  

1 2( , , , ) ,T
nl l l l= L  

1 2( , , , ) .T
nu u u u= L  

Next, the problem can be rewritten as follows:  

1 1 1

0

min ( ) ( )( )
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∑ ∑ ∑
 

The linear relaxation of the problem (P) can be realized 
by underestimating every objective function with a linear 
function. All the details of this linearization technique for 
generating relaxations will be given as follows. 

Let  
0{ : }k n k kX x R l x u X= ∈ ≤ ≤ ⊆ , 

1 2 1 2( , , , ) , ( , , , )k k k k T k k k T
n nl l l l u u u u= =L L ,  
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In the following, we proved that for [ , ]i i ix l u∀ ∈ , we 
have 

2
2( )

( ) ( ) ,
4

i i
i i i i i i i i i

l u
l u x x l u x l u

+
+ − ≤ ≤ + −  

And 
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2
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4
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In fact, according to the geometric property of 2
ix  in 

the region [ , ]i il u , the conclusion is very clear. 
On a one hand, for [ , ]i i ix l u∀ ∈ ,  since 

2
2 ( )

[( ) ]
4

i i
i i i i

l u
x l u x

+
− + −  

is a convex function, so the maximum  value can be got at 
il  or iu , so we can know 

2( )2max ( )
4

( )
4

l ui ix l u xi i iil x u

u li i

⎛ ⎞⎡ ⎤+⎜ ⎟⎢ ⎥− + −⎜ ⎟⎢ ⎥≤ ≤ ⎣ ⎦⎝ ⎠
−

=

 

On the other hand, for [ , ]i i ix l u∀ ∈ ,  since 
2( )i i i i i il u x l u x+ − −  

is a concave  function, so its maximum  value can be got 

at 
2

i il u+ , so we can get  

( )2 ( )
max ( )

4
i i

i i i i i il x u

u l
l u x l u x

≤ ≤

−
+ − − = . 

In the following, we consider  
2 2 22 ( )i k i k i kx x x x x x= + − − . 

 Let  

2

( ) , 0
( ) ,( )

( ) , 0
4

i i i i i ji jk
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2
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( )
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c e
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Let 

( )
1 1 1

1 1 1

1

1( ) ( , ) ( ) ( )
2
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ji jk ijk i k ijk i ijk k
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=
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−
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∑

, 

we can get a linear relaxation programming of problem (P) 
in kX :  

min ( )

. .( ) :

{ : }

k

k k k

x

s t Ax bRLP S

x X x l x u

ϕ⎧
⎪
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⎪
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Theorem 1. For [ , ]i i ix l u∀ ∈ , we have 
 (i) ( ) ( )x f xϕ ≤  ; 
 (ii) 

|| || 0

[ ( ) ( )] 0, .lim
k k

u l

kf x x x Xϕ
− →

− = ∈  

where 

( )
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and 
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Proof. (i) by the definition of ( )xϕ , we have 

( )
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Therefore, we have  

( ) ( )x f xϕ ≤  for [ , ]i i ix l u∀ ∈ . 

 (ii) for [ , ]i i ix l u∀ ∈ , and the definition of ( )xϕ  and ( )f x , 
we can get 
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By the Theorem 1, we have  
2( ) [( )( )
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So that we have  
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By the Theorem 1, we have  
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By the Theorem 1, we have  
2( ) ( ) 0k ijk kx f x− →  as  0k ku l− → ,  

Therefore, we have 
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Based on the above linear under-estimators, every 
feasible point of the (P) in sub-domain kX  is feasible in 
(RLP); and the value of the objective function for the 
(RLP) is less than or equal to that of the (P) for all points 
in kX . Thus, the (RLP) provides a valid lower bound for 
the solution of the (P) over the partition set kX . It should 
be noted that problem (RLP) contains only the necessary 
constraints to guarantee convergence of the algorithm. 

III  ACCELERATING TECHNIQUE 

In this following, we propose an accelerating method 
for global optimization algorithm of problem (P) using a 
suitable deleting technique. This technique offers a 
possibility to cut away a large part of the currently 
investigated region in which the globally optimal solution 
of the (P) does not exist, and can be seen as an 
accelerating device for global optimization algorithm of 
problem (P). We can give the following accelerating 
theorem. 
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Since ( )xϕ  and ( )u xϕ  are all linear functions over 
0

1[ , ]i i nX x x X×= ⊆ , in the following, for convenience of 
expression, without loss of generality, we let 

0
1

0
1
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UB c x c x
s with c
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=

=

= +

= +

− +
= ≠

∑

∑  

where 1, , .i n= K   
Theorem 2. (Ref. [23]). For any 0

1[ , ]i i nX x x X×= ⊆ , 
the following conclusions holds:  

 (i) If l l UBϕ > , then there exists no optimal solution 
of problem (P) over X ; 

 (ii) If l l UBϕ ≤ , then:  
If there exists some index {1, , }v n∈ K  satisfying 

0vc >  and v vs x< , then there is no optimal solution of 
problem (P) over 1X ;  

Conversely, if 0vc <  and v vs x>  for some index 
{1, , }v n∈ K , then there does exit optimal solution of 

problem (P) over 2 ;X  
where 

1 1 1 1[ , ]i i nX x x X×= ⊆  
with  

1 1

[ , ], ,
[ , ]

( , ] [ , ], ,
i i

i i
v v v v

x x if i v
x x

s x x x if i v

≠⎧⎪= ⎨
=⎪⎩ I

 

2 2 2 1[ , ]i i nX x x X×= ⊆ . 
with  

2 2

[ , ], ,
[ , ]

[ , ) [ , ], ,
i i

i i
v v v v

x x if i v
x x

x s x x if i v

≠⎧⎪= ⎨ =⎪⎩ I
 

Proof. The proof of the theorem is omitted.  

IV  ALGORITHM AND ITS CONVERGENCE 

In this section a branch and bound algorithm is 
proposed to globally solve the (P) based on the former 
linear relaxation method. This algorithm needs to solve a 
sequence of relaxation linear programming over the 
initial rectangle 0X  or partitioned sub-rectangle kX  in 
order to find a global optimum solution. 

The branch and bound approach is based on 
partitioning the set 0X  into sub-hyper-rectangles, each 
concerned with a node of the branch and bound tree, and 
each node is associated with a relaxation linear sub-
problem in each sub-hyper-rectangle. Hence, at any stage 
k  of the algorithm, suppose that we have a collection of 
active nodes denoted by kΩ , say, each associated with a 
hyper-rectangle  

0 ,X X⊆  kX∀ ∈Ω . 
For each such node X , we will have computed a lower 
bound of the optimal value of the (P) via the solution 

( )LB X  of the (RLP), so that the lower bound of optimal 
value of the (P) on the whole initial box region 0X  at 
stage k  is given by  

{ }min ( ), .k kLB LB X X= ∀ ∈Ω  
Whenever the lower bounding solution for any node sub-
problem, i.e., the solution of the relaxation linear 
programming (RLP) turns out to be feasible to the (P), we 
update the upper bound of incumbent solution UB  if 
necessary. Then, the active nodes collection kΩ  will 
satisfy  

( ) , ,kLB X UB X< ∀ ∈Ω  
for each stage k . We now select an active node to 
partition its associated hyper-rectangle into two sub-
hyper-rectangles as described below, computing the 
lower bounds for each new node as before. Upon 
fathoming any non-improving nodes, we obtain a 
collection of active nodes for the next stage, and this 
process is repeated until convergence is obtained. 

Let ( )kLB X  refer to the optimal objective function 
value of (RLP) for the sub-hyper-rectangles kX  and 

( )k kx x X=  refer to an element of corresponding argmin. 
The basic steps of the proposed algorithm are 
summarized as follows. 

Algorithm statement 
Step 0. (Initialization)  
Initialize the iteration counter : 0k = ; convergence 

tolerance 0ε > ; the set of all active node 0
0 { }XΩ = ; the 

upper bound UB = ∞ , and the set of feasible points 
:F = ∅ . 
Solve the (RLP) for 0X X= , obtaining 

0 : ( )LB LB X=  
and  

0 : ( )x x X= . 
If 0x  is feasible to the (RLP) update F  and UB , if 
necessary. If  

0UB LB ε≤ + ,  
then stop with 0x  as the prescribed solution to the (P). 
Otherwise, proceed to Step 1. 

Step 1. (Updating upper bound)  
Select the midpoint mx  of kX , if mx  is feasible to the 

(P) then  
: { }mF F x= U . 

Define the upper bound  
: min ( )x FUB xϕ∈= . 

If F ≠ ∅ , the best known feasible point is denoted by 
: arg min ( )x Fb xϕ∈= . 

For the investigated sub-rectangle kX , we using deleting 
technique to deleting a part of kX , denote the remaining 
as kX .  

Step 2. (Accelerating)  
For the investigated sub-rectangle kX , we can use 

accelerating technique to delete a part of kX , denote the 
remaining as kX . 
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Step 3. (Branching)  
Choose a branching variable qx  to partition kX  to get 

two new sub-hyper-rectangles according to the above 
selected branching rule. Call the set of new partition 
rectangles as kX . 

For each kX X∈ , calculate the lower bound Lϕ  of 
( )xϕ  over the rectangle X , i.e.,  

: min ( ).L
x X xϕ ϕ∈=  

If  
L UBϕ > ,  

then remove the corresponding sub-rectangle X  from 
kX , i.e.  

: \k kX X X=  
and skip to next element of kX . 

If kX ≠ ∅ , solve the (RLP) to obtain ( )LB X  and 
( )x X  for each kX X∈ . If  

( )LB X UB> ,  
set  

: \k kX X X= ; 
otherwise, update the best available solution UB , F  and 
b  if possible, as in Step 1. 

Step 4. (Updating lower bound)  
The partition set remaining is now 

: ( \ )k k
k k X XΩ = Ω U  

giving a new lower bound  
: inf ( )

kk XLB LB X∈Ω= . 
Step 5. (Fathoming)  
Fathom any non-improving nodes by setting 

1 \{ : ( ) , },k k kX UB LB X Xε+Ω = Ω − ≤ ∈Ω  
If  

1k+Ω = ∅ ,  
then stop with UB  is an optimal solution. Otherwise, 

: 1k k= + , and select an active node kX  such that  
: arg min ( ), : ( )

k

k k k
XX LB X x x X∈Ω= = ,  

and return to Step 1. 
Theorem 3. (convergence result). The above algorithm 

either terminates finitely with the incumbent solution 
being optimal to the (P), or generates an infinite sequence 
of iteration such that along any infinite branch of the 
branch and bound tree, any accumulation point of the 
sequence { }kx  will be the global solution of the problem 
(P), i.e. 

lim min ( ).kk x D
LB LB f x

→∞ ∈
= =  

Proof.  
A sufficient condition for a global optimization to be 

convergent to the global minimum, stated in Horst and 
Tuy [27] requires that the bounding operation must be 
consistent and the selection operation bound improving. 

A bounding operation is called consistent if at every 
step any unfathomed partition can be further refined, and 
if any infinitely decreasing sequence of successively 
refined partition elements satisfies:  

lim( ) 0.kk
UB LB

→∞
− =  

where LB (s) is a computed lower bound in stage s and 
UB is the best upper bound at iteration s not necessarily 
occurring inside the same sub-rectangle with LB (s). In 
the following we will demonstrate the above formulation 
holds. 

Since the employed subdivision process is the 
bisection, the process is exhaustive. Consequently, from 
Lemma 1 and Theorem 2 and the discussion in [27] the 
formulation holds, and then it means that the employed 
bounding operation is consistent. 

A selection operation is called bound improving if at 
least one partition element where the actual lower bound 
is attained is selected for further partition after a finite 
number of refinements. Clearly, the employed selection 
operation is bound improving because the partition 
element where the actual lower bound is attained is 
selected for further partition in the immediately following 
iteration. 

In summary, we have shown that the bounding 
operation is consistent and that the selection operation is 
bound improving, therefore according to Theorem.  

V.  NUMERICAL EXPERIMENT 

To verify performance of the proposed algorithm, the 
algorithm is coded in C++ language on Pentium IV (433 
MHZ) microcomputer and each linear programming is 
solved by simplex method, and the convergence tolerance 
ε  is set to 810−  in our experiment. 

Example 1.  
0 1 2 3 1 2 3

1

2

3

min ( ) ( ) (2 )
. . 1 3,   

1 3.5,
1 3.

G x x x x x x x
s t x

x
x

= + + + +⎧
⎪ ≤ ≤⎪
⎨ ≤ ≤⎪
⎪ ≤ ≤⎩

 

Using the above proposed algorithm we can globally 
solve the example 1 on microcomputer, the result is given 
as follows. Numerical results of the example 1 are 
optimal value 12v = . 

Example 2.  
0 1 2 3 1 2 3

1

2

3

min ( ) ( 1.5 )(2 2 )
. . 1 3,   

1 3.5,
1 3.

G x x x x x x x
s t x

x
x

= + + + +⎧
⎪ ≤ ≤⎪
⎨ ≤ ≤⎪
⎪ ≤ ≤⎩

 

Using the above proposed algorithm we can globally 
solve the example 2 on microcomputer. Numerical results 
of the example 2 are optimal value 17.5v = . 

Example 3.  
0 1 2 3 1 2 3

1

2

3

min ( ) (2 ) (2 2 )
. . 1 2.5,   

1 3.5,
1 3.5.

G x x x x x x x
s t x

x
x

= + + + +⎧
⎪ ≤ ≤⎪
⎨ ≤ ≤⎪
⎪ ≤ ≤⎩

 

Using the above proposed algorithm we can globally 
solve the Example 3 on microcomputer. Numerical 
results of the example 3 are optimal value 20.v =  
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Example 4.  
0 1 2 3 1 2 3

1

2

3

min ( ) (2 1.5 ) (2 2 )
. . 1 2,   

1 2,
1 2.

G x x x x x x x
s t x

x
x

= + + + +⎧
⎪ ≤ ≤⎪
⎨ ≤ ≤⎪
⎪ ≤ ≤⎩

 

Using the above proposed algorithm we can globally 
solve the Example 4 on microcomputer. Numerical 
results of the example 4 are optimal value 27.5.v =  

From numerical experiments, it is seen that our 
algorithm can globally solve the problem (P) effectively.  

VI.  CONCLUDING REMARKS  

In this paper, a global optimization algorithm is 
presented for a class of linear multiplicative programming 
problems with linear constraints. By utilizing 
linearization technique, a linear relaxation programming 
of the (P) is then obtained based on the linear lower 
bounding of the objective function. The algorithm was 
shown to attain finite ε  convergence to the global 
minimum through the successive refinement of a linear 
relaxation of the feasible region and the subsequent 
solution of a series of linear programming problems. The 
proposed approach was applied to several test problems. 
In all cases, convergence to the global minimum was 
achieved. The numerical results are given to illustrate the 
feasibility and the robust stability of the present algorithm. 
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