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Abstract—ChIP-seq is able to capture the genomic profiles 
for histone modification by combining chromatin 
immunoprecipitation (ChIP) with next generation 
sequencing. However, enriched regions generated from peak 
finding algorithms are evaluated only based on the limited 
knowledge acquired from manually examining the relevant 
biological literature. This paper proposes a novel 
framework of incorporating multiple knowledge sources, 
consisting of information extracted from biological 
literature, Gene Ontology, and microarray data, in order to 
precisely analyze ChIP-seq data for histone modification. 
The information is combined in a unified probabilistic 
model to rerank the enriched regions generated from peak 
finding algorithms. Through filtering the reranked enriched 
regions using some predefined threshold, more reliable and 
precise results could be generated. The combination of the 
multiple knowledge sources with the peaking finding 
algorithm produces a new paradigm for ChIP-seq data 
analysis. 
 
Index Terms—ChIP-seq, histone modification, reranking, 
information extraction 

I.  INTRODUCTION 

Histones, acting as spools around which DNA binds, is 
the chief protein components of chromatin. Histones are 
subject to lots of posttranslational modifications, such as 
lysine acetylation, lysine and arginine methylation, serine 
and threonine phosphorylation, and lysine ubiquitination 
and sumoylation [1]. Histone modifications may alter the 
electrostatic charge of the histone resulting in a structural 
change in histones or their binding to DNA. Histone 
modifications may be the binding sites for protein 
recognition modules which recognize acetylated lysines 
or methylated lysine, respectively. Overall, histone 
modifications affect chromosome function in may ways. 
Thus, posttranslational modifications of histones create a 
mechanism for the regulation of a variety of normal and 
disease-related processes. 

ChIP-seq [2], which combines chromatin immunoprec-
ipitation (ChIP) with next generation sequencing, is able 

to capture the genomic profiles for histone modification 
and transcription factor (TF). It is characterized by high 
resolution, cost effectiveness and no complication.A large 
amount of data have recently been generated using the 
ChIP-Seq technique, therefore calling for new analysis 
algorithms. 

To discover the exact locations of TF binding sites 
from ChIP-seq data, a number of algorithms, such as 
CisGenome [3], MACS [4], PeakSeq [5], QuEST [6], sPP 
[7], Useq [8] and SISSRs [9], have been proposed. TF 
binding is mainly governed by sequence specificity. 
Therefore TF binding sites are typically correlated with 
very localized ChIP-seq signals in the genome. On the 
contrary, many modification marks consist of broad 
domains, which are believed to stabilize the chromatin 
state. Moreover, the signals for histone modifications, 
histone variants and histone-modifying enzymes are 
usually diffuse and lack of well-defined peaks, spanning 
from several nucleosomes to large domains 
encompassing multiple genes. As such, peak-finding 
algorithms employed to find TF binding sites with strong 
local enrichment are unsuitable for discovering these 
generally weak signals from DNA modification marks. 

To the best of our knowledge, only few methods, e.g. 
ChIPDiff [10] and SICER [11], have been published 
focusing on analyzing ChIP-seq data specifically for 
histone modification. ChIPDiff attempts to identify 
differential histone modification sites by computationally 
comparing two ChIP-seq libraries generated from 
different cell types. Instead of partitioning the genome 
into bins and computing the fold-change of the number of 
ChIP fragments in each bin, ChIPDiff modeled the cor 
relation as a hidden Markov model (HMM) where 
transmission probabilities were automatically trained in 
an unsupervised manner. By inferring the states of 
histone modification changes using the trained HMM 
parameters, the correlation between consecutive bins is 
taken into account. Nevertheless, ChIPDiff fails to 
compare more than two ChIP-seq libraries. Instead of 
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comparing two ChIP-seq libraries, SICER partition the 
genome into non-overlapping windows with fixed size. 
Islands (potential ChIP-enriched domains) are identified 
as clusters of eligible windows separated by gaps of a 
size less than a predetermined threshold. Then, a 
clustering method is employed to score each island. 

After discovering enriched regions using a peak 
finding algorithm, validation of the results is typically 
performed based on some limited knowledge acquired 
from biomedical literature, such as experimentally 
validated genes relating with the histone modification. It 
is also possible to validate the correctness of the 
discovered enriched regions through QPCR (real-time 
Quantitative Polymerase Chain Reaction detecting system) 
experiments; but this is too costly and labor intensive and 
is therefore seldom adopted in practice. Thus, the 
prevailing approach of validating the discovered enriched 
regions is the former method which uses limited 
knowledge acquired from biomedical literature. However, 
it suffers from the following drawbacks:  

• Amount of knowledge for validation. Most 
knowledge for validation are obtained by hand-
curated the relevant experimental results described 
in biomedical literature, which is laborious, time 
consuming, and error-prone. Moreover, it has been 
demonstrated that biomedical literature is growing 
at a double-exponential pace, it thus becomes 
extremely hard for biologists to be updated with 
the most up to-date knowledge from biomedical 
literature. 

• Source of knowledge for validation. Existing 
approaches mainly use knowledge extracted from 
biomedical literature for validation. It is worth to 
exploit knowledge from other sources, such as re-
sults from microarray data analysis, or knowledge 
inferred from Gene Ontology. 

• Handling of contradictory knowledge. It is 
possible that the results discovered by peak 
finding algorithms are contradictory to the 
knowledge obtained from biomedical literature. 
There lack of effective methods in handling such a 
situation. 

This paper explores an efficient way to improve the 
precision of genomic-wide chromatin modification   
profiles. A framework of incorporating information 
extraction into a probabilistic model for reranking 
discovered enriched regions (candidate histone 
modification sites) is comprehensively investigated. To 
improve the histone modification sites discovery results, 
the external knowledge sources, such as information 
extracted from biomedical literature, microarray data, and 
Gene Ontology, are employed to re-score enriched 
regions. The rationale be hind this is that biomedical 
literature, microarray data, and Gene Ontology are 
reliable resources for describing the gene expression level 
in some specific cell lines, while the histone 
modifications are major epigenetic factors regulating 
gene expression. Therefore, there is some casual 
relationship between histone modifications and the 

knowledge sources which can be used to improve the 
accuracy of discovered histone modification sites. 

II.  RELATED WORK  

This section presents the existing work in two areas, 
information extraction for genes regulated by histone 
modification, and reranking based on multiple knowledge 
sources. 

A. Information Extraction for Genes Regulated by 
Histone Modification 

Large amount of experimental and computational 
biomedical data, specifically in the areas of genomics and 
proteomics have been generated along with new 
discoveries, which are accompanied by an exponential 
increase in the number of biomedical publications 
describing these discoveries. In the meantime, there has 
been great interest with scientific communities in 
literature mining tools to sort through this abundance of 
literature and find the nuggets of information such as 
protein-protein interactions, gene regulation and so on, 
which are most relevant and useful for specific analysis 
tasks. 

To mine information from the biomedical literature, 
two steps are crucial. One is named entity recognition 
(NER) which recognizes names of biomedical entities, 
such as gene, proteins, cells and diseases. The other is 
information extraction. In general, current approaches for 
biomedical information extraction can be divided into 
three categories, computational linguistics-based methods, 
rule-based methods and machine learning and statistical 
methods. 

Corinna [12] developed an approach for identifying 
histone modifications in biomedical literature with 
Conditional Random Fields (CRFs) and for resolving the 
recognized histone modification term variants by term 
standardization. 

Many systems [13–17], examples including EDGAR 
[18], BioRAT [19], GeneWays [20] etc.,have been 
developed to extract protein-protein interaction from text. 
To the best of our knowledge, there are no existing 
approaches focusing on mining the gene information 
regulated by histone modification.  

B.  Reranking based on Multiple Knowledge Sources 
Recently, reranking algorithms have been quite 

popular for data mining and natural language processing. 
The idea behind reranking is that some information which 
is crucial for generating ranking scores is not 
incorporated in the ranking algorithm used. Therefore, 
there is a need for a reranking algorithm to rerank results 
by incorporating these information. 

For example, documents can be represented in the 
vector space model used in information retrieval. In 
traditional information retrieval, given a query q, 
retrieved documents are presented in a decreasing order 
of the ranking scores with respect to the content 
information. In addition to content, documents are 
interconnected to each other through an explicit or latent 
link. Thus, many recent methods take into account link-
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based information. However, one of the issues is that 
those ranking algorithms typically treat the content and 
link information separately, and each document is 
assigned a score independent of other documents for the 
same query. Reranking algorithm leverage the 
interconnection between documents/entities to improve 
the ranking of retrieved results [21]. 

Reranking approaches in the natural language 
processing domain attempt to improve upon an existing 
probabilistic parser by reranking the output of the parser. 
Reranking has benefited applications such as name-entity 
extraction [22], semantic parsing [23] and semantic 
labeling [24]. Most reranking approaches are based on 
discriminative models while base parers are mostly based 
on generative models. The reason behind is that 
generative probability models such as hidden Markov 
models (HMMs) or hidden vector state (HVS) models 
provide a principled way of treating missing information 
and dealing with variable length sentences. On the other 
hand, discriminative methods such as support vector 
machines (SVMs) enable us to construct flexible decision 
boundaries and often result in performance superior to 
that of generative models. The combination of generative 
and discriminative models could leverage the advantages 
of both approaches. 

III.  PROPOSED FRAMEWORK  

The overall process of the proposed framework is 
shown in Figure 1 which takes the form of the three main 
processes. Firstly, millions of short reads generated from 
the deep sequencing platform are mapped to reference 
genome. After peak finding, enriched regions are 
discovered. Secondly, information extraction based on a 
statistical model aims to extract information about genes 
which are regulated by histone modification. Information 
about the environment for these regulations will also be 
extracted. The extracted information will be combined 
with the external knowledge sources such as gene 
ontology and results mined from microarray data to form 
inputs to a probabilistic model, which is then employed 
for re-ranking the discovered enriched regions. 

A.  Information Extraction based the Conditional HVS 
model 

In order to extract genes regulated by histone 
modification, they need to be first identified through 
named entity recognition. After that, the genes regulated 
by histone modification can be extracted through relation 
extraction. For the first step, CRFs or SVMs can be 
employed to recognize genes regulated by histone 
modifications. For the second step, we are particularly 
interested in relation extraction from biomedical literature 
based on the Hidden Vector State (HVS) model. The 
HVS model was originally proposed in [25] and has been 
successfully applied in biomedical domain for protein-
protein interactions extraction [26, 27].  

Given a model and an observed word sequence W 
=(W1 … WT ), semantic parsing can be viewed as a 
pattern recognition problem and the most likely semantic 
representation can be found through statistical decoding. 
If assuming that the hidden data take the form of a 
semantic parse tree C then the model should be a push-
down automata which can generate the pair <W,C> 
through some canonical sequence of moves D = (d1 … 
dT ). That is 

 
When considering a constrained form of automata 

where the stack is finite depth and <W,C> is built by 
repeatedly popping 0 to n labels off the stack, pushing 
exactly one new label onto the stack and then generating 
the next word, it defines the HVS model in which 
conventional grammar rules are replaced by three 
probability tables. Given a word sequence W, concept 
vector sequence C and a sequence of stack pop operations 
N, the joint probability of P (W,C,N) can be decomposed 
as  

 
where Ct, the vector state at word position t, is a vector 

of Dt semantic concept labels (tags), i.e. Ct=[ Ct[1], Ct 
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[2], .. Ct [Dt]] where Ct[1] is the preterminal concept label 
and Ct [Dt] is the root concept label (SS in Fig. 2), nt is 
the vector stack shift operation at word position t and take 
values in the range 0, . . . , Dt-1 and Ct[1] = Cwt is the new 
preterminal semantic tag assigned to word wt at word 
position t.   

An example parse tree is illustrated in Figure 2 which 
shows the sequence of HVS stack states corresponding to 
the given parse tree. State transitions are factored into 
separate stack pop and push operations constrained to 
give a tractable search space. The result is a model which 
is complex enough to capture hierarchical structure but 
which can be trained automatically from only lightly 
annotated data. 

The HVS model computes a hierarchical parse tree for 
each word string W, and then extracts semantic concepts 
C from this tree. Each semantic concept consists of a 
name-value pair where the name is a dotted list of 
primitive semantic concept labels. For example, the top 
part of Figure 2 shows a typical semantic parse tree and 
the semantic concepts extracted from this parse would be 
in Equation 3 

HistoneM = H3 acetylation 
HistoneM.HistoneM = H3K4me3 
HistoneM.HistoneM.REL.GENE = IL17 
HistoneM.HistoneM.REL.GENE = IL17f          (3) 
 
The HVS model parameters are estimated using an EM 

algorithm and then used to compute parse trees at run-
time using Viterbi decoding. In training, each word string 
W is marked with the set of semantic concepts C that it 
contains. For example, if the sentence shown in Figure 2 
was in the training set, then it would be marked with the 
four semantic concepts given in equation 3. For each 
word wk of each training sentence W, EM training uses 
the forward-backward algorithm to compute the 
probability of the model being in stack state c when wk is 
processed. Without any constraints, the set of possible 
stack states would be intractably large. However, in the 
HVS model this problem can be avoided by pruning out 
all states which are inconsistent with the semantic 

concepts associated with W. The details of how this is 
done are given in [25]. 

The original HVS model takes a form of a generative 
model which makes it difficult to incorporate background 
knowledge or non-local features. We propose to represent 
the model as a conditionally trained graphical model 
similar to the CRFs. The HVS model can be viewed as a 
graphical model. Assuming the vector state stack depth is 
limited to be 4, that is, there are at most 4 semantic tags 
(states) relating to each word position. Ct is the vector 
state corresponding to the word Wt. St is the stack shift 
operation which consists of popping Nt semantic tags 
from the previous vector state Ct-1 and pushing one pre-
terminal semantic tag to the stack and thus producing Ct. 

Given a word sequence W, concept vector sequence C 
and a sequence of stack pop operations N, the conditional 
HVS model takes the form 

 
where Θ = <λ1, λ2, ...; µ1, µ2, ...; ν1, ν2, ...> is the 

parameter vector of the conditional HVS model. fk, gk, hk 
are arbitrary feature functions over their respective 
arguments, and λk, µk, νk are the corresponding learned 
weights for each feature function. 

Inference for the conditional HVS models can be 
performed efficiently with dynamic programming. 
Parameter estimation can be performed with standard 
optimization procedures such as iterative scaling, 
conjugate gradient descent, or limited memory quasi-
Newton method(L-BFGS). 

B.  Reranking based on a Probabilistic Model 
To rerank the enriched regions generated from a peak 

finding algorithm, we need to first select some essential 
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features based on the multiple knowledge sources. 
Suppose the enriched region R and its related gene G, its 
information extracted from text IT , results mined from 
microarray data IM, and information inferred from Gene 
Ontology IO  are defined as follows:  

• Information extracted from Text IT , for the pair < 
Histone Modification, G>, is defined as the 
probabilistic score that is generated from the 
conditional HVS model. 

• Results mined from Microarray, IM is defined as 
the expression level results obtained from 
microarray data for G. 

• Information inferred from Gene Ontology IO 
describes the trust level of inference that this gene 
is regulated by the histone modification. IO is 
defined as the score of inference based on gene 
ontology. 

Overall, it can be observed that the higher the value of 
IT , IM, and IO, the strong confidence of the correctness of 
the enriched region. 

We use the above parameters IT , IM and IO to 
calculate Score, the overall score of the enriched region R. 
Based on these scores, enriched regions generated from 
peak finding are reranked. It should be noted that up to 
this point, the relationship between Score and the above 
parameters is not apparent and it could be linear or non-
linear. We thus investigate several ways to describe this 
relationship by constructing three models including a log-
linear regression model, neural networks, and support 
vector machines. 

1. Log-linear Regression Model 
For the log-linear regression model, Score is defined as 

 
which is a combination of the above three defined 

parameters. To estimate the coefficients β = (βt, βm, βo, 
β0), the method of least squares is applied and the 
coefficients β are selected to minimize the residual sum 
of squares 

 
where M is the number of training data and log Score′is 
the true value of Score. 

2. Neural Networks 
The central idea of neural networks is to extract linear 

combinations of the inputs as derived features, and then 
model the target as a nonlinear function of these 
features.The model based on neural networks has the 
form 

 
where X = (IT , IM, IO) and ωm,m = 1, 2, . . . ,M is unit 
3-vectors of unknown parameters. 
3. Support Vector Machines 
Support vector machines produce nonelinear 

boundaries by constructing a linear boundary in a large, 
transformed version of the feature space. 

The model based on support vector machines has the 
form: 

 
where hm(X),m = 1, . . . ,M are basis functions and X = 
(IT , IM, IO). 

IV.    EXPERIMENTAL RESULTS 

The proposed framework of analyzing ChIP-seq data 
based on multiple knowledge sources for histone 
modification are evaluated in two parts, information 
extraction and re-ranking based on multiple knowledge 
sources. 

The information extraction system works as follows.At 
the beginning, abstracts are retrieved from MED-LINE 
and split into sentences. Gene names, other biological 
terms are then identified based on a pre-constructed 
biological term dictionary. And histone modifications are 
identified using a classification model. After that, each 
sentence is parsed by the semantic parser employing the 
conditional HVS model. Finally, information about genes 
related to histone modification is extracted from the 
tagged sentences using a set of manually-defined simple 
rules. An example of the procedure is illustrated in Figure 
3. 

To investigate the performance of the information 
extraction system, abstracts from PubMed and 
PubMedCentral are selected. Based on the search 
keyword “h3k4me3”, 211 abstracts are retrieved. In the 
similar way, 731 abstracts are retrieved from PubMed 
based on the search keyword “histone h3 lysine 4 
methylation”. Abstracts about “h3k9ac” and “h3k27me3” 
are also retrieved in the similar way. These abstracts are 
split intosentences. The sentences with at least one gene 
or protein name and histone modification are kept and 
other sentences are filtered out. All the kept sentences are 
collected as the input for the information extraction 
system. After the parsing process described in Section 3, 
a list of histone modification-gene name pairs are 
generated. An example of the histone modification and 
gene name pair is given in Figure 3. To evaluate the 
precision of the extracted pair of histone modification and 
gene, some annotators qualified to PhD level worked on 
the abstracts and the extracted pair. Evaluation results 
show that the information extraction system achieved as 
high as 73.2% on precision, in which extracted pairs can 
be further annotated by some experienced researchers to 
ensure there correctness with little efforts. 

To investigate the performance of the proposed 
framework, we worked on the ChIP-seq data for histone 
modification “H3K4Me3”, “H3K9Ac”,and “H3K27Me3” 
in three cell lines, EB, MK and HUVEC. The data were 
generate from Dr. Willem Ouwehand’s research group in 
the Department of Haematology of the University of 
Cambridge. The short reads are mapped to the reference 
genome using the Maq program. After mapping, the 
enriched regions are generated based on some peaking 
finding programs. Here, SISSRs [9] is employed. Part of 
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the enriched regions and their related genes for “H3K9Ac” in EB cell line are listed in Table 1. 

TABLE  1 
AN EXAMPLE OF ENRICHED REGIONS AND THEIR RELATED GENES GENERATED FROM THE PEAK FINDING ALGORITHM 

 
For the enriched regions ranked and selected by the 

peak finding algorithm, there are several possible changes 
of the score as shown in Table 2. As the purpose of 
analyzing ChIP-seq is to do some novel discovery, 
regions with type II or IV with final re-ranking medium 
score are paid more attention. In the following, two 
examples are given to illustrate how the regions with type 
II and IV are discovered. They also show the feasibility 
of our proposed framework. 

For the regions with type II, a region at position from 
87046200 to 87062199 on chromosome 16 is assigned a 
score of 1178 based on the number of short reads mapped 
to the regions. The ChIP-seq data are generated for 
H3K9Ac in EB cell line. The gene related to the region is 
ENSG00000179588 (ZFPM1). However, we can not find 
the pair of H3K9Ac and ZFPM1 in the list of pairs 
generated from the information extraction system. Based 
on the search keyword “ZFPM1” and “Histone”, no 
results are even retrieved from the PubMed. Moreover, 
no information from microarray data or gene ontology are 
found to support the high score region. Based on our 
proposed framework, the region’s score is decreased and 
more attention will be paid to the region and the related 
gene. 

For the regions with type IV, a detailed example is 
shown in Figure 4. Firstly, thousands of enriched regions 
are discovered from ChIP-seq data based on a peak 

finding algorithm. Among the output regions, one region 
is initially not considered as an enriched region because 
of its low score generated from the peak finding 
algorithm. However if we check the related gene against 
other biologists’ findings based on the microarray data, 
experimental results described in biomedical literature, 
and the Gene Ontology, the region would be enriched by  
H3K27em3. Especially, based on the sentence The results 
from these studies showed that H3K27me3 is associated 
primarily with the INK4A, and not the ARF, locus in the 
explanted fibroblasts, the pair of H3K27me3 and INK4A 
is extracted based on the information extraction system 
mentioned above. Generating such an error may be 
ascribed to the peak finding algorithm’s inability of 
processing diffuse data. By employing the reranking 
model, the region is assigned a new score which will be 
considered as an enriched region. From this example, we 
speculate that employing the reranking model based on 
the multiple knowledge sources can improve the recall 
and reliability of the enriched region detection results. 

V.   CONCLUSION 

In this paper, we have presented a novel framework of 
incorporating multiple knowledge sources in order to 
precisely analyze ChIP-seq data for histone modification. 
Information extracted from text, Gene Ontology, and 
knowledge mined from microarray data are combined in  
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TABLE 2 
ENRICHED REGIONS BEFORE AND AFTER RE-RANKING 

a unified probabilistic model to rerank the enriched 
regions detected from peak finding algorithms. By 
filtering the reranked enriched regions, more reliable and 
precise results are generated. A case study has been 
presented to illustrate its feasibility. In future work we 

will continue on the development of the gene expression 
data clustering component and the gene ontology 
inference component and conduct a large scale of 
experiments to evaluate the system performance. 

VI.  ACKNOWLEDGEMENT 

We would like to thank Augusto Rendon and Peter 
Smethurst for constructive suggestions on the proposed 
framework and Sylvia Nünberg for providing the ChIP- 
seq data.This article is supported by social science fund 
project in Jiangsu ,whose ID is 12DDB011. 

REFERENCES 

[1] Alejandro Vaquero, Alejandra Loyola, and Danny 
Reinberg. The constantly changing face of chromatin. 
Sci.Aging Knowl. Environ, 2003, 2003. 

[2] Elaine R Mardis. Chip-seq: welcome to the new frontier. 
Nature Methods, (4):613 – 614, 2007. 

[3] Hongkai Ji, Hui Jiang, Wenxiu Ma, David S Johnson, 
Richard M Myers, and Wing H Wong. An integrated 
software system for analyzing chip-chip and chip-seq data. 
Nature Biotechnology, 26:1293–1300, 2008. 

[4] Yong Zhang, Tao Liu, Clifford Meyer, Jerome Eeckhoute, 
David Johnson, Bradley Bernstein, Chad Nussbaum, 

Richard Myers, Myles Brown, Wei Li, and X Shirley Liu. 
Model-based analysis of chip-seq (macs).Genome Biology, 
9(9):R137, 2008. 

[5] Joel Rozowsky, Ghia Euskirchen, Raymond K Auerbach, 
Zhengdong D Zhang, Theodore Gibson, Robert Bjornson, 
Nicholas Carriero, Michael Snyder, and Mark B Gerstein. 
Peakseq enables systematic scoring of chip-seq 
experiments relative to controls. Nature Biotechnology, 
(27):66 – 75, 2009. 

[6] Anton Valouev, David S Johnson, and Andreas Sundquist. 
Genome-wide analysis of transcription factor binding sites 
based on chip-seq data. Nature Methods, 5:829–834, 2008. 

[7] Peter V Kharchenko, Michael Y Tolstorukov, and Peter J 
Park. Design and anlysis of chip-seq experiments for dna-
binding proteins. Nature Biotechnology, 26:1351-1359, 
2008. 

[8] Samir J Courdy David A Nix and Kenneth M Boucher. 
Empirical methods for controlling false positives and 
estimating confidence in chip-seq peaks. BMC 
Bioinformatics, 9(523), 2008. 

[9] Artem Barski Kairong Cui Raja Jothi, Suresh Cuddapah 
and Keji Zhao. Genome-wide identification of in 

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2761

© 2012 ACADEMY PUBLISHER



 

vivoprotein-dna binding sites from chip-seq data. Nucleic 
Acids Research, 36:5221–5231, 2008. 

[10] Han Xu, Chia-Lin Wei, Feng Lin, and Wing-Kin Sung. An 
hmm approach to genome-wide identification of 
differential histone modification sites from chip-seq data. 
Bioinformatics, 24(20):2344–2349, October 2008. 

[11] Chongzhi Zang, Dustin E. Schones, Chen Zeng, Kairong 
Cui, Keji Zhao, andWeiqun Peng. A clustering approach 
for identification of enriched domains from histone 
modification chip-seq data. Bioinformatics, 25(15):1952–
1958, August 2009. 

[12] Corinna Kolarik, Roman Klinger, and Martin Hofmann-
Apitius. Identification of histone modifications in 
biomedical text for supporting epigenomic research. BMC 
Bioinformatics, 10:S28, 2009. 

[13] L. Wong. PIES, a protein interaction extraction system. In 
Proceedings of the Pacific Symposium on Biocomputing., 
pages 520–531, Hawaii, U.S.A, 2001. 

[14] Christian Blaschke and Alfonso Valencia. The Frame-
Based Module of the SUISEKI Information Extraction 
system. IEEE Intelligent Systems, 17(2):14–20, 2002. 

[15] I. Donaldson, J. Martin, B. de Bruijn, and C. Wolting. 
PreBIND and Textomy–mining the biomedical literature 
for protein-protein interactions using a support vector 
machine. BMC Bioinformatics, 4(11), 2003. 

[16] Jung-Hsien Chiang, Hsu-Chun Yu, and Huai-Jen Hsu.GIS: 
a biomedical text-mining system for gene information 
discovery. Bioinformatics, 20(1):120–121, 2004. 

[17] Syed Toufeeq Ahmed, Deepthi Chidambaram, Hasan 
Davulcu, and Chitta Baral. IntEx: A Syntactic Role Driven 
Protein-Protein Interaction Extractor for BioMedical Text. 
In Proceedings of the ACL-ISMB Workshop on Linking 
Biological Literature, Ontologies and Database 2005, 
pages 54–61, 2005. 

[18] TC Rindflesch, L Tanabe, JN.Weinstein, and L. Hunter. 
EDGAR: extraction of drugs, genes and relations from the 
biomedical literature. In Proceedings of Pacific 
Symposium Biocomputing, pages 517–28, 2000. 

[19] David P. A. Corney, Bernard F. Buxton, William B. 
Langdon, and David T. Jones. BioRAT: extracting 
biological information from full-length papers. Bioinfor-
matics, 20(17):3206–3213, 2004. 

[20] Rzhetsky A, Iossifov I, Koike T, Krauthammer M, KraP, 
Morris M, Yu H, Dubouĺę PA, Weng W, Wilbur 
WJ,Hatzivassiloglou V, and Friedman C. GeneWays: a 
system for extracting, analyzing, visualizing, and integrat 
ing molecular pathway data. Journal of Biomedical 
Informatic, 37(1):43–53, February 2004. 

[21] Hongbo Deng, Michael R. Lyu, and Irwin King. Effective 
latent space graph-based re-ranking model with global 
consistency. In Proceedings of the Second ACM 
International Conference on Web Search and Data Mining, 
pages 212–221, Barcelona, Spain, 2009. 

[22] M. Collins. Ranking algorithms for named-entity 
extraction: Boosting and the voted perceptron. In 
Proceedings of the Annual meeting of the Association for 
Computational Linguistics (ACL) 2002, pages 489–496, 
2002. 

[23] Ruifang Ge and Raymond J. Mooney. Discriminative 
reranking for semantic parsing. In Proceedings of the 
conference of the International Committee on 
Computational Linguistics and the Association for 
Computational Linguistics (COLING/ACL) 2006, pages 
263–270, 2006. 

[24] Kristina Toutanova, Aria Haghighi, and Christopher D. 
Manning. Joint learning improves semantic role labeling. 

In Proceedings of the Annual meeting of the Association 
for Computational Linguistics (ACL) 2005, pages 589 –
596, 2005. 

[25] Y. He and S. Young. Semantic processing using the hidden 
vector state model. Computer Speech and 
Language,19(1):85–106, 2005. 

[26] Deyu Zhou, Yulan He, and Chee Keong Kwoh. Extracting 
Protein-Protein Interactions from the Literature using the 
Hidden Vector State Model. International Journal of 
Bioinformatics Research and Applications, 4:64–80, 2008. 

[27] Xiao peng hua and Shifei Ding.Incremental Learning 
Algorithm for Support Vector Data Description. Journal of 
Software, Vol 6, No 7 (2011), 1166-1173, Jul 2011 

[28] Deyu Zhou and Yulan He. Discriminative Training of 
theHidden Vector State Model for Semantic Parsing. IEEE 
Transaction on Knowledge and Data Engineering, page In 
Press, 2008. 

[29] Xixiang Zhang,Guangxue Yue, Xiajie Zheng and Fei 
Yu.Assigning Method for Decision Power Based on 
Linguisitc 2-tuple Judgment Matrices.Journal of Software, 
Vol 6, No 3 (2011), 508-515, Mar 2011. 

[30] S. M. Masud Karim.Data Exchange: Algorithm for 
Computing Maybe Answers for Relational Algebra 
Queries.Journal of Software, Vol 6, No 1 (2011), 3-9, Jan 
2011 
 

 
Dafeng Chen , Male, was born in 1977, 
received the master degree of 
Engineering from Southeast University, 
China. He is a lecturer in Institute of 
Information Science and Technology, 
Nanjing Audit University since 
December 2000. As a primary principal 
or researcher, he has finished 3 national 
or ministry projects successively. He has 

wide research interests, mainly including computer audit, 
measuring and testing techniques, and Intelligent Control. 

 
 

 
Deyu Zhou, Male,received the BS 
degree in mathematics and ME degree in 
computer science from Nanjing 
University, China, in 2000 and 2003, 
respectively. In 2009, he got the PhD 
degree in School of System Engineering, 
University of Reading, United Kingdom. 
Currently, he worked at School of 
Computer Science and Engineering, 

Southeast University. His interests are statistical methods for 
mining knowledge from biomedical data. includes the 
biography here. 

 
 

Yuliang Zhuang, Male, Professor, 
Ph.D., Supervisor of Ph.D. Candidates. 
As a primary principal or researcher ,a 
lot of  national or ministry projects 
have been finished successively. He 
has wide research interests and  
engages in the study of management 
information systems, electronic 
commerce, logistics and supply chain 

management etc. 
 

 

2762 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER


