
Design and Implementation of the Embedded
Based Web Camera System

Qinsheng Du 1,2
1 College of Computer Science and Technology, Jilin University, Changchun, 130012, China

2 College of Computer Science and Technology, Changchun University, Changchun, 130022, China
Email: duqsh@sina.com

Baohua Jiang, Yonglin Tang

Tourism College, Changchun University, Changchun, 130122, China
Email: { jiangbaohua, tangyonglin}@126.com

Xiongfei Li†

College of Computer Science and Technology, Jilin University, Changchun, 130012, China
Email: lxf@jlu.edu.cn

Abstract —This system is composed of the frontal network
camera and the remote monitoring client. Firstly, it
introduces the whole system structure design and the
definition of functions. This embedded web camera takes
the powerful ARM9 chip as MPU. The camera captures the
video through embedded multitask operating system and
the digital video has been compressed by the JPEG
algorithm. The general users can view video collected
directly by the camera in internet explorer. The authorized
users can also control the motion of the camera and
configure the parameters of the embedded web camera
straightly by Common Gateway Interface.

Index Terms — ARM , Linux , JPEG .

I. INTRODUCTION

Along with the rapid development of computer
technology and network technology, advanced embedded
technology and video transmission technology has been
effectively combined together [1]. It becomes the
development trend of the video monitoring system. In the
monitored site, the camera captures the video through the
powerful ARM9 chip as MPU and the embedded multi-
task operating system. Then the digital video has been
compressed by the JPEG algorithm and directly sent to
Ethernet. On the other place the general users can view
video collected directly by the camera in internet explorer
and the users who are authorized can also control the
motion of the camera and the parameters configuration
straightly by Common Gateway Interface.

Embedded network video monitoring technology
effectively improved the video monitoring and
transmission system based on PC. The problems existing
on PC, such as a large amount of data spending a lot of
resources for direct storage and transmission, can be
settled.

II. THE ARCHITECTURE AND MAIN FUNCTIONS

This system mainly consists of the acquisition terminal
and the remote management. The system with the camera
installed at the scene obtained from the original video.
The video becomes digital signals from analog through
the encoder and then is compressed into the JPEG format.
The data is converted in streaming format through the
streaming media server and is real-time transmitted into
the network from the Ethernet interface [2, 3]. The
remote client is connected into the network. The
monitoring module obtains JPEG data directly from the
browser and can watch the scene images. The user can
also control the remote camera and set the system
configuration.

III. THE CAMERA DESIGN

A. The Structure of Hardware
Figure 1 shows the structure of hardware.

In this design a 32 bit S3C2410 is chose, the core of

which is ARM920T [4].
The boot program and the embedded operating system

kernel is stored in 64 MB NAND Flash that is enough big
to store application program and important data. SDRAM
is used to run the operating system, applications as well
as various types of data cache. SDRAM has a total

Figure1． The structure of hardware

S3C2410

Flash

SDRAM JTAG

Camera

Internet

Power

2560 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.11.2560-2469

capacity of 64MB for the low cost, mass image data and
complex image processing.

The microprocessor also integrates abundant resources,
such as the LCD controller, USB Host, USB Slave,
interrupt control, power control, UART, SPI, SDI/MMC,
IIS, GPIO, RTC, TIMER/PWM, ADC. The
microprocessor S3C2410 is the center of control and data
processing. It controls video acquisition and compression
[5].

B．System Software
1) Kernel Transplant
In this system the embedded Linux is used as the

operating system because it has many advantages, such as
open source, without royalty, strong portability, strong
support network, many kinds of application software, a
tool chain, free, easy to cut [6,7]. After the transplant
Linux operating system can run on ARM, POWERPC,
M68K and other hardware platforms. In this system the
Linux2.6 kernel is adopted and has been successfully
transplanted. The method is as follows [8]:

(1) From the Linux official website download the
necessary documents, the kernel package Linux-
2.6.14.tar.bz2 and cross compiler arm-Linux-gcc-
3.4.1.tar.bz2.

(2) Setup a cross compiler arm-linux-gcc-3.4.1 by the
Linux command, such as MKDIR, tar, MV and export.

(3) Modify the Makefile files and the related hardware
files. The Makefile shows the organization relationship of
the kernel modules. The interrelation and dependencies
among each module are recorded in the Makefile.
Therefore the developers should modify the Makefile file
under the Linux-2.6.14 root directory. The main task is to
modify the target code type and specify a compiler for
compiling the kernel.

(4) Using the command Make compile the kernel to
create the kernel image file zImage. Download the
zImage to the development board through the
corresponding software. Restart the development board
and you will see the Linux2.6.14 kernel boot messages.
The Linux2.6.14 kernel has been successfully
transplanted into the development board.

2) BootLoader Transplant
Bootloader is a program before the operating system

kernel run. It is similar to the BIOS program in the PC.
Through this program the hardware device is initialized.
The memory space map function is set up. The hardware
and software environment is brought to an appropriate
condition and all are ready for the final system kernel call.
In this system U-BOOT is adopted as BootLoader for its
advantage, such as open source, supporting a variety of
embedded operating system kernel and microprocessor
series, high stability and reliability, highly flexible
function settings. In this system U-BOOT is transplanted
onto S3C2410 according to the follow method:

(1) Add the new configuration options in the top
Makefile file for the development board.

S3C2410_config: unconfig; @. / mkconfig $ (config =
@: _) arm ARM920T s3c2410.

(2) Create the S3C2410 directory to store the relevant
code about the development board and add the files, such
as flash.c, s3c2410.c, Makefile.

(3) Add a new configuration file for the development
board.

(4) Configure the development board with the
command: $make s3c2410_config.

(5) Compile U-BOOT. Execute the Make command
and get the U-BOOT image after the compilation success.

(6) Add the driver or the function options.
(7) Debug the U-BOOT source code until the U-BOOT

is able to start on the development board normally.
3) Root File System
The Root File System is the core of the Linux

operating system, including the system software and the
library, the support structure and the application software
to provide users, the area to store the read and write data
results. When the Linux starts, install the kernel and
initialize the environment, find a file system as the root
file system and then load it. In the embedded system the
root file system usually includes ROMFS, CRAMFS,
RAMFS, JFFS2, EX2 etc.

CRAMFS is a compressed read-only file system. The
content in a file system does not require to be
decompressed into the memory at one-time. When the
system needs access to the data on some location,
calculate the CRAMFS position immediately,
decompress the data into the memory in real time and get
the data in the file system through the memory access.
Because CRAMFS has such advantage, it is selected as
the root file system in the system. Here we use the
busybox tool to construct the embedded Linux root file
system CRAMFS.

4) Peripheral Driver
For the embedded systems, because there are no

general peripheral drivers, thus the peripheral drivers
development is an essential part of the embedded system
design process [9]. In this system the embedded operating
system kernel is Linux 2.6.14 that contains most of the
peripheral drivers, such as RS232, USB and LCD. It
needs only to be initialized and recompiled. However the
kernel does not include the driver of Ethernet chip
CS8900 that is an essential peripheral. The users need
design their own driver.

(1) Download CS8900.C and CS8900.H by use of the
network tools and copy them to DRIVERS / NET
directory of the kernel.

(2) Modify the configuration menu and add CS8900
configuration option that can be used when
ARCH_SMDK2410 is configured.

(3) The NIC is initialized and the related files, such as
smdk2410.h, mach-smdk2410.c, Makefile, are modified
and recompiled by the command Make.

Then the CS8900 driver transplant succeeds.

C. Video Acquisition Module
The video acquisition module is the core design of the

network camera. It captures the scene through embedded
Linux operating system calling V4L (video4linux) and
imaging device drivers. V4L is the basis of image process
in Linux system. It consists of a set of API supporting

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2561

© 2012 ACADEMY PUBLISHER

image equipments in the Linux kernel. In cooperation
with the proper video card and card drivers V4L can
acquire images, AM/FM wireless broadcast, CODEC,
channel change. At present V4L is mainly used in the
image streaming system and the embedded video system.
Its application is widespread, such as remote teaching,
remote medical treatment, video conference, video
monitor and video telephone. As shown as Figure 2, V4L
is a 2-layer structure, the top layer for V4L driver and the
lower layer for image device drivers [10].

In Linux operating system an external device is

handled as device files. Therefore the operation becomes
the operation of device files. Video files are in /dev/
directory, usually for video0. The camera connected to
the video acquisition terminal through USB. V4L APIs
are called in a program. The read operation for the device
file video0 can realize the data acquisition.

Firstly the V4L header file videodev.h need be
included, such as < Linux / videodev.h >. The
corresponding API files are in the /usr/SRC/Linux 2.4/
Documentation/Video4Linux/API.html. For the
communication with related equipments, some structures,
functions and variables are necessary, such as < sys /
types.h >, < sys / stat.h >, < sys / ioctl.h >, < sys /
mman.h >, < Linux / videodev.h >, < fcntl.h > and <
unistd.h >. Figure 3 shows the relationship among the
Camera, V4L, the device drivers and the embedded Linux
operating system [11].

The important data structure is as follows:
(1) Video_Capability

struct video_capability
{ char name[32];
 int maxwidth; /*Supported width*/
int minwidth; /*Supported width*/

 int maxheight; /* And height*/
 int minheight; /*And height*/
 int type;
 int channels; /*Num of channels*/
 int audio; /*Num of audio devices*/
};

This structure consist the important information of the
camera.

(2) Video_Window
struct video_window
{
_u32 x, y; /*Position of windows*/

 _u32 flags;
_u32 width, height; /*its size*/

 _u32 chromakey;
 struct video_clip *clips; /*Set only*/
 int clipcount;
}

(3) Video_Channel
struct video_channel
{ _u32 flags;
 _u32 type;
 _u16 norm; /*Norm set by channel*/
 int channel;
 int tuners;
 char name[32];}

(4) Video_Picture
struct video_picture
{
_u16 brightness;

 _u16 hue;
 _u16 color;
 _u16 contrast;
 _u16 whiteness; /*Black and white only*/
 _u16 depth; /*Capture depth*/
 _u16 palette; /*Palette in use*/
}

(5) Video_Audio
struct video_audio
{
int audio; /*Audio channel*/

 char names[16];
 _u16 bass,treble;
 _u16 mode;
 _u16 volume; /*If settable*/
 _u16 balance; /*Strreo balance*/
 _u16 step; /*Step actual volume uses*/
 _u32 flags;
}

(6) Video_Mmap
struct video_mmap
{
int height, width;
unsigned int frame;/*Frame(0-n) for double buffer*/
unsigned int format; /* VIDEO_PALETTE_* */
}

(7) Video_Mbuf
struct video_mbuf
{
int size; /*Total memory to map*/

 int frames; /*Frames*/
 int offsets[VIDEO_MAX_FRAM];
}

The important functions are as follows:
(1) Open Device Files

int v4l_open (char *dev, v4l_device *vd) {};
It can open image source device files.
(2) Initialization of Pictures

int v4l_get_picture (v4l_device *vd) {};
It can obtain input image information.
(3) Initialization of Channels

int v4l_get_channels (v4l_device *vd) {};

V4L API

Camera

Device frivers

The embedded Linux

Figure2． 2-layer structures of V4L

V4L driver
Image device drivers

Figure3．The relationship diagram

2562 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

It can obtain each channel of information.
(4) Norm Set of Each Channel

int v4l_set_norm (v4l_device *vd, int norm) {};
It can set the norm of all channels.
(5) Device Address Mapping

v4l_mmap_init (v4l_device *vd) {};
It returns the address of image data.
(6) Initialization of Mmap Buffer

int v4l_grab_init(v4l_device *vd, int width, int
height){};

(7) Capturing Video Synchronously
int v4l_grab_sync (v4l_device *vd) {};

(8) Capturing Video
int device_grab_frame () {}.

Here we mainly discussed the function of
v4l_get_picture.

int v4l_get_picture (v4l_device *vd)
{
int ret;

 vd->frame_current = 0;
 ret = get_grab_frame(vd,vd->current);
 if (ret<0)
 return ret;
if(ioctl(vd->fd,VIDIOCSYNC,&(vd-

>frame_current))<0)
 {perror("v4l_grab_sync");
 return ERR_SYNC; }
 vd->frame_using[vd->frame_current]=0;
return 0; };

 The specific process is as follows:
(1) Open device file;
(2) Inquiry and confirm the equipment performance;
(3) Set the width, the height and the color depth of the

captured image;
(4) Establish the memory mapping;
(5) Read the image data;
(6) Close the device.
Figure 4 shows the process flow.

In the above progress the memory mapping is
important. Firstly the display device address is mapped to
the system address by the function mmap().The returns
address of mmap() is the image data stored address.
Every frame image offsets the fixed length. While the
images the camera obtains will contain a number of
frames. By this way the image data is captured.

The video acquisition is the following process.
After the device initialization, the video acquisition can

begin. There are generally two methods. One is that the
data is read directly by the read (), another is the memory
map by the MMAP (). In the Read () method read the
data through the kernel buffer, while in the MMAP ()
method the device files are mapped into the memory and
bypass the kernel buffer. Usually the fastest disk access is
slower than the slowest memory access. Therefore the
MMAP () methods speed up the I/O access. In addition,
the MMAP () system call can share the memory by
mapping the same file between processes. The processes
can access the files as they access the common memory.
The pointers need only to be used without the file
manipulation functions called. The access efficiency is
much higher. Because the MMAP () method has more
advantages, in the programming the memory mapping
method is used.

The video acquisition process by the mmap () method
is as follows:

(1) Get the frame information of the camera storage
buffers by ioctl(vd->fd,VIDIOCGMBUF,&vd->mbuf)
and then modify the video settings, such as the vertical
and horizontal resolution, the color display format, and
the current frame state.

The important statements are as follows.
vd->mmap.height=240;
vd->mmap.width=320;
vd->mmap.format=VIDEO_PALETTE_RCB24;
vd->framestat[0]=vd->framestat[1]=0;

vd->frame=0;
(2) Then the device files corresponding with the

camera is mapped to the memory area by vd->map =
(unsigned char*)mmap(0, vd->mbufsize,
PROT_READ|PROT_WRITE, MAP_SHARED, vd->df,
0). This device file contents mapped to the memory area
are readable and writable and they can also be shared
among different processes. When this function succeeds,

Open the camera

Set the camera

Initiate the windows, the color mode

Grab the video

Memory map

Continue?

Close the camera

Video processing

Exit

Begin

Figure4．The flow of the video acquisition

N

Y

Set the parameter with ioctl()

Set the initial frame address with mmap()

Set the current frame, frame%=n,
capture the video

Complete?

frame+=1

N
Y

Figure5． The flow of the continuous video acquisition

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2563

© 2012 ACADEMY PUBLISHER

the memory area pointer is returned. In the memory each
frame address is determined by vd->map+vd-
>mbuf.offsets[vd->frame].

Here we introduce each parameter of the mmap
function. The first parameter indicates the start address of
the shared memory. Here 0 indicates that by the system
can assign the address dynamically. The second
parameter indicates the byte number mapped to the
address space. The third parameter specifies the shared
memory access authority. It can be set the value
PROT_READ (readable), PROT_WRITE (write) and
PROT_EXEC (executable). The fourth parameter
specifies the shared memory attributes, generally set
MAP_SHARED or MAP_PRIVATE.

(3) Video capture. After the video is mapped to the
memory, it can be captured by ioctl(vd->fd,
VIDEOCMCAPTURE, &(vd->mmap)). If the call is
successful, a frame can be captured. The operation is non-
blocking. VDIOCSYNC can judge if the capture ends.

(4) The VDIOCSYNC call wait until one frame
capture ends.

if (ioctl (vd->fd, VIDIOCSYNC, &frame)<0)
{
perror(“VDIOCSYNC ERROR!”);
return -1;
 }
If the function succeeds, one frame image has been

captured and another frame image will be captured. In the
above program the frame indicates the current frame
sequence number. After the acquisition the munmap
command is called to cancel the mapping: munmap(vd-
>map,vd->mbufsize).

At most 32 frames are collected once by the
video4linux. For the single frame the current frame only
need to be set as vd->frame=0, i.e., the first frame. If the
function ioctl(vd->fd, VIDEOCMCAPTURE, &(vd-
>mmap)) succeeds, then the device is activated and a
frame image is captured. The acquisition process is non-
blocking. The function ioctl(vd->fd, VIDIOCSYNC,
&frame) is used to judge if the frame capture ends. The
successful return indicates the acquisition end. On the
base of the single frame acquisition we can confirm the
cycle number n about the frame buffer data after the
acquisition completion by the most frame number. Then
we capture the continuous frames. In the same way each
frame is captured in the loop. Each collected frame is
assigned a address by the statement map+vd-
>mbuf.offsets[vd->frame] and saved as the file format. If
this progress continues, we can add the outer loop where
frame= 0. Figure 5 shows the continuous video collection.

Through the above operations, video data will be
acquired and stored to the camera memory. Video data
can be stored as files and also be released to Internet after
the compression. The latter process method is used in this
design. The video data will be compressed by JPEG and
then data flow will be generated and released to the
Internet.

D. Video Compression Module
Through the above collection procedure we can obtain

the primary image data. According to the image format

the video information will be stored into files. Through
the network the data is transmitted to the server by the
webserver and can be refreshed and displayed. A large
amount of collected video data brings a great burden to
handle and transmit on network so that the original image
data is too large to be convenient for transmission over
the network. Therefore it must be compressed. The three
kinds of picture formats, such as BMP, JPG and GIF, are
supported by the general web browsers. The JPEG
compression method is used in this system. Here the high
performance ARM9 processor is used to compress the
collected data in this design.

JPEG (Joint Photographic Experts Group) is a widely
used compression standard that is supported by the
general operating system and applications. The file name
suffix is ".JPG" or ".JPEG". It is the most commonly used
image file format. It is drawn up by a software
development union organization. Its main goal is to study
with a continuous tone image including gray and color
image. JPEG algorithm was identified as international
standards of the static digital image compression. It is not
only applicable to static image compression, but also
suitable for frame image compression of television image
sequence. JPEG algorithm is in accordance with full color
video standards.

It is a lossy compression method. Its main process
includes color model transformation, discrete cosine
transform, rearrangement of DCT, quantization and
coding of results, etc. By this method the image can be
compressed into very little storage space.

JPEG is the most popular image format on the network.
The compression technology is very advanced. The
redundant image data is removed by the lossy
compression method. The method obtains the higher
compression ratio and at the same time can get very vivid
images. It is very suitable for video transmission on the
network. Here the raw images are stored as the JPEG
format. The remote monitoring based on web browser is
easily implemented with an embedded web server.

The JPEG standard is based on transform coding and
integrates DCT and Huffman coding. The compression
effect is good. The core content of the JPEG algorithm is
the discrete cosine transform (DCT) coding method.
Figure 6 shows the key steps.

 The encoding process includes three steps, the source
image data input, the DCT-based coding and the
compression image output. The DCT encoder comprises
a forward converter, a Z quantizer and an entropy
encoder, in addition to a quantization table and an

8×
bl k

Source
image data Table

specilications

DCT-based
d

 FDCT Quantize
Entropy
encoder

Table
specilications

Compressed
image data

Figure 6．The DCT-based encoder

2564 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

entropy coding table (Huffman table). Decoding is the
inverse process of encoding. After the compressed image
data flow arrives at the receiver by the channel, the
images are restored and reconstructed by the DCT-based
decoder. The DCT-based decoder is the inverse process
of the DCT-based encoder. The quantization table and the
Huffman table is the same as the sender.
 Without the JPEG library in Linux, the
jpegsrc.v6b.tar.gz need to be downloaded, decompressed
and installed in /usr/src.

cd jpeg-6b
./configure
Make
Make install

In this way the jpeg function library will work in Linux.
When the programs are compiled and linked with –l jpeg,
the jpeg library will be linked.

For this a separate function is defined in the program.
The function has five parameters. The first parameter is
the image file name. The second parameter is the
collected original image data. The third parameter defines
the image width. The fourth parameter defines the image
height. The last parameter is used to set the JPEG image
compression quality. The specific codes are as follows.

void put_image_jpeg(FILE *out, char *image, int
width, int height, int quality)

{ #ifdef HAVE_LIBJPEG
 int y, x, line_width;
 JSAMPROW row_ptr[1];
struct jpeg_error_mgr jerr;

 struct jpeg_compress_struct cjpeg;
 char *line;
 line=malloc(width *3);
 if(!line)
 return;
 cjpeg.err=jpeg_std_error(&jerr);
 jpeg_create_compress(&cjpeg);
cjpeg.image_height=height;

 cjpeg.image_width=width;
 cjpeg.input_components=3;
 cjpeg.in_color_space=JCS_RGB;
 jpeg_set_default(&cjpeg);
 jpeg_set_quality(&cjpeg, quality, TRUE);
 cjpeg.dct_method=JDCT_FASTEST;
 jpeg_stdio_dest(&cjpeg, out);
 jpeg_start_compress(&cjpeg,TRUE);
 row_ptr[0]=line;
 line_width=width*3;
 for(y=0;y<height;y++) {
 for(x=0;x<line_width;x+=3){
 line[x]=image[x+2];
 line[x+1]=image[x+1];
 line[x+2]=image[x];}
 jpeg_write_scanlines(&cjpeg, row_ptr, 1);
 image+=line_width;}
 jpeg_finish_compress(&cjpeg);
 jpeg_destroy_compress(&cjpeg);
 free(line);
 #else

 fprintf(stderr, "libjpeg not available – cannot write
jpeg!\n");

 #endif}
 After the original video image data is compressed into
the JPEG format, a child process sends the JPEG image
data when the client connects. The IP address of both PC
and the camera system are set in the same network
segment. When the system runs in this way, if the IP
address, such as http: / /192.168.0.222: 81/, is entered in
the PC browser, the JPEG format image will be displayed.
The image may be refreshed and updated.
 There is a video server application program in the Linux
system on the target board. This program can support to
play real time video files. Webcam is a common video
application. From the network we can download the
Linux version webcam_server, webcam_server-
0.50.tar.gz, which is based on the GNU framework,
completely free, an open source program [12]. After
decompression the command . / configure is executed and
then the Makefile file is created. There is a variable CC in
the Makefile under the current directory and the SRC
directory. The variable CC should be set as
/usr/local/arm/3.4.3/bin/arm-linux-gcc. After the
command make is executed, the webcam_server
executable file is created. The application is loaded into
the development board and can be used.

IV. REMOTE MONITOR CLIENT

A. Web Server
Resources are usually limited in embedded systems.

There are lightweight Web Servers, such as HTTPD,
THTTPD, boa [13]. Boa Web Server is used in this
design. This server is open-source and can support CGI.
Its main processes are as follows:

(1) Download the latest package from www.boa.org
and unzipped into relevant directory;

(2) Set the default SERVER_ROOT path in the top of
the defines.h file in the boa/src directory;

(3) Choose cross-compiling tools. In boa directory
make boa configuration by . / configure -- host = i686 –
pc - Linux – gnu -- target = arm – Linux;

(4) Generate executable file boa in src/ directory after
the execution of make;

(5) Configuration of boa.conf files. Here set the socket
of boa, Server root directory, log files, html, CGI, the
attribute temp directory, etc.

B. Common Gateway Interface
CGI (Common Gateway Interface) is the interaction

standard between external applications and WWW server.
According to the CGI standard the external program can
handle the input data from the client browser and the
interaction between the client and the server, realize the
dynamic web technology. In this system when the user
sends control command to the network camera through
the browser, the server starts up the CGI module and then
the CGI module will transmit the command. At last the
camera will execute the action.

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2565

© 2012 ACADEMY PUBLISHER

C. Internet Explore Browser
In this system the main function of the web page is to

show the remote dynamic video. The standard html pages
can only display the words and pictures, so real time
video can’t be watched through the window added in the
standard html pages. To solve the problem, the method is
to embed the real time video monitor software into html
pages.

D. Play Video
 The Linux operating system is used in the remote

client. Java applet supports to play the video stream. The
JDK environment should be installed in Linux.

(1) The JDK Linux 1.6version file, jdk-6u11-linux-
i586-rpm.bin, may be downloaded from Sun website.

(2) The file need be added the execution permission.
The command is as follows:

chmod a+x jdk-6u11-linux-i586-rpm.bin
(3) The file is decompressed and automatically

installed. The command is as follows:
./ jdk-6u11-linux-i586-rpm.bin

The Java environment will be created in /usr/java.
(4) The related environment variable is set. The

command is as follows:
export PATH=/usr/java/jdk1.6.0_11/bin:$PATH

(5) In order to allow the browser to find the Java Plug-
in, the environment variable NPX_PLUGIN_PATH
points to the javaplugin.so directory. The command is as
follows:

export NPX_PLUGIN_PATH=/usr/java/
jdk1.6.0_11/jre/plugin/i386/ns7

(6) Then the video streams can be played by the Java
applet program. The commands are as follows:

java –classpath applet.jar:/usr/java/ jdk1.6.0_11/lib
/tool.jar

WebCam 192.168.0.123 8888
Then the host collects the video stream from the USB

camera. The vivid images are displayed on the screen.
The vivid images are displayed on the screen, as shown in
figure 7. The width is 320 pixels and the height is 240
pixels. The speed is 8 frames per second. The images are
very clear and can be refreshed dynamically.

V. CONCLUSION

This paper presents an embedded network camera
design based on ARM S3C2410 and the Linux system.
This camera system can accomplish the acquisition, the
compression and the display of video data. This system is

a complete solution integrating with Web Server and CGI.
Because the system adopts with the high-performance
embedded processors to complete the main control,
compression and web processing work, it is simple,
inexpensive, stable and widespread.

ACKNOWLEDGMENT

This work is partially supported by the science and
technology research project of Jilin Provincial Education
Department under Grant No. 2011223, 2011339 and
GH11067, the Science and Technology Development
Program of Jilin under Grant No. 2010036, 20102109,
201101088, 201105046 and 201201138.

REFERENCES

[1] Tunhua Wu, Qinqin Shen, Changle Zhou and Ping Wang.
Design and Implementation of a General Purpose 2D CAD
System. Journal of Computer, Vol.7, No.3, pp.666-671,
March 2012.

[2] Lain Bate, Steve Liu. Real-time Embedded System.
Computing & Control Engineering Journal, 2002, 8.

[3] Bruce Powel Douglass. Real-Time Design Patterns.
Embedded Systems Conference Papers, San Francisco,
2001.

[4] SAMSUNG's Digital World:http://www.samsung.com/
[5] David Seal. ARM Architecture Reference Manual.

Addison-Wesley. Second Edition. Published 2001.
[6] Judy Democker. Three reasons why Linux will trounce the

embedded market. IBM developer Works:Linux, 2001.
[7] Scott Maxwell. Linux Core Kernel Commentary. Coriolis,

pp.112-113, 2000.
[8] Robert Love. Linux Kernel Development. Pearson

Education, pp.263-265,2004.
[9] Alessandro Rubini, Jonathan Corbet. Linux Device Drivers,

Third Edition. O'Reilly, 2006.
[10] Michael H Schimek, Bill Dirks, Hans Verkuil. Video for

Linux Two API Specification Draft O.13. April 2006.
[11] Alan Cox. Video4Linux Programming. 2002.
[12] WebCam_Sever for Linux.

http://freshmeat.net/projects/webcam_server/
[13] Jeremy Bentham. TCP/IP Learn Web Servers for

Embedded System. China Machines Press, May, 2003.

Qinsheng, Du Jilin Province, China. Birthdate: July,1978. He is
a lecturer of College of Computer Science and Technology,
Changchun University. He is currently pursing his Ph.D at
College of Computer Science and Technology, Jilin University.
He is mainly engaged in the research of embedded system.

Baohua, Jiang Jilin Province, China. Birthdate: February,1977.
He is lecturer of Tourism College, Changchun University. He is
a graduate student at College of Computer Science and
Technology, Jilin University. He is mainly engaged in the
research of embedded system.

Yonglin, Tang Jilin Province, China. Birthdate: May, 1957.
He is a professor of Tourism College, Changchun University.
He is mainly engaged in intelligent control and embedded
system.

Xiongfei, Li Jilin Province, China. Birthdate: January, 1963.
He is a professor of College of Computer Science and
Technology, Jilin University. He is mainly engaged in
embedded database.

Figure7． The vivid images on the screen

2566 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

