
Is In-Depth Object-Oriented Knowledge
Necessary to Develop Quality Robustness

Diagrams?

Mohamed El-Attar, Mahmoud O. Elish, Sajjad Mahmood
Department of Information and Computer Science
King Fahd University of Petroleum and Minerals

P.O. Box 5066, Dhahran 31261, Kingdom of Saudi Arabia
{melattar, elish, smahmood} @kfupm.edu.sa

James Miller

Department of Electrical and Computer Engineering
University of Alberta

Edmonton, Alberta T6G 2VB, Canada
jm@ece.ualberta.ca

Abstract—PURPOSE: Robustness analysis is a technique
that can be performed to help ensure the correctness,
completeness and consistency of use case and domain
models. Robustness analysis also helps bridge the gap
between the analysis and design phases by providing a
guided approach to identify a first-guess set of objects that
will realize scenarios described in use cases. It is necessary
to perform robustness analysis in the early phases of the
development lifecycle in order to reap its benefits. In
particular, robustness analysis needs to be performed by
business analysts during the requirements phase to improve
the quality of their models as well as help provide a seamless
transition to the design phase. However, a core skill that is
required to develop robustness diagrams is knowledge of
OO concepts which business analysts normally do not have.
To overcome this limitation, business analysts acquire brief
knowledge of OO concepts via a small learning curve in
order to develop and reap the benefits of creating
robustness diagrams. However, is this brief knowledge of
OO concepts attained through a small learning curve
enough to allow business analysts to develop quality
robustness diagrams?

DESIGN: In this paper we present a controlled student-
based experiment to empirically evaluate the requirement of
in-depth OO knowledge to produce quality robustness
diagrams.

FINDINGS: The results show that business analysts can
indeed produce quality robustness diagrams without in-
depth OO knowledge.

ORIGINALITY: The results of this experiment will aid in
embracing the technique of robustness analysis amongst
business analysts in order to overall improve the software
development process.

Index Terms— Robustness Analysis, Robustness Diagrams,
Use Cases, Business Analysts, Controlled Experiment

I. INTRODUCTION

Robustness analysis is a technique which is first
introduced by Ivar Jacobson in 1993 [15] which is
performed to disambiguate use cases and identify gaps in
the domain model. A domain model is essentially a class
diagram that represents elements from the real-world
domain (the problem domain). There exist several
benefits to applying robustness [25]. Firstly, robustness
analysis is used to disambiguate and complete a use case
description by rewriting it using elements from the
domain model. Secondly, robustness analysis is used to
deduce candidate classes from use case descriptions in
order to complete the corresponding domain model. As a
result, the use case and domain models will be consistent
and more complete. Thirdly, robustness analysis is used
to identify a set of objects that will collaboratively realize
the behavior described in use case descriptions.

The deliverable of robustness analysis is a robustness
diagram. A robustness diagram models the behavior
described by a use case using objects from existing
classes in the domain model as well as newly introduced
classes. Robustness diagrams are most similar to UML
collaboration diagrams but with far less diagrammatic
constructs and syntax rules. Upon selecting the most
appropriate design, a robustness diagram can be readily
evolved into more detailed UML design artifacts such as
collaboration, activity or sequence diagrams, whose
notational sets subsume that of robustness diagrams.
Therefore, robustness analysis and robustness diagrams
can be considered as a valuable tool to bridge the gap
between the analysis and design phases and can steer
development efforts towards developing an end system
that more precisely satisfies its requirements.

Due to their relatively simple notational constructs and
syntactical rules, robustness diagrams can be produced

2538 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.11.2538-2552

early in the development life cycle. Development teams
can benefit from this characteristic by using robustness
diagrams to obtain early feedback from their customers
and avoid costly fixes downstream. Robustness diagrams
can also be potentially used to develop more
comprehensive sets of acceptance, unit, integration and
system tests. Moreover, due to their simplicity, they are
easier to comprehend than detailed UML artifacts and
thus are very useful for the software maintainers to grasp
an overview of the system’s behavior without being
distracted with the intricate design details.

The literature provides some evidence of the use of
robustness analysis in industry. In [26], the authors
describe an industry strength software development
process named ICONIX, which leverages the benefits of
robustness analysis. Robustness analysis is stated to play
several essential roles within the ICONIX process [26]. In
[1], Aguanno states that robustness diagrams can be used
as a modeling technique to develop domain and
conceptual models in agile projects. “Agile Modeling” is
a practice-based methodology for modeling and
documenting software systems, which utilizes robustness
analysis and diagrams [2]. In [24], the author presents an
approach to better apply robustness analysis in
conjunction with the Model-View-Controller architecture.
In the research community, Dugerdil and Jossi presented
a technique that can reverse engineer the architecture of
legacy software systems [9]. Building a robustness
diagram is described as a major step in the application of
the approach presented in [9]. A number of major
companies who develop UML modeling tools have also
realized the potential advantages of robustness analysis.
To this end, many commercial UML modeling tools have
invested in providing support for robustness diagrams
within their tools. Such tools include: astahUML [5],
ModelMaker [23], Visual Paradigm for UML [31],
Enterprise Architect [10] and MagicDraw UML [22].

The abovementioned benefits of robustness analysis
and robustness diagrams will not be reaped unless it is
performed early in the software development cycle.
Therefore, there is a need for business analysts to
embrace robustness diagrams before designers commence
with their detailed design efforts. Although developing
robustness diagrams does not require in-depth knowledge
of OO concepts as is the case with UML collaboration
diagrams, nevertheless some level of knowledge of the
OO concepts is required since ultimately a robustness
diagram is essentially a depiction of objects collaborating
with each other in order to realize scenarios described in
use cases. However, according to BABOK® (Business
Analysts Body of Knowledge) [14], knowledge of OO
concepts is not a requisite skill to obtain professional
accreditation, not even for the most advanced level of
accreditation. While business analysts may possess other
skills which may (positively or negatively) affect their
ability to produce quality robustness diagrams, it can be
argued that knowledge of OO concepts is a requisite core
skill, if not the most important skill. To overcome this
limitation, business analysts acquire a brief amount of
OO knowledge with a short learning curve, perhaps

through a short course or a workshop. However, there
lacks evidence that the brief knowledge acquired by
business analysts is adequate to develop quality
robustness diagrams. It is thus necessary to empirically
evaluate whether in-depth knowledge of OO concepts is
necessary to produce quality robustness diagrams, or
whether a brief amount of knowledge acquired with a
short learning curve would suffice. To this end, this paper
presents a student-based experiment to carry out this
empirically evaluation.

The remainder of this paper is structured as follows;
Section 2 provides a brief description of the robustness
analysis technique and the notational constructs of
robustness diagrams. In Section 3, the planning and
design of the controlled experiment is presented. The
experimental results and their analysis are presented in
Section 4. Finally, Section 5 concludes and suggests
future work.

II. BACKGROUND

In this section we provide the relative background that
motivated this research and prompted the need to perform
the controlled experiment presented in this paper.

A. Performing Robustness Analysis and Developing
Robustness Diagrams

As a prelude to describing the relative background
that motivated this research, this section presents a brief
overview of robustness analysis and diagrams. A more
detailed description of the robustness analysis technique
and the notational constructs of robustness diagrams are
presented in [2, 17, 27,32]. In order to develop a
robustness diagram for a use case, the corresponding use
case description and domain model are required as input.
Domain models are built using the same notational
constructs as class diagrams. Domain models however
serve a different purpose than traditional class diagrams
that are used to implement the system. Domain models
are concerned with capturing the business concepts of the
problem, while a class diagram is concerned with
showing detailed information regarding the final solution.
For this reason, a domain model contains far less
information than a class diagram and hence it is an
artifact which a business analyst is expected to produce,
unlike a class diagram. It is very common that domain
models evolve into class diagrams, whereby software
designers use the domain models produced by the BA
(Business Analysts) and “flesh them out” with solution
details that will solve the given business problem [11, 20,
28].

Robustness analysis is performed by applying the
following steps:

1. Decompose each narrated use case flow into a set of

“steps”.
2. Use objects from the domain model and link them

together to simulate these steps and realize the use
case.

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2539

© 2012 ACADEMY PUBLISHER

3. Add missing classes and associations in the domain
model during step (2).

4. Use terms from the domain model to disambiguate the
use case during step (2).

5. Complete other information in use case text that might
be missing during step (2).

6. Alternative flows in use case descriptions may
optionally be highlighted in the robustness diagram
using a different color for distinction from the
nominal flow.

The outcome of robustness analysis is a robustness

diagram. A single robustness diagram should be
developed for each use case [1, 2, 26-28, 32]. Robustness
diagrams contain a relatively small set of notational
constructs and syntax rules (Table 1).

TABLE 1.
THE NOTATIONAL CONSTRUCTS OF ROBUSTNESS DIAGRAM

AND THEIR SYNTAX RULES
 Element Description Syntax Rules

Boundary

object

Boundary objects represent
interfaces that facilitate
communication with actors.

Boundary
objects can only
be associated
with actors or
control objects.

Control
Object

Control objects are the “muscle
and brains” of a system.
Control objects interact with
boundary and entity objects
and perform algorithmic
activities to provide services
needed by an actor. A control
object can coordinate with
other control objects to
coordinate activities in order to
carry out a service. Control
objects also check business
rules to allow or prevent
certain functionalities from
executing.

Control objects
can only be
associated with
boundary, entity
or other control
objects.

Entity Object

Entity objects store information
about real-world concepts.
Entity objects should already
exist in the domain model.

Entity objects
can only be
associated with
control objects.

Actor

Any external entity that
interacts with the given system.

Actors can only
be associated
with boundary
objects.

Application of the robustness analysis technique is

further elaborated using a use case named Register
Course. Assume the original description of the Register
Course use case and the corresponding domain model is
as shown in Figure 1. When analyzing the narrative text
of the Register Course use case, it can be deduced that the
Student interacts with the system through an interface
that displays various courses that could be registered in.
The appropriate boundary object to represent this
interface would be Course Viewer, which is already

available in the domain model. The Course Viewer object
will then forward the request to register in a course along
with the required relative information to the Register in
Course control object. The required information will
include information about the student as well as the
course name and type. The two course types are missing
from the domain model and therefore the domain model
should be updated accordingly (see Fig. 2 middle). The
Register in Course object then delegates the responsibility
of checking the course prerequisites to the Check
Prerequisites control object. If the prerequisites are
satisfied, the Register in Course object then invokes the
Update Student Record control object to register the
Student in the Course and update his Student Record. The
statement of updating of the Student Record is missing
however from the Register Course use case description
and therefore the description should be updated
accordingly (see Fig. 2 top). While performing robustness
analysis the robustness diagram shown in Figure 2
bottom is constructed.

Use Case Name: Register Course

Actors: Student

Basic Flow: The student selects the course that he wishes to register
in. The student also selects whether he would like to register in the
course as a regular course or as an online course (if available). The
system checks the student’s record to ensure that the prerequisites
for the selected course are satisfied and then registers the student
into the course.

Figure 1 The original Register Course use case description (left) and
domain model (right)

Use Case Name: Register Course

Actors: Student

Basic Flow: The student selects the course that he wishes to register
in. The student also selects whether he would like to register in the
course as a regular course or as a online course (if available). The
system checks the student’s record to ensure that the prerequisites
for the selected course are satisfied and then registers the student
into the course. The system then updates the student’s record.

2540 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

Figure 2 The updated Register Course use case description (top) and
domain model (middle) and robustness diagram (bottom)

B. Quality Attributes of Robustness Diagrams
In order to assess the performance of the subjects in

developing robustness diagrams, it is important to first
identify the quality attributes that should exist in
robustness diagrams. It is also important to identify the
types of defects that affect each attribute. The literature
has proposed many guidelines to perform robustness
analysis and produce high quality robustness diagrams [2,
26-28]. For example, [27, 28] outline a set of top ten
robustness analysis errors. Such errors include (a)
violating the robustness diagram syntax rules, (b) failing
to model the use case alternative flows, (c) including too
many or too few control objects, (d) including detailed
design decisions within the robustness diagram…etc. In
[2, 27, 28], a set of heuristics are presented which can be
used to determine when an object should be created and
its appropriate type. For example, when analyzing the use
case text, nouns present candidates for boundary and
entity objects, while verbs present candidates for control
objects. Based on the literature review, the quality
attributes of robustness diagrams were categorized by the
author of this paper into three major categories as shown
in Table 2.

A robustness diagram lacking any of the quality
attributes, presented in Table 2, is likely to lead to defects
and harmful consequences. An exhaustive list of defect
examples would be very extensive and would need a
great deal of space to present. Alternatively, Table 3
outlines a large cross section of defect examples that can
affect each quality attribute. Measurement and scoring of
these defects are presented in detail in Section 3.8. Many
of the defect examples presented in Table 3 were
specified explicitly in the literature while others were
deduced based on the information provided in the
literature.

TABLE 2.
QUALITY ATTRIBUTES OF ROBUSTNESS DIAGRAMS
Quality

Attribute
Definition

Completeness

The robustness diagram must model all the flows
defined in its corresponding use case description.
To achieve completeness, a robustness diagram
must contain all the necessary entities (actors,
objects and associations) that collaboratively
realize the entire set of use case flows [2 , 26-28].

Fault-Free

A robustness diagram must not contain any
information or facts that are incorrect or
contradicting to what is stated in its
corresponding use case description. Such
incorrectness can be in the form of any
diagrammatic element which is not stated by a use
case description or required to realize a particular
use case flow. Incorrectness may also be in the
form of a modeled workflow which misrepresents
the underlying use case and domain model [2 ,
26-28].

Design
Properness

A robustness diagram must be readable, precise
and unambiguous. Readers of the robustness
diagram must be able to easily identify the
modeled workflows and how they realize the
scenarios described in the corresponding use case
description. The diagram should also not contain
repeated diagrammatic elements as this may lead
to confusion. All stakeholders must be able to
infer a common understanding of the functional
flows presented by the diagrams. The diagram
should also not contain detailed design decisions.
[2 , 26-28].

TABLE 3.

ROBUSTNESS DIAGRAMS DEFECT EXAMPLES
Category Examples

Completeness

1. A missing actor which was stated in a
particular flow of a use case description. [26-
28]

2. A missing interface object which was
required to realize a particular flow of a use
case description. [26-28].

3. A missing control object which was required
to realize a particular flow of a use case
description. [26-28]

4. A missing entity object which represents
data created or accessed as stated in a use
case description. [26-28]

5. A missing association between two objects
[27, 28]

6. A missing association between an actor and
an interface object. [28]

7. A missing collection of actors, objects and
their interconnecting associations that would
model a flow (or part of a flow) described in
a use case. Such flow maybe the use case’s
basic flow, an alternative, exceptional flow
or a sub-flow. [28]

Fault-Free

1. Incorrect Information: [26-28]
a. An inclusion of an actor that was not

described in the corresponding use case
description.

b. An inclusion of an interface object that
represents a type of interface to the

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2541

© 2012 ACADEMY PUBLISHER

system which does not represent or
satisfy the requirements stated in the
corresponding use case.

c. An inclusion of a control object which
symbolizes an action to be performed
which does not contribute to
representing or satisfying the
requirements stated in the
corresponding use case.

d. An inclusion of a control object which
symbolizes an action to be performed
by an external entity.

e. An inclusion of an entity object that
symbolizes a source of information that
is not required in order to satisfy the
intended goals of the corresponding use
case.

f. An inclusion of an entity object which
symbolizes a source of information
available outside the system, unless the
diagram shows a means to obtain this
information from the external entity.

g. An association between an actor and an
interface object which should not exist.

h. An association between an interface
and a control object which should not
exist.

i. An association between a control and a
entity object which should not exist.

2. Syntax Errors: [26, 28]
a. An actor associated with another actor.
b. An entity object associated with

another entity object.
c. An interface object associated with

another interface object.
d. An interface object associated with an

entity object (unless for the purpose of
a straightforward information retrieval
process).

e. An actor associated with a control
object.

f. An actor associated with an entity
object.

g. An incorrect graphical representation of
an actor using an icon that represents an
object.

h. An incorrect graphical representation of
an interface object using an icon that
represents another type of object or an
actor.

i. An incorrect graphical representation of
a control object using an icon that
represents another type of object or an
actor.

j. An incorrect graphical representation of
an entity object using an icon that
represents another type of object or an
actor.

Design
Properness

1. Using too many control objects to perform
an activity that would ideally be performed
by one control object. [2, 28]

2. Using a control object to perform a set of
activities that would ideally be performed by
a number of control objects. [28]

3. Including detailed design information: [2,
28]

a. Including objects that represent specific
solutions.

b. Allocating attributes and operations to
objects.

c. Specifying association end
cardinalities.

d. Specifying specializing associations,
such as aggregation, composition and
generalization.

e. Specifying association end qualifiers.
4. Including repetitive information: [26, 27]

a. Including repeated objects unless
greatly improves the presentation of the
diagram.

b. Including repeated actors unless greatly
improves the presentation of the
diagram.

c. Failing to reuse objects appropriately to
model various flows described in the
corresponding use case.

III. EXPERIMENTAL PLANNING

This section describes a controlled experiment that
took place at King Fahd University of Petroleum and
Minerals in the Kingdom of Saudi Arabia. The
experiment adheres to the experimentation process
outlined by Wohlin et al. [33]. In accordance with the
process outlined in [33], the subsections below describe
the experiment’s: definition, context, hypotheses
formulation, subject selection, design, instrumentation
and measurement techniques, and validity evaluation,
respectively.

A. Experiment Definition
The main research question posed by this experiment

is whether a strong OO background is required to perform
proper robustness analysis and develop quality robustness
diagrams in comparison to the robustness diagrams
developed with only a brief OO knowledge. Therefore,
the only independent variable of this experiment is the in-
depth OO design and programming knowledge and hence
two groups exist; a group of subjects with strong OO
knowledge (OOK) and a group without in-depth OO
knowledge (BOOK). This experiment also has three
dependent variables upon which the groups are compared.
The three dependent variables are based on the three main
categories of robustness diagrams quality attributes
shown in Table 2; content completeness (C), false facts
and information (FF), and design properness (DP).

B. Experiment Context
This experiment involved 2nd and 3rd year Software

Engineering undergraduate students. The experiment was
conducted during the first semester of the 2009-2010
academic year. It was conducted as in-class exercises and
their robustness diagrams were collected at the end of the
class. The subjects were made aware that their diagrams
will be collected for scoring in order to ensure their
committed engagement in the exercises. Upon completion
of the experiment, the subjects were notified that
robustness analysis will not be covered in any subsequent

2542 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

exams, assignments or project tasks. The subjects were
also later notified that while their diagrams were scored,
the scores will not contribute towards their final grades.
Before assigning the experimental tasks the subjects were
presented with a series of two one-hour lectures that will
introduce them to the concepts and techniques of
robustness analysis, followed by another series of two
one-hour lectures that will allow the subjects to practice
these techniques using a number of examples. The
experimental tasks were then undertaken in the following
two one-hour lectures. The students were not informed
about the hypotheses under investigation.

The instructors of the respective courses appreciated
the value of robustness analysis and developing
robustness diagrams at the start of the semester. The
learning value that the subjects were intended to receive
by the courses hence included robustness analysis
regardless of the experiment being conducted. In fact,
robustness analysis was included in subsequent offerings
of the courses.

C. Hypotheses Formulation
Three hypotheses were produced to account for

performance of the groups in developing robustness
diagrams (see Table 4). The alternative hypotheses (Ha)
for the Completeness (C) variable states that the
robustness diagrams developed by OOK subjects will
model more factual information in comparison with the
robustness diagrams developed by BOOK subjects. The
alternative hypotheses (Ha) for the Fault-Free (FF) and
Design Properness (DP) variables state that OOK subjects
will commit less Fault-Free and Design Properness errors
than BOOK subjects. Therefore, all variables are one-
tailed hypotheses.

TABLE 4.

THREE DEPENDENT VARIABLES AND THEIR
CORRESPONDING HYPOTHESES

Dependent
Variable

Null Hypothesis
(Ho):

Alternative
Hypothesis

(Ha):
Completenes
s

(Ho1): C (OOK) ≤ C
(BOOK)

(Ha1): C (OOK) > C
(BOOK)

Design
Properness
Violations

(Ho2): DP (OOK) ≥ DP
(BOOK)

(Ha2): DP (OOK) <
DP (BOOK)

Fault-Free
Violations

(Ho3): FF (OOK) ≥ FF
(BOOK)

(Ha3): FF (OOK) <
FF (BOOK)

D. Subject Selection
In total, 54 students participated in the experiment.

Informal interviews with the subjects have indicated that
none of them had previous exposure to robustness
analysis. It is beneficial that the subjects did not have
prior experience with robustness analysis modeling as
there might be a tendency by the subjects to ignore the
prescribed techniques and concepts taught in the lectures,
and instead apply the techniques that are more familiar to
them from their experience. However, it must be noted
that the fact that the subjects lack any robustness analysis
and modeling experience may raise concern with respect

to external validity. This issue is discussed in more detail
in Section 4.2.4. One group consists of 28 students who
were enrolled in a second year course called
“Introduction to Software Engineering”. The other
grouped consists of 26 students who were enrolled in a
third year course called “Software Design and
Architecture”. Both sets of subjects are enrolled in the
undergraduate Software Engineering program and
therefore their relative educational experience was known
beforehand. Both sets of subjects were distinct, meaning
no subject was enrolled in both courses at the same time.
The experiment was conducted at an early stage of the
first semester of the academic year. Therefore, the
relative educational experience of the second year group
of subjects is determined to consist of one course that
introduces them to the basic concepts of programming,
such as primitive data types, loops, conditions, functions,
user input handling, and basic read/write operations using
text files. The relative educational experience of the third
year group of subjects subsumes that of the second year
group in addition to two advanced programming courses
which cover advanced OO concepts and data structures.
The third year group of subjects has also undertaken a
course which is mainly concerned with OO modeling
using UML.

E. Experimental Design and Tasks
The subjects were divided into two groups (BOOK and

OOK) based on the course they are enrolled in. Given
their educational background, subjects enrolled in the
second year course would resemble a population that
lacks in-depth OO knowledge (the BOOK group), while
subjects enrolled in the third year course would resemble
technical personnel with strong OO knowledge (the OOK
group).

In this experiment, the subjects were required to
consider two distinct use cases along with their
corresponding domain models. The use cases are named
“Filter Restaurants” [26] and “Place and Order” [2]. The
ideal robustness diagrams for both these use cases are
presented in their respective sources. Using use cases
from external sources is important to eliminate biases
even though the author of this paper is not the creator of
the robustness analysis technique. For each part of this
experiment, the subjects were given the use case
descriptions and the use case diagrams of the systems
from which the use cases have originated. The subjects
were also provided the domain models for each system.
The subjects were then asked to develop a robustness
diagram for each of the two use cases. All artifacts used
in the experiment such as use case descriptions, the use
case diagram and their corresponding domain models can
be found in Appendix A. Prior to beginning each exercise;
the subjects were introduced to the business related to
each use case so that they would understand the context
in which each use case is executing.

To mitigate the effect of individual and group abilities
as well as system learning effects, the experimental
design shown in Table 5 was used. The order of the use
cases given was similar to both groups. Use case “Filter
Restaurants” was chosen at random to be given to the

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2543

© 2012 ACADEMY PUBLISHER

subjects first. Learning effects based on the order of use
cases is mitigated since students work with the same use
case first (“Filter Restaurants”) before working with the
“Place an Order” use case. Meaning that both groups had
the same chance to learn about developing robustness
diagrams since after “Part 3” of the experiment both
groups would have been exposed to the same material
and exercises. An important factor to take into
consideration is that the OOK group, given their prior
knowledge of OO concepts, is expected to be quicker in
learning how to develop robustness diagrams since
robustness diagrams is chiefly a simpler version of UML
collaboration diagrams which they are already very
familiar with through their coursework. Although
students of the OOK group have never been exposed to
robustness diagrams, they have practically not learned
anything new by taking part of this experiment other than
learning not to focus on detailed syntax. Therefore this
factor in the experiment is acceptable since the reason
behind their quicker learning is their in-depth OO
knowledge, which is the sole independent variable to the
experiment.

Table 6 shows the structural and content details of both
use cases as presented in their respective sources. Both
use cases contain a total of 19 elements (actors and
objects). The “Place an Order” use case however was
determined to be a larger use case as it contains 5 more
functional facts than the “Filter Restaurants” use case.

TABLE 5.

EXPERIMENTAL DESIGN
 BOOK Group OOK Group

Part 1
Introduction to robustness analysis and robustness

diagrams
2 lectures (approx. 2 hours total)

Part 2 Robustness analysis practice using various examples

Part 3

Develop Robustness
diagram for:

“Filter Restaurants” use
case

Develop Robustness
diagram for:

“Filter Restaurants” use
case

Part 4
Develop Robustness

diagram for:
 “Place an Order” use case

Develop Robustness
diagram for:

“Place an Order” use case

TABLE 6.
DETAILS OF THE TWO USE CASES USED IN THIS

EXPERIMENT
 Filter Restaurants Place an Order
of actors 1 1
of interface objects 4 6
of control objects 9 7
of entity objects 5 5
of functional facts 12 17

Time Allocation

As the exercises were relatively small, subjects were
expected to finish them in approximately 30 minutes (±15
minutes). Subjects did not have to face any timing
pressures since lectures are approximately 1 hour long.

All subjects finished their tasks within 30 minutes and no
great time differences were observed.

F. Instrumentation
The subjects were required to create their robustness

diagrams using pencil and paper only to eliminate any
effect that might be introduced by tool support.

G. Analysis Procedure
The quantitative data presented in this paper is

considered as discrete count as it is assumed that all
deficiencies have an equal unit weighting. The various
data sets were examined for their compliance to
normality assumptions using the Shapiro-Wilk test [29].
This test was chosen instead of other common normality
tests, such as Kolmogorov-Smirnov [16] and Anderson-
Darling [3], since it does not require that mean or
variance of the hypothesized normal distribution to be
specified in advance. Therefore, the Shaprio-Wilk test
can be considered to be more powerful than other
common normality tests. Further details of the Shaprio-
Wilk test can be found in [29]. Executing the Shapiro-
Wilk test revealed that a significant subset of the datasets
are non-normal. Therefore, to adopt a conservative
approach, the quantitative analysis performed will
consider all datasets as being sampled from non-
parametric distributions.

H. Scoring and Measurement
Table 7 presents the scoring strategy of defects

affecting each quality attribute. Scoring of the robustness
diagrams was conducted independently by three authors
of this paper. Each defect was recorded by each author
and discrepancies were resolved through verbal
discussion.

TABLE 7.
SCORING STRATEGY OF ROBUSTNESS DIAGRAM DEFECTS

Category Scoring Strategy

Completeness

All “Completeness” defects are scored similarly
(as a discrete count ‘1’) regardless of their type. If
a diagram does not model a given fact-A then this
is scored as the sum of missing actors, objects and
associations that represent that fact. The missing
entities are determined based on the ideal solutions
provided in [2 , 25-28].

Fault-Free

“Fault-Free” is scored as the sum of unique “Fault-
Free” defects committed in the use case model. All
“Fault-Free” defects are scored (as a discrete count
‘1’) regardless of their type. For example, if the
robustness diagram shows an actor associated with
two different control objects, then these counts as
two “Fault-Free” defects. For example, if the
diagram shows that information is retrieved from a
Savings Account entity object when the use
case states that information is retrieved from a
chequeing account, then this counts as one “Fault-
Free” defect as well as one “Completeness” defect.
[25-28]

Design
Properness

All “Design Properness” defects are scored
similarly (as a discrete count ‘1’) regardless of
their type. In the case of having too many or too

2544 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

few control objects that should be combined into
one control object, defects are scored based on the
number of fine-grained or coarse-grained control
objects, respectively. In the case of unnecessarily
repeated information, for example, a repeated
entity object or actor, defects are based on the
number of unnecessary repetitions. Instances of
having highly detailed design decisions in the
diagram are scored based on the object containing
the extraneous details. [2 , 25-28]

IV. ANALYSIS AND INTERPRETATION

A descriptive summary for each non-parametric
variable is presented in terms of a notched box and
whiskers plot (see Fig. 3). The upper and lower horizontal
lines show the upper and lower quartiles respectively.
The median is indicated by the middle horizontal line.
The confidence interval around the median is shown
using tilted lines stemming from the median. Whiskers
(vertical lines) extending from the notched boxes extend
to the furthest observations within ±1.5 IQR (interquartile
ranges) of the 1st and 3rd quartile. Observations outside
1.5 IQRs are marked as near outliers (+), and those
outside 3.0 IQRs are marked as far outliers ().

Figure 3 Illustration of the box and whiskers plot’s diagrammatic

notation

The Mann-Whitney U statistic (of the 1st sample) was
used to test differences between the medians of related
samples. More information about the Mann-Whitney test
is available in [30]. The presence of a number of ties
within the datasets prevents us from using an exact test
and hence the probability provided should in general be
considered as an underestimation. All confidence
intervals around the difference between medians are
given at the standard 95% level and were computed using
the Hodges-Lehman method [20]. Furthermore, we will
provide an estimate of the size of the difference between
the two groups by estimating the associated effect size. In
this paper, we use Cliff’s delta [6-8] as a non-parametric
effect size measure. It was empirically demonstrated by
Hess et al. [12] and Kromrey et al. [18, 19] that when the
data is non-normal or possesses variance heterogeneity,

Cliff’s delta is superior to Hedges’ g and Cohen’s d.
Cliff’s delta examines the probability that individual
observations within one group are likely to be greater
than the observations in the other group:

Δ= Pr(xi1>xj2) – Pr(xi1<xj2)

Where xi1 is a member of population one and xj2 is a
member of population two.

While there are three methods of inference of Cliff’s
[8], we will utilize the “consistent” estimate of the
variance as it allows the construction of the associated
asymmetric confidence intervals around at 95%. The
choice of variance procedure has been empirically proven
by Kromrey and Hogarty [18] to be relatively
unimportant across a wide range of circumstances. In this
article, we will utilize the effect size measure to compute
exploratory significance hypothesis testing to further
confirm the results obtained from the Mann-Whitney test.
For the two groups involved in our controlled experiment,
if the confidence interval only includes positive numbers
then OOK > BOOK (favoring OOK subjects); if it only
includes negative numbers then BOOK > OOK (favoring
BOOK subjects); if the confidence interval includes zero,
the populations are considered equal.

A. Performed Analysis
The analysis performed investigates the performance

of the two groups with respect to each quality attribute in
isolation using both use cases: in Section 4.1.1, the
performance of the groups with respect to the
“Completeness” quality attribute; in Section 4.1.2, the
performance of the groups with respect to “Fault-Free”
quality attribute, and in Section 4.1.3, the performance of
the groups with respect to the “Design-Properness”
quality attribute.

BOOK vs. OOK – Completeness

Figures 4 and 5 show the results of the cumulative
“Completeness” count from the “Filter Restaurants” and
“Place an Order” use cases, respectively. Table 8 shows
that no statistically significant difference was observed
between the performances of the two groups with either
use case. This indicates that both groups modeled
relatively the same amount of information stated in the
use case descriptions within their robustness diagrams.
This statistical insignificance is further confirmed as the
confidence interval around includes the value zero for
both use cases (see Table 9).

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2545

© 2012 ACADEMY PUBLISHER

TABLE 8.
MANN-WHITNEY TEST FOR THE ‘COMPLETENESS’ RESULTS

TABLE 9.
CLIFF’S DELTA FOR THE ‘COMPLETENESS’ RESULTS

System Cliff’s delta (δ̂) Variance Confidence Interval around delta (δ̂)
maximum minimum

Filter Hotels 0.192 0.027 0.481 -0.134
Place an Order -0.154 0.043 0.245 -0.508

Figure 4 BOOK vs. OOK – Completeness (Filter Restaurants)

Figure 5 BOOK vs. OOK – Completeness (Place an Order)

Discussion – According to the results, it can be inferred
that in-depth knowledge of OO concepts does not have a
statistically significant effect on the ability of the subjects
to account for possible use case scenarios in their design.
The lack on in-depth OO knowledge of BOOK subjects

did not hinder them from introducing the appropriate
objects needed to realize the use case scenarios.
Moreover, the BOOK subjects were able to correctly
consider and introduce the appropriate relationships
between the objects they used in their diagrams which
would accurately reflect the use case scenarios.

BOOK vs. OOK – Fault-Free

Figures 6 and 7 show the results for the ‘Fault-Free’
quality attribute with respect to the “Filter Restaurants”
and “Place an Order” use cases, respectively. The results
do not show a statistically significant difference between
the performance of the BOOK and OOK subjects (Tables
10 and 11 with respect to the “Filter Restaurants” use
case. However, the results show a statistically significant
difference between the performances of the groups with
respect to the “Place an Order” use case. The positive
range of the confidence interval around (Table 11)
indicates that OOK subjects have performed better than
the BOOK subjects.

Figure 6 BOOK vs. OOK – Fault-Free (Filter Restaurants)

Alternative Hypothesis - (Ha1): C (OOK) > C (BOOK)

Use Case Subjects Rank
sum

Mean
rank U Median

difference 95.3% CI Mann-Whitney
U statistic 1-tailed p

Filter Hotels OOK 784.0 30.15 295.0 1.0 0.0 to +∞ 295.0 0.1117 BOOK 701.0 25.04 433.0

Place an Order OOK 704.0 27.08 375.0 0.0 -1.0 to +∞ 375.0 0.5767 BOOK 781.0 27.89 353.0

2546 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

TABLE 10.
MANN-WHITNEY TEST FOR THE ‘FAULT-FREE’ RESULTS

TABLE 11.

CLIFF’S DELTA FOR THE ‘FAULT-FREE’ RESULTS

System Cliff’s delta (δ̂) Variance Confidence Interval around delta (δ̂)
maximum minimum

Filter Hotels 0.055 0.106 0.317 -0.215
Place an Order 0.478 0.023 0.716 0.141

Figure 7 BOOK vs. OOK – Fault-Free (Place an Order)

Discussion – Further examination of the subjects’
performances was conducted to shed more “light” into
this situation. The ‘Fault-Free’ category consists of two
subcategories: ‘Incorrect Information’ and ‘Syntax
Errors”. It was revealed that the BOOK subjects
performed poorly in the “Syntax Errors” category as they
committed an average of 1.36 errors in comparison to an
average of only 0.38 errors by the OOK subjects. This
might be attributable to the fact the OOK subjects have
taken a course that is mainly concerned with modeling
using UML in which they were trained to develop
syntactically more complicated diagrams (such as
sequence, collaboration and activity diagrams) and were
taught to carefully abide to their syntax rules. On the
other hand, the BOOK subjects had not at the time of the
experiment undertaken such course. In fact, at the time of
the experiment, the BOOK subjects had no prior training
in developing any software models. Hence, the BOOK
subjects will naturally be less mindful of syntax rules in
comparison to their OOK counterparts. In this experiment,
a statistical significance between the performances of the
two groups was observed only with the “Place an Order”
use case. This is most likely because the “Place an Order”
use case is a larger use case than the “Filter Restaurants”

use case (see Table 6), which in turn would be modeled
using a larger robustness diagram. Naturally, it is more
likely for syntax errors to be introduced as the robustness
diagram becomes larger. Therefore, it is expected that as
the size of robustness diagrams increase, the BOOK
subjects will increasingly introduce more syntax defects
than their OOK counterparts.

BOOK vs. OOK – Design Properness

Figures 8 and 9 show the results of the cumulative
“Design Properness” violations count from the “Filter
Restaurants” and “Place an Order” use cases, respectively.
The difference between the performances of the two
groups with either use case was statistically insignificant
(Table 12). Table 13 further corroborates that the BOOK
group would not commit a statistically significant larger
number of improper design decisions than the OOK
group.

Figure 8 BOOK vs. OOK – Design Properness (Filter Restaurants)

Alternative Hypothesis - (Ha2): FF (OOK) < FF (BOOK)

Use Case Subjects Rank
sum

Mean
rank U Median

difference 95.2% CI
Mann-

Whitney U
statistic

1-tailed p

Filter
Hotels

OOK 695.0 26.73 384.0 0.0 −∞ to 0.0 384.0 0.3597 BOOK 790.0 28.21 344.0
Place an
Order

OOK 548.0 21.08 531.0 -1.0 −∞ to 0.0 531.0 0.0013 BOOK 937.0 33.46 197.0

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2547

© 2012 ACADEMY PUBLISHER

TABLE 12.
MANN-WHITNEY TEST FOR THE ‘DESIGN PROPERNESS’ RESULTS

TABLE 13.

CLIFF’S DELTA FOR THE ‘DESIGN PROPERNESS’ RESULTS

System Cliff’s delta (δ̂) Variance Confidence Interval around delta (δ̂)
maximum minimum

Filter Hotels 0.154 0.034 0.476 -0.205
Place an Order 0.077 0.037 0.420 -0.286

Figure 9 BOOK vs. OOK – Design Properness (Place an Order)

Discussion – According to the results, it can be inferred
that in-depth knowledge of OO concepts does not have a
statistically significant effect on the ability of the subjects
to adhere to the design guidelines of robustness diagrams.
The lack on in-depth OO knowledge of BOOK subjects
did not hinder them from determining the correct level of
granularity of control objects (i.e. avoid creating control
objects that do too much or too little). The readability,
clarity and preciseness of robustness diagrams created by
BOOK subjects are at similar quality levels as the
robustness diagrams developed by their OOK
counterparts. BOOK subjects were able to avoid
introducing repeated diagrammatic elements. The
robustness diagrams developed by BOOK subjects
clearly showed the workflows of the use case descriptions
and how they were realized.

B. Threats to Validity
In this section we present threats to the validity of the

study in accordance with the standard classification [33].

Conclusion Validity

In any student-based experiment, individual abilities
influence the observed. If there is a large degree of
heterogeneity within the subjects, the variations in the
observed results can be due to individual differences
rather than the prescribed techniques. To mitigate against
this serious validity threat, it is necessary to increase
homogeneity within the subjects. To this end, the
experiment was conducted with the entire list of students
registered in both courses. As a result, both groups
embodied a similar spectrum of individual abilities. This
was confirmed by reviewing the subjects’ academic
standings before the experiment. All subjects were
undergraduate Software Engineering students and thus
their educational interests are assumed to be the same. All
subjects were never exposed to robustness analysis or
robustness diagrams before this experiment; and whom
all underwent the same classes and practice. An
advantage of choosing subjects who were not exposed to
robustness analysis and robustness diagrams prior to the
experiment is that it ensures that the subjects applied the
prescribed methods instead of techniques they might have
learned previously. A similar argument was also set forth
by the authors of [4] about the advantage of using
students as subjects in controlled experiments instead of
professionals.

Internal Validity

To combat any fatigue or maturation threats, subjects
were allotted one hour in order to complete each
experimental task that would usually last approximately
30minutes (±15 minutes). When the experiment was
conducted, all students completed their experimental
tasks in no longer than 30 minutes. Therefore, it can be
inferred that the subjects did not feel any significant time
pressure to complete the tasks.

To mitigate against self-selection, population selection
was based on subjects registered in two different courses.
The academic standings and ability levels of the subjects
were evenly distributed. That is, each course contained
subjects with high, average and below-average academic
standings. It can be argued that the skill levels of business

Alternative Hypothesis - (Ha3): DP (OOK) < DP (BOOK)

Use Case Subjects Rank
sum

Mean
rank U Medians

difference 95.3% CI
Mann-

Whitney U
statistic

1-tailed p

Filter Hotels OOK 659.0 25.35 420.0 -1.0 −∞ to 0.0 420.0 0.1624 BOOK 826.0 29.50 308.0

Place an Order OOK 697.0 26.81 382.0 0.0 −∞ to 1.0 382.0 0.3766 BOOK 788.0 28.14 346.0

2548 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

analysts and software engineers also vary. Therefore, the
skill levels of the subjects reflect the range of skill levels
of business analysts and software engineers. To mitigate
against morality threats, the subjects were under the
influence that robustness analysis is a technique which
they will be evaluated on during the course (by means of
a homework assignment, quiz, exam…etc). Naturally, it
is expected that the subjects will be motivated to learn
from and participate in the experiment in order to perform
well when their robustness analysis skills are later
evaluated, as they would with all other course materials.
The subjects were only notified that they will not be
evaluated on robustness analysis after the experiment was
completed. All subjects were undergraduate Software
Engineering students and thus the context of the
experiment falls under their natural learning interests.

Construct Validity

The design of this experiment aimed to minimize the
construct validity of the dependent variables. To
minimize the effects of individual capabilities, the entire
list of students registered in two different courses were
selected to form two groups; system differences and
ordering effects were minimized by having both groups
perform their initial robustness analysis exercise on the
same use case before subsequently performing their
second robustness analysis on the other use case. In this
experiment, the “Filter Restaurants” use case was
randomly chosen to be the first use case for the subjects
to apply robustness analysis. Biasness towards any group
with respect to the use cases used in the experiment was
eliminated by using two use cases provided by two
different authors, who have no connection with this
experiment.

External Validity

As with any experiment conducted using students as
subjects, it is unsafe to generalize these result of the
experiment to software professionals. In the case of our
experiment, it is unsafe to generalize the performance of
the second and third students to business analysts and
software engineers, respectively. Therefore, the
populations were chosen not to represent business
analysts and software engineers. The populations were
chosen to represent a group with in-depth OO knowledge
and one without in-depth OO knowledge. The scope of
the experiment is not to determine the performance of
business analysts vs. software engineering professionals.
The scope of the experiment was focused to determine
whether in-depth knowledge of OO concepts is required
to develop quality robustness diagrams.

Another inherent external validity is that the
experiment was conducted with relatively small artifacts,
although both use cases utilized in this experiments was
applied in an industrial setting [2, 26]. However, it is
generally unsafe to generalize the results of our
experiment to full-scale industrial settings and artifacts.
This experiment considered only one use case from their

respective systems. There may be an effect when
considering the entire set of use cases of a given system
and considering a much larger domain model when
developing robustness diagrams as many objects may be
common and reused by several use cases. This potential
effect was not investigated by this experiment. Industrial
use cases are generally larger and represent more
complex functionalities, thus they are more likely to
contain more factual information and alternative flows
that needs to be modeled in their respective robustness
diagrams. Developing the robustness diagram of an
industrial use case would therefore require a larger
quantity of objects to realize as well as associations
between those objects and hence there is a greater
vulnerability to committing mistakes.

VI. CONCLUSION

Robustness analysis and robustness diagrams can be a
very valuable tool in the software development life cycle.
Robustness diagrams can be developed at an early stage
of the software development life cycle and can be used to
obtain early customer feedback. Robustness diagrams can
also be used as basis to develop a more comprehensive
set of acceptance, system, integration and unit tests.
Robustness analysis relieves its users from being overly
concerned with too many syntax rules and in turn they
will be able to consider a wider spectrum of design
alternatives. Robustness analysis minimizes the gap
between the analysis and design phases increasing the
potential of developing a system that satisfies its
requirements. Robustness analysis can be used to
improve the completeness of use case descriptions and
domain models and enhance their consistency. However,
these benefits may only be reaped if robustness analysis
is performed at a very early stage in the development life
cycle and hence it is required to be performed by business
analysts whom are assumed not to have OO knowledge
which is a core requisite to developing robustness
diagrams. Business analysts may overcome this limitation
by acquiring brief knowledge of OO concepts (through a
short course). Naturally, the success gained from using
the developed robustness diagrams depends on their
quality. Therefore, it is not only important that business
analysts produce robustness diagrams, but it also crucial
that they develop high quality robustness diagrams.

In this paper a subject-based controlled experiment is
presented which explores an important research question.
The research question posed by this experiment is to
evaluate the ability of business analysts, whom acquire a
brief level of OO knowledge, to perform robustness
analysis and develop robustness diagrams. In order to
answer this research question, the quality of robustness
diagrams developed by a group that lacks in-depth OO
knowledge needs to be compared to the quality of
robustness diagrams developed by a group that possess
in-depth OO knowledge and whom are technically
equipped to develop high quality robustness diagrams.

This experiment was conducted during the lecture
time of two distinct undergraduate Software
Engineering courses and involved two distinct groups of

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2549

© 2012 ACADEMY PUBLISHER

undergraduate students as subjects. One group represents
a population that lacks in-depth OO knowledge while the
other group represents a population that has in-depth OO
knowledge. Subjects from both groups were provided two
sets of use case descriptions and their corresponding
domain models and were asked to perform robustness
analysis in order to produce robustness diagrams. The
results of this experiment showed no statistically
significant difference between the performances of the
groups with respect to the completeness and design
properness levels of the developed robustness diagrams.
No statistically significant improvement was observed
between the performances of the groups with respect to
the correctness level in the robustness diagrams in one of
the two tasks. The experiment results suggest that as the
size of robustness diagrams increase, the BOOK subjects
will increasingly introduce more syntax defects than their
OOK counterparts. However, this issue should not
prevent potential users of robustness diagrams who lack
in-depth OO knowledge, such as business analysts. This
issue can be easily remedied using automated tools that
can detect syntax errors in robustness diagrams developed
by business analysts.

All subjects finished their tasks under 30 minutes
meaning that the subjects had at least 30 more minutes to
spare. The difference between the times that the BOOK
and OOK subjects required to finish their exercises was
not significant. Through informal post-interviews, the
subjects have indicated that robustness analysis and
robustness diagrams were “not hard to learn and apply”.
The students have also indicated that they felt that
robustness analysis was the first modeling technique
which they have learned that prompted them to consider
alternative design solutions rather than looking for the
“one and only correct solution”. After the experiment
most students were keen to know about the ideal
solutions provided in [26] and [2] so that they would be
able to compare them with their solutions. Students have
also indicated that they feel that robustness analysis
should become a permanent component in at least one
undergraduate Software Engineering course. Most
comments received during the sessions were requests to
clarify minor details in the use case descriptions. Overall,
the subjects were able to apply the prescribed techniques
to produce high quality robustness diagrams without any
obvious problems.

APPENDIX A EXPERIMENT ARTIFACTS

A.1 “Filter Restaurants” use case

Figure 10 Domain model the RestoMapper system presented in [26]

Figure 11 Use case diagram for the RestoMapper system presented in

[26] that include the “Filter Restaurants”

Use Case: Filter Restaurants
Basic Flow - Filter by Features:
A list of features is displayed for the User. The User can select one
or more features such as the availability of valet parking, live music
and a smoking section. A RestaurantFilter is then created by the
MapViewer based on the selected features. The MapViewer queries
the RestaurantCollection already created and filters it according to
the RestaurantFilter. The map is then refreshed to display the
filtered restaurants.

Alternative Flow - Filter by Restaurant Chain:
A list of restaurant chains is displayed for the User. The User then
selects a particular restaurant chain from the list. A
RestaurantFilter is then created by the MapViewer based on the
selected features. The MapViewer queries the
RestaurantCollection already created and filters it according to the
RestaurantFilter. The map is then refreshed to display the filtered
restaurants.

Alternative Flow: No hotels matching criterion
If no restaurants matched the filter criterion, the following popup
message is displayed to the User: “No restaurants meet filter
criterion. Please expand your search”.
Figure 12 The textual description of the “Filter Restaurants” use case.

A.2 “Place an Order” Use Case

Figure 13 Use case diagram of the system presented in [2] that includes

the “Place an Order” use case.

Figure 14 Domain model of the system presented in [2]

2550 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

Use Case: Place an Order
Basic Flow
1. The customer searches for items via the use case Search for

Items.
2. The use case begins when a customer chooses to place an order

from the “Search for Results” page.
3. The customer adds an order item to their order.
4. The customer indicates the number of a given item they wish

to order.
5. The system calculates the subtotal for the item by multiplying

the unit price by the number ordered.
6. The customer repeats steps 2 through 5 as necessary to build

their order.
7. The customer provides their shipping and billing information,

including their name, phone number, and address.
8. The system calculates the subtotal for the entire order by

adding the subtotals of the individual line items.
9. The system calculates the taxes applicable for the order.
10. The system calculates applicable discounts for the order.
11. The system displays the applicable taxes and discounts.
12. The system calculates the grand total for the order by adding

the applicable taxes to the order subtotal and subtracting the
discounts.

13. The system displays a summary of the order.
14. The customer verifies that the order is what they want.
15. The system schedules the order for fulfillment (done by use

case Fullfill Order)
16. The system produces a receipt for the customer that

summarizes the order and sends to the customer via email.

Figure 15 The textual description of the “Place an Order” use case

ACKNOWLEDGMENT

The authors would like to acknowledge the support
provided by the Deanship of Scientific Research (DSR) at
King Fahd University of Petroleum and Minerals
(KFUPM) for funding this work through project No.
IN111028.

REFERENCES

[1] K. Aguanno: Managing Agile Projects. Multi-Media
Publications Inc. 2005.

[2] S. Ambler: Agile Modeling: Effective Practices for
eXtreme Programming and the Unified Process. Wiley.
2002.

[3] T. W. Anderson ; D. A. Darling: Asymptotic theory of
certain "goodness-of-fit" criteria based on stochastic
processes. Annals of Mathematical Statistics 23: 193–212.
1952.

[4] E. Arisholm, L. Briand, S. Hove, and Y. Labiche, “The
Impact of UML Documentation on Software Maintenance:
An Experimental Evaluation,” IEEE Transaction on
Software Engineering, vol. 32, pp. 365-381, 2006.

[5] Change Vision, Inc. astah* UML, Ver 6.2.1. Available at
http://astah.change-vision.com/en/product/astah-uml.html
[Online]. Last Accessed October 2010.

[6] N. Cliff, Ordinal Methods for Behavioral Data Analysis.
Lawrence Erlbaum Associates, 1996.

[7] N. Cliff, “Dominance statistics: Ordinal analyses To
Answer Ordinal Questions,” Psychological Bulletin, vol.
114, pp. 494-509, 1993.

[8] N. Cliff, “Answering Ordinal Questions With Ordinal Data
Using Ordinal Statistics,” Multivariate Behavioral
Research, vol. 31, pp. 331-350, 1996.

[9] P. Dugerdil and S. Jossi: Reverse-Architecting Legacy
Software Based on Roles: An Industrial Experiment.
Communications in Computer and Information Science,
Volume 22, Part 2, II, 114-127, 2009.

[10] Sparx Systems. Enterprise Architect, Version 8. Available
at http://www.sparxsystems.com.au/ [Online]. Last
Accessed October 2010.

[11] H. Eriksson, M. Penker, B. Lyons, D. Fado : UML 2
Toolkit. Wiley Publishing. 2004.

[12] M. R. Hess, J. D. Kromrey, J. M. Ferron, K. Y. Hogarty,
and C. V. Hines, “Robust Inference in Meta-Analysis: An
Empirical Comparison of Point and Interval Estimates
Using the Standardized Mean Difference and Cliff’s Delta,”
Annual meeting of the American Educational Research
Association, pp. 36, available at:
www.coedu.usf.edu/main/departments/me/documents/Rob
ustMeta-AnalysisAERA2005.pdf, 2005.

[13] M. Höst, B. Regnell, and C. Wohlin, “Using Students as
Subjects – A Comparative Study of Students and
Professionals in Lead-Time Impact Assessment,”
Empirical Software Engineering, vol. 5, pp. 210-214, Nov.
2000.

[14] International Institute of Business Analysis, “BABOK:
Business Analyst Body of Knowledge”. [Online
www.iiba.org]. Last Accessed October 2011.

[15] I. Jacobson, Object-Oriented Software Engineering. A Use
Case Driven Approach. Addison-Wesley, 1992.

[16] A. Kolmogorov: "Sulla determinazione empirica di una
legge di distribuzione". G. Inst. Ital. Attuari, 4, 83. 1933.

[17] A. Kossiakoff and W. N. Sweet: Systems Engineering
Principles and Practice. John Wiley & Sons, Inc. 2003.

[18] J. Kromrey and K. Hogarty, “Analysis Options For Testing
Group Differences On Ordered Categorical Variables: An
Empirical Investigation Of Type 1 Error Control And
Statistical Power,” Multiple Linear Regression Viewpoints,
vol. 25, pp. 70–82, 1998.

[19] J. Kromrey, K. Hogarty, J. Ferron, C. Hines, and M. Hess,
“Robustness in Meta-analysis: An Empirical Comparison
of Point and Interval Estimates of Standardized Mean
Differences and Cliff's Delta,” American Statistical
Association 2005 Joint Statistical Meetings, pp.7; available
at:
luna.cas.usf.edu/~mbrannic/files/meta/Robust%20Estimate
s.pdf, 2005.

[20] P. Laplante: Real-time Systems Design and Analysis: 3rd
Edition, Wiley-IEEE Press. 2004.

[21] E. L. Lehmann, Non-Parametrics: Statistical Methods
Based On Ranks, Revised. Pearson, 1998.

[22] No Magic, Inc. . MagicDraw UML, Ver 16.9. Available at
http://www.magicdraw.com/newandnoteworthy/magicdra
w/16.9 [Online]. Last Accessed October 2010.

[23] ModelMaker Tools BV. ModelMaker, Ver 11. Available at
http://www.modelmakertools.com/modelmaker/index.html
[Online]. Last Accessed October 2010.

[24] S. Mukhtar: Applying Robustness Analysis on the Model–
View–Controller (MVC) Architecture in ASP.NET
Framework, using UML. Available at
http://www.codeproject.com/KB/architecture/ModelViewC
ontroller.aspx [Online]. Last Accessed Oct 2010.

[25] D. Rosenberg and K. Scott: Use Case Driven Object

Modeling with UML. Addison-Wesley, 1999.
[26] D. Rosenberg, M. Stephens, and M. Collins-Cope :Agile

development with ICONIX process: people process and
pragmatism. Apress, Berkely. 2005.

[27] D. Rosenberg and M. Stephens, Use Case Driven Object
Modeling with UML: Theory and Practice, Apress, 2007.

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2551

© 2012 ACADEMY PUBLISHER

[28] K. Scott and D. Rosenberg: Successful Robustness
Analysis. Available at
http://www.drdobbs.com/184414712 [Online]. Last
Accessed October 2010.

[29] S. S. Shapiro and M. B. Wilk, “An Analysis of Variance
Test for the Exponential Distribution,” TechnoMeterics,
vol. 14, pp. 355-370, 1972.

[30] S. Siegel, and N. J. Castellan Jr., Non-parametric Statistics
for the Behavioral Sciences (2nd Edition). McGraw-Hill,
1988.

[31] Visual Paradigm, “Visual Paradugm”, [Online
www.visual-paradigm.com]. Last November 2011.

[32] J. L. Whitten and L. D. Bentley: Systems Analysis and
Design Methods. 7th Edition. McGraw-Hill/Irwin. 2007.

[33] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B.
Regnell, and A. Wesslen, Experimentation in Software
Engineering - An Introduction. Kluwer, 2000.

Mohamed El-Attar received his B.Eng.
degree from Carleton
University, Canada, and his Ph.D.
degree from the University of Alberta,
Canada. In 2009, he joined the
department of Information and
Computer Science at King Fahd
University of Petroleum and Minerals,
Saudi Arabia, as an assistant professor.

His research interests include Requirements Engineering, in
particular with UML and use cases, object-oriented analysis and
design, model transformation and empirical studies. For
information about his research see:
 http://faculty.kfupm.edu.sa/ICS/melattar/index.html.

Mahmoud O. Elish is an assistant
professor of Software Engineering in the
Information and Computer Science
Department at King Fahd University of
Petroleum and Minerals, Saudi Arabia. He
received the PhD degree in Computer
Science from George Mason University,
USA. His research interests include
software metrics and measurement,
software design, software maintenance,

empirical software engineering, and software quality predictive
models.

Sajjad Mahmood Sajjad Mahmood
received his PhD in computer science
from La Trobe University, Melbourne,
Australia. He is an assistant professor
in the Information and Computer
Science Department, King Fahd
University of Petroleum and Minerals,
Dhahran, Saudi Arabia. His research
interests include software reuse,

component-based software engineering and software product
lines.

James Miller received the B.Sc. and
Ph.D. degrees in Computer Science from
the University of Strathclyde, Scotland.
During this period, he worked on the
ESPRIT project GENEDIS on the
production of a real-time stereovision
system. Subsequently, he worked at the
United Kingdom’s National Electronic
Research Initiative on Pattern

Recognition as a Principal Scientist, before returning to the
University of Strathclyde to accept a lectureship, and
subsequently a senior lectureship in Computer Science. Initially
during this period his research interests were in Computer
Vision, and he was a co-investigator on the ESPRIT 2 project
VIDIMUS. Since 1993, his research interests have been in
Software and Systems Engineering. In 2000, he joined the
Department of Electrical and Computer Engineering at the
University of Alberta as a full professor and in 2003 became an
adjunct professor at the Department of Electrical and Computer
Engineering at the University of Calgary. He is the principal
investigator in a number of research projects that investigate
software verification, validation and evaluation issues across
various domains, including embedded, web-based and
ubiquitous environments. He has published over one hundred
refereed journal and conference papers on Software and
Systems Engineering (see www.steam.ualberta.ca for details on
recent directions); and recently served as the program co-chair
for the IEEE International Symposium on Empirical Software
Engineering and Measurement; and sits on the editorial board of
the Journal of Empirical Software Engineering. He regularly
appears in the Journal of Systems and Software survey of “top
scholars”. This survey ranks leading researchers by their output
in leading journals over a 5-year period. In the most recent
survey, he was ranked the ninth most productive researcher in
the world.

2552 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

