
Intra-Transition Data Dependence

Shenghui Shi
College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China

Email: shish@mail.buct.edu.cn

Qunxiong Zhu* Zhiqiang Geng Wenxing Xu
College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China

Email: zhuqx@mail.buct.edu.cn gengzhiqiang@mail.buct.edu.cn estellaxu@163.com

Abstract—Currently, two main approaches to data
dependence of EFSM(Extended Finite State Machine)
haven’t refined intra-transition data dependence, instead
they consider that every definition variable in a transition
depends on all the use variables (including condition
variables). For data dependence of a specific definition
variable, not only the relevant use variables but also the
irrelevant use variables (including condition variables) are
considered, which obviously causes redundancy. Without a
doubt, further analysis based on this brings hidden danger
to the dependent analysis of the entire system and practical
application. With the idea of introducing program
dependence graph into to EFSM, this paper studies intra-
transition data dependence, and describes the data
dependence between every intra-transition definition
variable and the use and condition variables which influence
or are influenced by it. Thus irrelevant dependence
variables are removed to reduce redundancies and errors.
Also, theoretical and experimental analyses are conducted.

Index Terms—Extended Finite State Machine(EFSM);
Dependence Analysis; Intra-Transition Data
Dependence(IaTDD)

I. INTRODUCTION

With the gradual expansion of computer software
applications, the size and complexity of computer
software are growing rapidly, which leads to an
increasing growth of the cost and difficulty of software
analysis, understanding, test, maintenance, evolution, and
other aspects in software engineering. Software slicing, as
an "energy saving" tool for software system, therefore,
plays an important role. In 1979, M. Weiser first
proposed the basic idea of program slicing [1] to achieve
the program's reduction. After thirty years of
development, program slicing has been widely
recognized and applied. From the point of view of
software engineering development cycle, program slicing
has penetrated into the application of requirement and
design layer from coding and testing layer. In 1990s,
Heimdahl et al [2,3] proposed model-based slicing, which
started model slicing research of FSM (Finite State
Machine). In the same period, Savage, P. and Dssouli R.
proposed model slicing based on EFSM [4, 5]. In 2003,
Korel [6] normalized EFSM model structure by specifying
the composition of EFSM and transitions, developed

EFSM slicing tool, and proposed irrelevant control
dependence. But EFSM model must be built on the
premise that there is a termination node. Korel applied
the method of program slicing, but failed to conduct in-
depth study of the differences between program slicing
and EFSM structure. However, this method made EFSM
model more clear and specific, which lays a solid
theoretical basis for the present extensive study of the
EFSM slicing technology. With further research and
development of programming languages, the limitations
for program slicing method to be used in the EFSM were
gradually exposed. Scholars have devoted more attention
to control dependence, and several solutions have been
put forward. But there are also many limitations for the
corresponding data dependence. Due to the limitations of
requirements of study objects and their own structure, the
data dependence of EFSM has not yet been well solved.

Currently, there are two main methods for the
implementation of EFSM data dependence. The first one
is traditional EFSM data dependence proposed by Korel[6]
(hereinafter referred to as K method). This commonly
used method uses the data dependent methods of program
slicing, which realizes EFSM data dependence based on
traversing algorithm of marking visited nodes. The other
is the transitive dependence function method proposed by
Chinese scholars of Miao Li and so on[7] (hereinafter
referred to as M method), which analyzes the problem
that data dependence of EFSM may be intransitive.

The two main methods ignore the specific data
dependence of intra-transition variables, and consider that
any definition variable depends on all the use variables
(including condition variables) in that transition. Actually,
a certain definition variable is associated only with the
relevant use variables. But if we randomly identify that
all use variables are related to a certain definition variable,
those irrelevant use variables would be certainly included
in the data dependence, which would result in redundancy.
This paper presents intra-transition data dependent
method, and is verified by experiments to analyze the
degree of redundancy reduction.

The paper is organized as follows: Section provides Ⅱ
an overview of intra-transition data dependence. Section

 analyzes the differences between traditional intraⅢ -
transition data dependence method and the method put
forward in this paper. Section compares the method in Ⅳ
this paper and the traditional method by means of

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2663

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.12.2663-2670

experiment, and analyses the result. Finally, future
research is discussed.

II. INTRA-TRANSITION DATA DEPENDENCE

Intra-transition data dependence gets definition
variable set and the relation set between use variable set
and condition variable set.

Definition 1: Data Dependence between the
Variables(DDV)[8]

DDV is an inner transition set composed of definition
variable set and relationship between use variable set and
condition variable set, which can be expressed as follows:

DDV: (vdi, {Vui, Vci})
Where all the variables and variable sets are in a
transition, and Vd is definition variable set in action or
event, vdi is a definition variable in action or event,
vdi∈Vd. Vui is use variable set influencing the value of vdi
in action, which can be Null. Vci is condition variable set
influencing the value of vdi in condition, which can be
Null. In d∈I, u∈I ,c∈I, I represents integer. (vdi, {Vui,
Vci}) indicates that the value of vdi is data dependent on
Vui and Vci, or rather that Vui and Vci have influences on
the value of vdi. {Vu-Vui} is called vdi’s independent use
variable data dependence set, {Vc-Vci} is called vdi’s
independent condition variable data dependence set, { Vu-
Vui } ∪ { Vc-Vci } as vdi’s independent data dependence
set. This article will be deleted with the set of variables
unrelated to vdi, in order to reduce redundancy.

Definition 2: Intra-Transition Data Dependence
(IaTDD)[8]

Data dependence of intra-transition is the data
dependence set composed of definition variable and the
set of use variable set and condition variable set:

IaTDD T: {(vd1, {Vu1, Vc1}), (vd2, {Vu2, Vc2}),…, (vdi,
{Vui, Vci}), …}

Where vdi is a definition variable in action or an input
variable in event, vdi∈Vd. vd1, vd2, …, vdi, … constitute
universal set of definition variables in action or event. vd1,
vd2, …, vdi, …are not equal to each other. vdi≠vdj, i≠j. Vui is
set of use variables influencing the value of vdi in action,
which can be Null. Vci is set of condition variables
influencing the value of vdi in condition, which can be
Null. Vd⊂VT, Vu⊂VT, Vc⊂VT, VT is the variable set in
transition. d∈I, u∈I ,c∈I, i∈I. IaTDD indicate all data
dependence between variables in a transition.

Definition variables include the input variables in the
event and the input variables, definition variables and
output variables in action. The specific dependence is as
follows:

1. If a variable is the input variable in the event of
transition T, its data depends on the empty set. The
complete set of condition variables in the condition and
use variables in the action are the irrelevant set of the data
dependent variable. For example, EventName(vin1,vin2,…) ,
then IaTDD(T, vini): (vini, { }). i ∈ I, I for integers. At this
point, Vu∪Vc has nothing to do with the dependent
variable set of the variable vini, so Vu∪Vc is removed
from the dependent variable set vini to reduce redundancy.
Event is like the definition of a function in computer

program language; input variables the formal parameters
of the function. Condition and action are like the body of
the function. But it’s likely that if the condition is true
then the event and the action will be executed. In this
case, the input variable data depends on the condition
variable. This article focuses on the former situation. For
example, the variable pin in the event card(pin) data
dependence is described as IaTDD(T, pin): (pin, { }).
Vu∪Vc in the condition and action sequences has nothing
to do with the variable pin for the dependent variable set.

2. If a variable is the input variable in the action, its
data depends on the empty set or a set of condition
variables. The complete set of use variables is irrelevant
dependent variable set. If the condition variable does not
exist in T, its data depends on the empty set. Otherwise, if
the condition variable exists, it depends on the condition
variable. In both cases the complete sets of use variables
are irrelevant dependent variable set. For example,
Input(vin1,vin2,…) , then IaTDD(T, vini): (vini,{ Vc }), i∈I I
for integers. At this point, Vu has nothing to do with the
variable vini for the dependent variable set, so Vu is
removed from the dependent variable set vini to reduce
redundancy. For example, if the condition is empty, the
variable p in the input statement Input(p) data
dependence is described as IaTDD(T, p): (p, { }). If the
condition is not empty and attempts <= 3, the variable p
in the input statement Input(p) data dependence is
described as IaTDD(T, p): (p, {attempts}). In both cases
Vu has nothing to do with p.

3. If a variable is the definition variable in the action,
its data depends on the use variable set or set of use
variables and condition variables. The set, that is
complete set of use variables minus dependent use
variables, is irrelevant dependent variable set. If the
condition variable does not exist in T, its data depends on
the use variable set. Otherwise, if the condition variable
exists, it depends on the relevant use variable and
condition variable. For example, vd=vu1+vu2+…, vu1,
vu2∈Vui, then IaTDD(T, vd): (vd, {Vui, Vc}). At this point,
Vu-Vui has nothing to do with the variable vd for the
dependent variable set, so Vu-Vui is removed from the
dependent variable set vd to reduce redundancy. For
example, if the condition is empty, the variable attempts
in the assignment statement attempts = attempts+1 data
dependence is described as IaTDD(T, attempts):
(attempts, { attempts }). If the condition is not empty and
(p != pin) and (attempts < 3), the variable attempts in the
assignment statement attempts = attempts+1 data
dependence is described as IaTDD(T,
attempts):(attempts, { attempts, p, pin}). In both cases
Vu-{attempts} has nothing to do with attempts.

4. If a variable is the output variable in the action, its
data depends on the output variable or condition variables.
The set, that is complete set of use variables minus
dependent use variables, is irrelevant dependent variable
set. If the condition variable does not exist in T, its data
depends on the output variable. Otherwise, if the
condition variable exists, it depends on the output
variable and condition variable. For example, Output(vout),
then IaTDD(T, vout): (vout, { vout ,Vc }). At this point, Vu-

2664 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

Vout has nothing to do with the variable vout for the
dependent variable set, so Vu-Vout is removed from the
dependent variable set vout to reduce redundancy. For
example, if the condition is empty, the variable p in the
output statement Output(p) data dependence is described
as IaTDD(T, p): (p, {p}). If the condition is not empty
and attempts==3, the variable p in the output statement
Output(p) data dependence is described as IaTDD(T, p):
(p, {p, attempts}). In both cases Vu-{p} has nothing to do
with p.

In dealing with condition variables, common practice
is to consider condition variables as use variables. In
order to facilitate follow-up studies and lay a good
foundation for dynamic and conditional slicing, our
research separate the condition variable from the set of
use variables.

III. DIFFERENT INTRA-TRANSITION DATA DEPENDENT
METHODS

For IaTDD and traditional methods (this refers to the K
and M method, hereinafter referred to as K&M method)
data dependence is as follows:

K&M T: {(vd1, {Vu, Vc}), (vd2, {Vu, Vc}),…, (vdi,
{Vu, Vc}), …}

IaTDD T: {(vd1, {Vu1, Vc1}), (vd2, {Vu2, Vc2}),…,
(vdi, {Vui, Vci}), …}

Which ∑
=

∪
ni

v id
,...,1

=Vd, vdi ∈Vd, Vd is the

definition variable set of the transition T. vdi is a
definition variable. Vu is the use variable set. Vc is the
condition variable set. In K&M method, definition
variable vdi is dependent on the complete set of use
variables Vu and the complete set of condition variables,
described as (vdi, {Vu, Vc}). In the IaTDD method,
definition variable vdi is dependent on the use variable set
Vui and condition variable set Vci that influence the
changes of vdi, in which vdi can be empty, described as (vdi,
{Vui, Vci})Vui⊂Vu, Vci⊂Vc. Thus, for both methods, the
use variable set and condition variable set that are
dependent on the same definition variable in IaTDD is the
a subset of K&M method. That is, both methods have the
same number of intra-transition definition variable, but
K&M method can get more dependence than IaTDD, and
in fact these variables did not affect definition variables,
which resulted in redundancy.

∀ vdi ∈Vd, ∃ vdi（Method=”K&M”） = vdi（Method=”IaTDD”）,
∴Vd（Method=”K&M”） =Vd（Method=”IaTDD”）.

∀ (vdi, {Vu, Vc})∈K&M T, (vdi, {Vui, Vci})∈IaTDD
T, Vui is vdi related to the use variable set, which affect vdi
or be affected by vdi, not including the use variables and
condition variables irrelevant with the vdi, ∴Vui⊂Vu, Vu
=Vui +(Vu -Vui), Vui ∩(Vu -Vui)=Φ. Similarly, Vci⊂Vc, Vc
=Vci +(Vc –Vci) , Vci ∩(Vc –Vci)=Φ.

Based on the above two conditions can be drawn:
IaTDD T⊂K&M T.

The relationship between definition variables and

use, condition variables is shown in Figure 1. Set A=
Vd={ vd1, vd2, …, vdi,…}, that is the complete set of
definition variables, A can be empty. Set B1=
B2=…Bi=…B= Vu∪Vc, Bi indicates the set of use
variables and condition variables. A is dependent on B.
∀ (vdi, {Vu, Vc})∈K&M T, each definition variable is
dependent on the complete set of use variables and
condition variable, but it is not the case. Actually, vdi is
dependent on Vu and Vc, omitting use variable and
condition variable irrelevant to vdi. Thus, a new
dependence is made, described as (vdi, {Vui, Vci}),
Vui⊂ Vu, Vci⊂ Vc. In Figure 1 set B1 deletes dependent
variable set irrelevant to vd1, that is, B1 deletes { Vu -Vu1 ,
Vc -Vc1 }, B2 deletes { Vu -Vu2 , Vc –Vc2 }, …, Bi deletes
{ Vu -Vui , Vc –Vci }, etc. In other words, B1 equals {Vu1,
Vc1}, B2 equals {Vu2, Vc2}, …, Bi equals {Vui, Vci}, etc. Re-
construct the data dependence and get Figure 2 IaTDD T.

…

…

B A

Vd1

Vd2

…

Vdi

B1
Vu1, Vc1

Vu-Vu1, Vc-Vc1

Vu2, Vc2
Vu-Vu2, Vc-Vc2

Vui, Vci
Vu-Vui, Vc-Vci

B2

Bi

T

Figure 1 Data Dependence of Variables in Transition T
Derived by K&M Method

A

Vd1
Vd2
…
Vdi
…

Vu1, Vc1
Vu2, Vc2

…
Vui, Vci

…
…

C

Vu-Vu1, Vc-Vc1
Vu-Vu2, Vc-Vc2
…
Vu-Vui, Vc-Vci
…

…

T

IaTDD T

K&M T

D

Figure. 2 Comparison of Data Dependence between IaTDD and
K&M Method

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2665

© 2012 ACADEMY PUBLISHER

∀ (vdi, {Vu, Vc})∈K&M T, delete (vdi, {Vu -Vui, Vc–
Vci }), then get (vdi, {Vui, Vci})∈IaTDD T, so IaTDD
T⊂K&M T. Figure 2 shows that set A is dependent on
set C, that is, each definition variable of set A depends on
the definition variables associated with the use variables
and condition variables of set C. Each definition variable
has nothing to do with the use variables and condition
variables of set D. If there’s any relations, redundancy
will result.

∀ (vdi, {Vu, Vc}), (vdj, {Vu, Vc}) K&∈ M T, (vdi, {Vui,

Vci}),(vdj, {Vuj, Vcj}) IaTDD T, we ∈ get Vu =Vui +（Vu -
Vui), Vui ∩(Vu -Vui)=Φ, Vu =Vuj +(Vu -Vuj), Vuj ∩(Vu -
Vuj)=Φ. But Vui and (Vu -Vuj), Vuj and (Vu -Vui) may
intersect, that is, repeated elements may exist. Let’s
mainly see the use variables and condition variables that
are dependent. ∵∃ ∀ Vui∩(Vu -Vuj) ≠Φ, Vuj∩(Vu -Vui) ≠Φ,
are shown in (a) and (b) of Figure 3, the illustrated
variables dependent by definition variable include use
variables and condition variables. ∴∃ (Vui V∪ uj)∩((Vu -
Vui) (V∪ u -Vuj)) ≠Φ. Therefore ∃ (Vci V∪ cj)∩((Vc –Vci)

(V∪ c –Vcj)) ≠Φ, as (c) of Figure 3 shows, ∃ C∩D≠Φ,
C={ Vu1, Vc1 , Vu2 , Vc2 ,…, Vui , Vci , Vuj , Vcj ,… },
D={ Vu-Vu1, Vc-Vc1 , Vu-Vu2 , Vc-Vc2 ,…, Vu-Vui , Vc-Vci ,
Vu-Vuj , Vc-Vcj ,… }.

IV EXPERIMENT AND ANALYSIS

This paper compares the EFSM models commonly
used in various documents to analyze the impact of intra-
transition data dependence.

A. Experimental Model
Specific experimental model data is shown in Table 1,

in which #S is the number of states, #T is the number of
transition.

TABLE 1

EXPERIMENTAL MODELS

EFSM Model #S #T

ATM[6] 9 23
Cashier[9] 12 21

Cruise Control[10] 5 17
Fuel Pump[10] 13 25
PrintToken[9] 11 89

Door Control[11] 6 12
Vending Machine[9] 7 28
INRES protocol[12] 8 18

TCP[13] 12 57

B. Experimental Data
This section is about experiments on the 9 EFSM

models in Table 1. Through the IaTDD method and
K&M method, experiments will be done to get the
number of data dependence between variables, the
number of redundant variables, and comparison of the
number of definition variables, data dependence relations
between numbers, and number of redundancies.

Comparing the results of the experiments that apply
the two methods, as is shown in Table 2, "#K&M
method" indicates the number of data dependence that is
acquired without using IaTDD method. "#IaTDD
method" indicates the number of data dependence that is
acquired with IaTDD method.

TABLE 2

NUMBER OF DATA DEPENDENCE BETWEEN INTRA-TRANSITION
VARIABLES DERIVED BY TWO METHODS

EFSM Model #K&M method #IaTDD

ATM 28 28
Cashier 30 30

Cruise Control 50 50
Fuel Pump 44 44
PrintToken 49 49

Door Control 6 6
Vending Machine 30 30
INRES Protocol 14 14

TCP 135 135

The results of Table 2 show that the two methods get

the same intra-transition data dependence between
variables, but IaTDD method does not produce redundant
variables, while K&M method producing a lot of

Vu1, Vc1
Vu2, Vc2

…
Vui, Vci
Vuj, Vcj

…

Vu-Vu1, Vc-Vc1
Vu-Vu2, Vc-Vc2

…
Vu-Vui, Vc-Vci
Vu-Vuj, Vc-Vcj

…

(c)

Vuj, Vcj

Vu-Vui, Vc-Vci

Vu-Vuj, Vc-Vcj

Vui, Vci

(a)

(b)

C D

Figure 3 Variable Set Dependent by Definition Variable
of IaTDD and K&M Method

2666 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

redundant variables. The numbers of redundant variables
of the specific nine models are shown in Figure 4. It
describes the number of redundant variables contained in
each transition of the models. The horizontal axis
indicates the specific transition, and the vertical axis
indicates the number of redundant variables contained in
transition. With K&M method, Door Control model does
not produce redundant variables, because the Door
Control model includes at most one definition variable,
therefore the data dependence is simple. But in reality,
the situation is not always so rational. The other eight
models, as Figure 4 shows, produce redundant variables
to a different extent. Redundancy caused by K&M
method is shown in Table 3.

ATM

0

0.5

1

1.5

2

2.5

3

3.5

T1

T4

T7

T1
0

T1
3

T1
6

T1
9

T2
2

Transition

N
um
be
r
 o
f
Re
du
nd
an
t

Va
ri
a
bl
es

(a)

Cashier

0

1

2

3

4

5

T
1

T
3

T
5

T
7

T
9

T
1
1

T
1
3

T
1
5

T
1
7

T
1
9

T
2
1

Transition

N
u
m
be
r

o
f

R
e
d
u
n
d
a
nt

V
a
r
i
a
b
l
e
s

(b)

Cruise Control

0

5

10

15

20

25

T1

T3

T5

T7

T9

T1
1

T1
3

T1
5

T1
7

Transition

N
um
be
r
of
 R
ed
un
da
nt

Va
ri
ab
le
s

(c)

Fuel Pump

0

5

10

15

20

T
1

T
4

T
7

T
1
0

T
1
3

T
1
6

T
1
9

T
2
2

T
2
5

Transition

N
u
m
b
e
r

of

R
e
d
u
n
d
a
n
t

V
ar
i
a
b
l
e
s

(d)

PrinToken

0

0.5

1

1.5

2

2.5

T
1

T
9

T
17

T
25

T
33

T
41

T
49

T
57

T
65

T
73

T
81

T
89

Transition

N
um
be
r
of
 R
ed
un
da
n
t

Va
ri
ab
le
s

(e)

Door Control

0

0.2

0.4

0.6

0.8

1

T
1

T
3

T
5

T
7

T
9

T
11

Transition

N
um
b
er
 o
f
R
ed
un
da
nt

V
ar
ia
bl
e
s

(f)

Vending Machine

0

0.5

1

1.5

2

2.5

T
1

T
4

T
7

T
1
0

T
1
3

T
1
6

T
1
9

T
2
2

T
2
5

T
2
8

Transition

N
u
m
be
r

of

R
ed
u
n
da
n
t

V
a
ri
a
b
le
s

(g)

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2667

© 2012 ACADEMY PUBLISHER

INRES Protocol

0

2

4

6

8

10

12

14
T
1

T
3

T
5

T
7

T
9

T
1
1

T
1
3

T
1
5

T
1
7

Transition

N
u
m
be
r

of

R
e
du
n
d
an
t

V
a
ri
a
b
le
s

(h)

TCP

0

5

10

15

20

25

30

35

T1

T7

T1
3

T1
9

T2
5

T3
1

T3
7

T4
3

T4
9

T5
5

Transition

N
u
m
be
r

o
f
R
e
d
un
d
a
nt

V
a
r
ia
b
l
e
s

(i)

Figure 4 Number of Redundant Variables Derived by K&M Method

TABLE 3

REDUNDANT VARIABLES DERIVED BY K&M METHOD

EFSM Model
Number of
Redundant
Variables

Number of data
dependence among
redundant variables

ATM 16 7
Cashier 17 10

Cruise Control 83 31
Fuel Pump 117 28
PrintToken 8 8

Door Control 0 0
Vending Machine 7 4
INRES protocol 13 7

TCP 139 78

290 samples of transition in the nine models are

collected to undergo comparative experiments on the
number of definition variables contained in each
transition and the number of data dependence among
redundant variables, as is shown in Figure 5.

0

1

2

3

4

5

6

7

8

0 2 4 6 8

Number of Definition Variables in

Each Transition

N
u
m
b
e
r

o
f
D
a
t
a

D
e
p
e
n
d
e
n
c
e

a
m
o
n
g
 V
a
r
i
a
b
l
e
s

i
n

E
a
c
h

T
r
a
n
s
i
t
i
o
n

Figure 5 Comparison of Number of Definition Variables and Number of
Data Dependence among Variables in Each Transition

It can be seen from Figure 5 that the more the

number of variables contained in each transition, the
more the data dependence among variables; the more
complex the transition structure. Figure 6 and Figure 7
show the comparative experiments on the relationship
between number of variables contained in each transition
and the number of redundant variables, by using the
method of K&M.

0

5

10

15

20

25

30

35

0 2 4 6 8

Number of Definition Variables in Each

Transition

N
u
m
b
e
r

o
f

R
e
d
u
n
d
a
n
t

V
a
r
i
a
b
l
e
s

i
n

E
a
c
h

T
r
a
n
s
i
ti
o
n

Figure 6 Scatter Diagram of Number of Definition Variables and
Redundant Variables in Each Transition of Traditional Method

Figure 7 Histogram of Number of Definition Variables and Redundant

Variables in Each Transition of K&M Method

Figure 6 and 7 show that the more the number of

definition variables contained in each transition, the more

0

5

10

15

20

25

30

35

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248 261 274 287

Transition

N
u
m
b
e
r

o
f

R
e
d
u
n
d
a
n
t

V
a
r
i
a
b
l
e
s

2668 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

redundant variables. In Figure 7, 105 transitions have 0
definition variable, 105 have 1 definition variable, and 80
have two or more definition variables. Figure 7 shows
that after sorting out the experiment data, since the 210th
transition, the redundant variables increase significantly.

C. Results
The two methods produce the same number of intra-

transition variable data dependence, but K&M method
produces more redundant variables. These redundant
variables lead to errors in the next phase and new
redundancies.

However, if the intra-transition definition variable is 0
or 1 or many, or the average number of data dependence
is very low in each transition, for instance, within each
intra-transition of the Door Control model, the average
number of data dependence is 0.416667, then the use of
K&M method can help to get all the data dependence, in
other words, there is no need to use IaTDD method. If
there’re relatively few definition variables, use variables
and condition variables in EFSM model, each action
sequence of transition is relatively simple. Therefore, the
corresponding relationship between the variables is
relatively simple. We can consider not use IaTDD
method on condition that the focus of a research is not
data, and redundancy as well as a small amount of errors
can be tolerated. But when the intra-transition definition
variables reaches 2 or more, K&M method produces
more and more redundant variables, then the use of the
proposed method in this paper is more appropriate. It is
more simplifying and is a necessary method. Also,
IaTDD method can be applied during pre-EFSM stage.
When an EFSM input file finishes scanning, the intra-
transition data dependence is created. Even if one-pass
scanning is performed, the time complexity is only
decided by the number of statements. It is not time-
consuming, and can be completed by positive traverse of
all the statements in intra-transition. Therefore, it’s a
feasible method.

V. SUMMARIES

Due to the problem that direct application of existing
data dependence methods of EFSM model can cause
redundant variables, this paper compares the intra-
transition data dependence method and the K&M
methods, proves that the new method can reduce further
redundancy, and is a necessary and feasible method,
providing theoretical basis for follow-up study.

With the application of model slicing in different
sections, the qualitative description of intra-transition
data dependence is our next subject of research.

ACKNOWLEDGMENT

We would like to acknowledge the generous financial
support of Fundamental Research Funds for the Central
Universities (ZZ1136).

REFERENCES
[1] Weiser M．Program slices: formal, psychological, and

practical investigations of an automatic program
abstraction method [D] ． Ann Arbor: University of
Michigan, 1979

[2] Mats P E, Heimdahl, Michael W, Whalen. Reduction and
slicing of hierarchical state machines [A]. In Proc. Fifth
ACM SIGSOFT Symposium on the Foundations of
Software Engineering [C]. Springer Verlag, 1997.

[3] Mats P E, Heimdahl, Je_rey M, Thompson, Michael W,
Whalen. On the e_ectiveness of slicing hierarchical state
machines: A case study [A/J]. In EUROMICRO '98:
Proceedings of the 24th Conference on EUROMICRO[C].
IEEE Computer Society. USA, 1998, 10435

[4] Savage P, Walters S, Stephenson M. Automated Test
Methodology for Operational Flight Programs [A].
Proceedings of IEEE Aerospace Conference [C]. 1997, 4:
293-305

[5] Dssouli R, Saleh K, Aboulhamid E, En-Nouaary A,
Bourhfir C. Test Development For Communication
Protocols: Towards Automation [J]. Computer Networks,
1999, 31: 1835–1872

[6] Korel B, Singh I, Tahat L, Vaysburg B. Slicing of state
based models[A]. In IEEE International Conference on
Software Maintenance (ICSM’03)[C]. USA: IEEE
Computer Society Press Sept. 2003, 34–43

[7] Miao Li, Zhang Dafang, Computing Backward Slice of
EFSMs[J]. Journal of Software, China, 2004,15:169-178

[8] Shenghui Shi, Qunxiong Zhu, Wenxing Xu. Intra-
Transition and Inter-Transition Data Dependence for
EFSM[C]. 2011 International Conference on Computer
Application and System Modeling (ICCASM 2011)

[9] Korell B. Private communication, 2009
[10] Korel B, Koutsogiannakis G, Tahat L H. Model-based test

prioritization heuristic methods and their evaluation [A]. In
A-MOST ’07: Proceedings of the 3rd international
workshop on Advances in model-based testing[C]. USA:
ACM, 2007, 34–43

[11] Strobl F, Wisspeintner A. Specification of an elevator
control system – an autofocus case study[R]. Technical
Report TUM-I9906, Technische Universität München,
1999.

[12] Bourhfir C, Dssouli R, Aboulhamid E, Rico N. Automatic
executable test case generation for extended finite state
machine protocols [A]. In IWTCS’97[C]. 1997, 75–90

[13] Zaghal R Y, Khan J I. EFSM/SDL modeling of the original
TCP standard (RFC793) and the congestion control
mechanism of TCP Reno[R]. Technical Report TR2005-
07-22, Internetworking and Media Communications
Research Laboratories, Department of Computer Science,
Kent State University, 2005.

Shenghui Shi 1974-, China, Ph.D,
Lecturer in Beijing University of
Chemical Technology. Area of
Research: Slicing Technology,
Compiler Technology, Fault
Detection, Safety Analysis.
Email: shish@mail.buct.edu.cn

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2669

© 2012 ACADEMY PUBLISHER

Qunxiong Zhu 1960-, China, Ph.D,
Professor, Dean of College of
Information Science and Technology in
Beijing University of Chemical
Technology. Area of Research: Fault
Detection, Artificial Intelligence, Data
Mining, Decision-Making and Control
Research Area.
Email: zhuqx@mail.buct.edu.cn

Zhiqiang Geng 1973-, China, Ph.D,
Associate Professor in Beijing University
of Chemical Technology. Area of
Research: Artificial Intelligence, Control
Research Area.
Email: gengzhiqiang@mail.buct.edu.cn

Wenxing Xu 1982-, China, Ph.D
candidate in Beijing University of
Chemical Technology. Area of Research:
Intelligent Computing.
Email: estellaxu@163.com

2670 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

