
Flow-Sensitive Automaton-Based Monitoring of
a Declassification Policy

Hao Zhu

School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
School of Computer Science and Technology, Nantong University, Nantong, China

Email: searain@nuaa.edu.cn

Yi Zhuang
School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Email: zhuangyi@263.net

Abstract—Declassification policies aim to guarantee trusted
release of confidential information. The semantic security
conditions of declassification policies focus on different
dimensions. In order to prevent the special attacks aiming to
compromise the mechanisms of declassification, it is
important for a declassification policy to combine different
dimensions. Moreover, current body of work on the
enforcement of the declassification policy focuses on static
and flow-insensitive information-flow analysis, which is
over-restrictive and imprecise. Dynamic and flow-sensitive
information flow analysis techniques offer distinct
advantages in permissiveness and precision. As a step in
these directions, this paper first presents a declassification
policy combining two dimensions, which control the amount
and the location of confidential information release
respectively, based on the security-typed language proposed.
Then we presents an automaton-based monitoring
mechanisms of the declassification policy. Abstractions of
events occurring during the execution of a program are sent
to the automaton as inputs, and the automaton uses these
inputs to track the information flows and controls the
execution of the program by forbidding or editing insecure
commands that violate the declassification policy.
Additionally, we prove the monitoring mechanism proposed
is sound.

Index Terms—automaton, confidentiality, declassification
policy, information flow security, noninterference

I. INTRODUCTION

One of the most fundamental information security
issues is how to verifiably protect the confidentiality of
sensitive information [13]. The standard way to protect
confidentiality is access control, which constrains the
release of confidential information, but not propagation
of information once released [10]. Other common ways
such as firewalls, encryption, and antivirus software are
useful for protecting confidential information. However,
these ways do not provide end-to-end confidentiality
security.

Information-flow controls ensure that the information
propagates through program constructs without security
violations such that no confidential information is leaked
to public outputs, thus, provides a promising approach to
achieve the end-to-end confidentiality security.

The baseline policy of information-flow controls is
noninterference [2], which states that public outputs do
not depend on confidential inputs. However, achieving
noninterference is often not possible because computing
systems often deliberately release information that
depends on the confidential inputs. For example, the
password checking program needs to reject an incorrect
password, but this operation reveals some information
about the password. Hence, over-restrictiveness of the
noninterference needs relaxing, and proper release of
confidential information to public outputs is allowable.
Thus, the mechanism of declassification is introduced
[12], which downgrades the given information with high-
level confidentiality to low-level confidentiality.

The information laundering attacks can exploit the
mechanism of declassification to leak extra confidential
information which is unexpectedly declassified [4].
Hence, security policies of declassification should be
enforced to prevent these attacks. Sabelfeld and Sands [3]
classify declassification policies according to four
dimensions: WHAT (what information is released), WHO
(who releases information), WHERE and WHEN (where
and when information is released). Declassification
policies of different dimensions tend to address only one
aspect of the information release, exposing the other
aspects for possible attacks. In order to avoid these
attacks, it is desirable to combine defense along different
dimensions. However, different dimensions are largely
orthogonal to each other. The tight integration of these
dimensions remains an open challenge [3]. This paper
only focuses on the WHAT and WHERE dimensions.

The enforcement of declassification policies mostly
use static information-flow analysis techniques which are
often realized by the typing system, restrict the insecure
information flow at the compile time once for all, and do
not incur the performance overheads at the runtime of a
program [4, 5, 11, 16, 19]. However, static analysis
concerns all execution paths of a program, therefore, if a
single execution path of a program violates the
declassification policy, then the program is rejected.
Moreover, some typing systems use effect systems that
over-approximate the declassification policy [4, 5].

2478 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.11.2478-2487

e::=n | x | e © e
A::= skip | x:=e | x:=declassify(e) | output(e)
B::= if e then C else C end | while e do C end
C::= A | B | C;C

Figure 1. Syntax of the language

Hence, the static analysis is imprecise and over-restrictive
for declassification policies.

Dynamic information-flow analysis techniques which
are often realized by the monitoring mechanism, check
the information flow at the runtime of a program, and
verify security conditions for a single execution path of a
program, independent of the behavior of other execution
paths [8]. Moreover, dynamic analysis can gain more
precise information flow of a program than a static
analysis would [6]. The main drawback to the dynamic
analysis is the decrease in the execution speed because
the monitor must be run with every execution, while
static analysis is run once for all prior to the execution.
However, with the improvement of the computer
hardware, this drawback can be weakened. Furthermore,
driven by the need for permissiveness in dynamic and
distributed applications, dynamic information-flow
analysis techniques become increasingly popular [9].

The enforcement of declassification policies proposed
to date suffers from another common drawback, which is
flow-insensitive [6]. In this paper, the automaton-based
monitoring proposed is flow-sensitive, i.e., it is possible
for variables to update values of different confidentiality
levels on each assignment in the following way. The
confidentiality level of the assigned variable is set to high
in case there is a variable of high confidentiality on the
right-hand side of the assignment or in case the
assignment appears inside of a high context (i.e. the guard
expression of the conditional or loop statement is of high
confidentiality). The confidentiality level of the variable
is set to low in case there are no high confidentiality
variables in the right-hand side of the assignment and the
assignment does not appear in high context. Under other
circumstances, the confidentiality level of the assigned
variable is not updated. The goal of flow-sensitive
enforcements is to accept more programs without
jeopardizing security [6,7].

The main contributions of the paper include: (i) We
propose a fine-granularity delimited declassification
policy combining WHAT and WHERE dimensions; (ii)
We give the flow-sensitive automaton-based monitoring
mechanisms of the declassification policy; (iii) We prove
the soundness of the enforcement mechanisms.

The remainder of the paper is structured as follows. In
Section II, we present the syntax and semantics of
language model, and then propose the fine-granularity
declassification policy in Section III. Subsequently we
state the automaton-based monitoring mechanisms for the
declassification policy in Section IV. Section V skims
through the related works. The conclusions are made in
Section VI.

II. SECURITY-TYPED LANGUAGE

A. Security Lattice
In the security-typed language, each piece of data is

labeled an initial confidentiality level. For simplicity, but
without loss of generality, we consider two levels of
confidentiality: low (public) and high (confidential). The
partial order () specifies the relationship between

different confidentiality levels. If a1 a2 then data at level
a1 is less confidential than data at level a2. Let SC={low,
high}, then (SC,) constitutes security lattice. (SC, ,)
is the algebraic system induced from (SC,), where the
join operation (meet operation) is used to calculate
the least upper bound (greatest lower bound) of two
expressions. The confidentiality level of an expression
that combines sub-expressions at different confidentiality
levels is the least upper bound of these sub-expressions.
For example, if two variables x and y are labeled a1 and
a2 respectively, the confidentiality level of expression x+y
is a1 a2.

B. Security Lattice Policy
There are two basic kinds of information flows through

program constructs [1,8]: direct and indirect flows, where
direct flow represents that information is passed explicitly
from the right-hand to the left-hand side of an assignment.
For example, the assignment statement p:=s exhibits a
direct flow from s to p. This direct flow is secure only if

(s) (p), where is a mapping from variables to
confidentiality levels. Indirect flow denotes that
information is passed via the control-flow structure
(conditional or loop statement). There are two types of
indirect flows: explicit indirect flow and implicit indirect
flow, where the former appears when an assignment
command is executed and the latter appears when an
assignment is not executed. For instance, if a statement: if
b then p:=s else skip end is executed with b=true, then
there exists an explicit indirect flow from b to p; if this
statement is executed with b=false, then an implicit
indirect flow from b to p is generated. These indirect flow
are secure only if (b) (p). As another example: if x y
then z:=w else i:=i+1 end, the indirect flow is secure
only if ((x) (y)) ((z) (i)). In all, the fundamental
principle of the security lattice policy is to prevent
insecure direct or indirect flow.

C. Language Syntax and Semantics

To illustrate the declassification policy, we present a
simple imperative language extended with both output
and declassification commands. The language syntax
given in Figure 1 is composed of the expression and
command. Expression e consists of constant n, variable x,
and composite expressions e1 e2, where is a binary
operation. Command C is either atomic command A,
branching command B, or sequential composition
command C; C.

There are two special commands: x:=declassify(e) and
output(e), where the former is the only command that is
not standard, and it downgrades the confidentiality level
of expression e (called declassifying expression)
containing only high variables to low level, and then
assigns it to the variable x. At the semantic level,

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2479

© 2012 ACADEMY PUBLISHER

(S-SKIP): (S-ASSIGN):

(S-SEQ1): (S-SEQ2):

(S-IF1): (S-IF2):

(S-WHILE1): (S-WHILE2):

(S-OUTPUT): (S-END):

(S-DECLASSIFY):

Figure 3. Semantics of commands

x:=declassify(e) is equivalent to x:=e, and the intention is
used for controlling the confidential level of information
without affecting the execution of the command. The
latter command output(e) is used to represent any kind of
public output of expression e containing only low
variables. Confidential output is simply ignored because
it does not influence the security check. In this paper we
suppose values of variables in the program state can not
be directly observed, and values of expression e can be
learned only through the command output(e). Hence, any
confidential information which needs output must be
declassified to the low level first.

Expression configurations have the form cfge= m, e ,
where m is a memory mapping variables to values and e
is an expression. Expression evaluation rules have the
form m, e m(e), where m(e) is the result of evaluating
expression e in memory m. We write m[x v] when the
updating variable x with value v in memory m. Figure 2
presents the semantics of expressions.

Figure 3 displays the structural operational semantics

of commands. Command configurations have the form
cfgc= m, C , which indicates that the command C is to be
executed from the memory m. A terminating command
configuration with memory m is denoted by m, stop . A
transition between command configurations has the form

, where is a transition event and
stands for an externally observable event which can be
represented as obs(e) (an output of expression e) or be
omitted (empty event, which is also notated as).

Among all transition events, event nop signals that the
program performs a command skip, event a(x,e)
represents an assignment to variable x of expression e,
event d(x,e) records the declassification of expression e
into variable x, event b(e) denotes that the program
branches on guard expression e, event f indicates that the
structure block of a conditional or loop command has
finished execution, and event o(e) stands for that the

command output(e) is executed.

III. DECLASSIFICATION POLICY

We consider the confidentiality of the program in two
aspects. On the one aspect, the program must satisfy the
security lattice policy to prevent insecure direct and
indirect information flows, however, the program still
may leak extra confidential information which is
unexpectedly declassified, even if this program satisfies
the security lattice policy; the reason is that attackers may
launch information laundering attacks. Therefore, on the
other aspect, we should define some other security
conditions to prevent information laundering attacks.

Let us define the information laundering attack. In
general, active attackers may change system behavior by
injecting the new code into the program. However, in
order to make the attack code difficult to detect, the data
access by the attack code must satisfy certain conditions.
Definition 1. The information laundering attack is a
command T satisfying security lattice policy, and it is
formed according to the following grammar:

T::= skip | x:=e | output(e) | if e then T else T end
| while e do T end

The declassification command is excluded from the
grammar in order to prohibit the attacker from learning
any confidential information. This exclusion can be
realized by integrity restriction [11].

Based on the delimited release policy proposed by
Sabelfeld and Myers [4] and the security lattice policy,
we propose a fine-granularity delimited declassification
policy, which guarantees the declassification mechanism
cannot be exploited to construct information laundering
attacks from the WHAT and WHERE dimensions. The
policy is defined as follows:
Definition 2. Let be the set of all
declassifying expressions in declassification commands
within the program C; denotes memories m1
and m2 are indistinguishable in all the low variables in the
program; () denotes the memory when the
command x:=declassify(ei) is executed exactly from
initial memory . A program C satisfies the fine-
granularity delimited declassification policy if
(i) C satisfies security lattice policy.

(S-CON): (S-VAR):
(S-OP):

Figure 2. Semantics of expressions

2480 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

(ii) , ,
.

The security provided by the fine-granularity delimited
declassification policy can be illustrated with some
examples. Consider the following program C1:

h2:=h1;h3:=h1;h4:=h1;
avg:= declassify((h1+h2+h3+h4)/4);
output(avg).

Where h1~h4 are confidential variables and avg is public
one. Assume initial memories m1 and m2 satisfying:

m1=lowm2, m1(h1)=m2(h2)=2, m1(h2)=m2(h1)=3,
 i {3,4}. m1(hi)= m2(hi)=0.

We have
m1((h1+h2+h3+h4)/4)=m2((h1+h2+h3+h4)/4)=5/4.

Assume m1' and m2' are two memories when the
command avg:= declassify((h1+h2+h3+h4)/4) of program
C1 is just executed from two initial memories m1 and m2,
respectively. We have m1' (avg)=2 and m2' (avg)=3, so (ii)
of Definition 2 is not satisfied. Therefore, program C1 is
rejected by Definition 2. In fact, program C1 suffers from
an information laundering attack. Suppose the average of
confidential variables h1~h4 is intended to be released but
no other information about h1~h4 is allowed be released
to public variable avg, but attackers can inject the attack
code: h2:=h1;h3:=h1;h4:=h1 to exploit the command: avg:=
declassify((h1+h2+h3+h4)/4) to reveal entire information
of secret variable h1. Hence, program C1 is insecure. Now
consider a variation C1' of the command C1:

h2:=h1;h3:=h1;h4:=h1;
avg:= declassify((h1+h2+h3+h4)/4); avg:=0;
output(avg).

where all the variables and memories are the same as the
above program C1. By the same analysis as above we can
infer that Definition 2 also rejects variation C1', but the
delimited release policy [4] accepts C1' because delimited
release only demands the equivalence of low memories in
termination and ignores the mediate difference of low
memories that can leak confidential information;
Definition 2 corrects it by requiring equivalence of low
memories on each declassification point. Now consider
another program C2:

p:=s ; output(p); p:=declassify(s).
where s is confidential variable and p is public one. This
program ignores where confidential information should
be released, i.e., information of variable s is released to
variable p before its declassification. The insecure direct
flow in command p:=s is detected by the security lattice
policy, so program C2 is rejected by (i) of Definition 2,
but is accepted by delimited release policy, which ignores
the WHERE dimension of the declassification policy.
Askarov and Sabelfeld [5] extended delimited release
into localized delimited release policy, which
strengthening the demands of delimited release by
location sensitivity. The rationale of localized delimited
release disallows confidential information release before
its declassification; however, it allows release to take
place any time after declassification. Now consider the
following program C3:

h2:=h1; h1:=0;
l:= declassify(h1);

h1:=h2; l:=h1;
output(l)

Due to the release of confidential information (l:=h1)
takes place after its declassification (l:= declassify((h1)),
localized delimited release policy deems program C3 is
secure and accepts it. In fact, this program is insecure, for
the actual release occurs at the command l:=h1. However,
Definition 2 can rejects program C3 because there exists
insecure direct flow violating the security lattice policy.

IV. MONITORING AUTOMATON

A. Definition of Automaton
For any program P, whose variables belongs to the set

Vars(P) and the set of confidential input variables is S(P)
(S(P) Vars(P)), the monitoring automaton A(P), which
enforces the fine-granularity delimited declassification
policy on program P, is defined as a 5-tuple (Q, , , ,
q0), where Q is a set of states, is a set of the input
alphabet, is a set of the output alphabet, is a
transition function Q× ×Q, and q0 is the initial state.
Detailed description of each part above is as follows.

A state of the automaton is a pair (V, w), where the first
element V is a set of variables belonging to Vars(P). At
any step of the execution of program P, V contains all the
variables whose values may have been influenced by the
initial values of the variables in S(P), indicating that
confidential level of variables in set V is upgraded to high
due to the flow-sensitivity. The second element w of the
pair is a word belonging to the language described by the
regular expression (L+H)*. The word w simulate a stack
to tracks the explicit indirect flow. The initial state of the
automaton is q0=(S(P),).
 The set of input alphabet is composed of an abstraction
of events occurring during the execution of program P.
On the one hand, the input alphabet of atomic command
A (cf. Figure 1) is the same as the transition event of
corresponding command, i.e., input nop corresponds to
command skip, input a(x,e) represents command x:=e,
input d(x,e) indicates command x:=declassify(e), and
input o(e) denotes command output(e); on the other hand,
the input alphabet of the branching command B (cf.
Figure 1) not only includes the corresponding transition
events (i.e. b(e) and f) but also contains an special input
not C, which represents the branching statement C has
not been executed due to the value of the previous guard
expression, and this input is used to track the implicit
indirect flow.
 The set of output alphabet includes the following:

• OK is used to authorize the execution of an atomic
command.

• NO is used to forbid the execution of an atomic
command.

• ACK is used to acknowledge the reception of
information useful for tracking indirect flow.

An automaton transition is written (q,) q' indicates
that the automaton moves from state q to state q' and
output on reception of the input . The transition
function uses two syntactic analysis functions: FV(e)

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2481

© 2012 ACADEMY PUBLISHER

((V,w), a(x, e)) (V {x}, w) iff w {L}* or FV(e) V (T-ASSIGN-sec)
((V,w), a(x, e)) (V\{x}, w) iff w {L}* and FV(e) V= (T-ASSIGN-pub)
((V,w), d(x, e)) (V\{x}, w) iff w {L}* and m(e)=m0(e) (T-DECLASSIFY-pub)
((V,w), d(x, e)) (V {x}, w) iff w {L}* or m(e) m0(e) (T-DECLASSIFY-sec)
((V,w), b(e)) (V, wH) iff FV(e) V (T-BRANCH-high)
((V,w), b(e)) (V, wL) iff FV(e) V= (T-BRANCH-low)
((V,wa), f) (V, w) (T-EXIT)
((V,w), not C) (V modified(C), w) iff w {L}* (T-NOT-high)
((V,w), not C) (V, w) iff w {L}* (T-NOT-low)
((V,w), nop) (V, w) (T-SKIP)
((V,w), o(e)) (V, w) iff w {L}* and FV(e) V= (T-OUTPUT-OK)

((V,w), o(e)) (V, w) iff w {L}* and FV(e) V (T-OUTPUT-DEFAULT)
((V,w), o(e)) (V, w) iff w {L}* (T-OUTPUT-NO)

Figure 5. Transition function of monitoring automaton

modified(x:=e)={x}
modified(x:=declassify(e))={x}
modified(output (e))=
modified(skip)=
modified(if e then C1 else C2 end)= modified(C1) modified(C2)
modified(while e do C end)= modified(C)
modified(C1;C2)=modified(C1) modified(C2)

Figure 4. Definition of the function modified(C)

returns the set of variables occurring in expression e;
modified(C) returns the set of variables modified by the
execution of command C. A formal definition of
modified(C) is shown in Figure 4. Additionally, m0 is
used to denote the initial memory corresponding to initial
state of the automaton and m is used to indicate the
current memory corresponding to the current state of the
automaton.

The transition rules of the monitoring automaton are
presented as Figure 5, where the rule forbids or edits only
the transition on the reception of the input o(e). For other
inputs, the only thing done by the transition is to keep
track in the sets V and w.

Flow-sensitivity of the automaton-based monitoring is
embodied by the following two functions. In the function
(T-ASSIGN-sec), the assigned variable is added to the set
V in the case there is a high variable on the right-hand
side of assignment (i.e. FV(e) V) or in the case the
assignment appears inside of a high context (i.e. w {L}*).
On the other hand, in the function (T-ASSIGN-pub), the
assigned variable is removed from the set V in the case
there are no high variables in the right-hand side of the
assignment (i.e. FV(e) V=) and the assignment does not
appear in the high context (i.e. w {L}*).

Declassification is controlled by the transition function
for the input d(x,e). As described in the function (T-
DECLASSIFY-pub), the declassifying expression e is
allowed to be released to a public variable x only if the
value of e in current memory is the same as it was in the
initial memory, and the variable x is removed from the set
V for the automaton is flow-sensitive. This prevents
information laundering attacks because we only release
the value of declassifying expression with respect to the
initial memory at the time of declassification. Revisiting

the program C1 of Section III:
h2:=h1;h3:=h1;h4:=h1;
avg:= declassify((h1+h2+h3+h4)/4);
output(avg).

where h1~h4 are confidential variables and avg is public
one as they were in Section III. Assume initial memory
m0 satisfying m0(h1)=2, m0(h2)=3 and i {3,4}. m0(hi)=0.
We have m0((h1+h2+h3+h4)/4)=5/4. At the time of
declassification in program C1, the current memory m
after the execution of three assignment commands (i.e.
h2:=h1;h3:=h1;h4:=h1) is

m((h1+h2+h3+h4)/4)=2 m0((h1+h2+h3+h4)/4) =5/4.
Therefore the declassification in program C1 releases the
extra confidential information than expected. This case
will be dealt with by the rule (T-DECLASSIFY-sec),
which states that when the declassification command is
executed in the high context or the value of declassifying
expression is not same in both initial memory and current
memory, then variable x is added to the set V to denote
that there exists unexpected confidential information
flowing to assigned variable x. Consider a variation C1' of
the program C1:

t:=h1; h1:=h2;h2:=t;
avg:= declassify((h1+h2+h3+h4)/4);
output(avg).

The automaton accepts runs of this program because at
the time of declassification the declassifying expression
(i.e. (h1+h2+h3+h4)/4) has the same value in both initial
memory and current memory.

On the reception of the input b(e) in the state (V,w), the
automaton would verify if the branching command is
executed in the high context, i.e., whether the guard
expression e may have been influenced by the initial
values of S(P). To do so, it computes the intersection of
variables in e with the set V. In the rule (T-BRANCH-
low), the intersection is empty, i.e., the value of e is not
influenced by initial values of S(P). Then the transition
adds L at the end of the word w. In the function (T-
BRANCH-high), the intersection is not empty, and then
the transition adds H at the end of w.

In the function (T-EXIT), on the reception of the input
f, the transition removes the last letter of w to restore w to

2482 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

 (M-ASSIGN)

 (M-DECLASSIFY)

 (M-OUTPUT-edit)

 (M-OUTPUT-no)

 (M-SEQ)

 (M-IF-false)

 (M-IF-true)

 (M-WHILE-false)

 (M-WHILE-true)

Figure 6. Natural semantics of monitored executions

its value before this branching command.
On the reception of the input not C in the state (V,w),

the automaton would check if the command C may have
been executed with different values for S(P). In the
function (T-NOT-high), the execution context of the
command C contains the confidential variable (i.e. w does
not belong to {L}*), and then variables whose values are
modified by an execution of command C are added to the
set V. In the function (T-NOT-low), the automaton does
nothing else but to authorize its execution by outputting
OK.

Due to atomic command skip is safe, the function (T-
SKIP) states that the automaton authorize the execution
of skip on the reception of the input nop.
 The transition functions for the input o(e) are of three
cases. The first one is the function (T-OUTPUT-OK),
which states that in the public execution context, the
automaton authorize the output of expression e which
contains no confidential information. The other two
functions are used to prevent insecure flows through the
output command. The function (T-OUTPUT-DEFAULT)
presents that in a public execution context, if the
transition tries to output the value of a confidential
expression e, then the value of the output is replaced by a
default value . The function (T-OUTPUT-NO) states
that the output command must be forbidden in the high
execution context.

B. Monitored Semantics
The monitor runs alongside the program in a lockstep

fashion. The natural semantics merging the standard
semantics of commands and the monitoring automaton is
presented in Figure 6. We use to denote a sequence of
transition events and use to represent a
concatenation of and ; similar form is for event .

There are four rules for atomic commands, where rules
(M-ASSIGN) and (M-DECLASSIFY) indicate that the
automaton authorizes the execution of assignment and
declassification commands respectively, the rule (M-
OUTPUT-edit) presents that the monitoring semantics
executes output() instead of output(e), and the rule (M-
OUTPUT-no) omits the execution of output(e) as if
output(e) was a skip command.

As for rules for the branching commands, i.e., (M-IF-
false), (M-IF-true), (M-WHILE-false) and (M-WHILE-
true), the input b(e) is sent to the automaton firstly. Then,
the branch determined by guard expression e is executed
(in the case where the branching command is a while
statement and the condition is false, the branch executed
can be looked as skip). The step followed is that the input
not C is sent to the automaton, where C is the branch not
executed due to the previous value of the guard
expression e (in the case where the branching command
is a while statement and the condition is true, the input is
not skip). Finally, the input f is sent to the automaton. In
the case of a while statement with a condition equals to
true, the execution proceeds by executing the while
statement once again.

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2483

© 2012 ACADEMY PUBLISHER

C. Monitored Example
The security provided by the monitoring automaton

can be demonstrated by some examples.
Example 1 (Average Salary Attack) This attack is

described as program C1 in Section III. Figure 7 presents
the monitored execution of this program. Program C1 is
given in the first column in Figure 7. The execution
monitored is the one for which initial memory m0
satisfying m0(h1)=2, m0(h2)=3 and i {3,4}. m0(hi)=0.
The set of confidential input variables of program C1 (i.e.
S(P)) is {h1, h2, h3, h4}. The atomic actions that the
program will attempt to execute without the automaton-
based monitoring are give in the column “Proposed
action”. The next column contains the input which is sent
to the automaton for the security check. The transition
function is applied on the automaton input of the same
line and the automaton state of the previous line. The two
following columns contain the result of the automaton
transition. Finally, the last column shows the commands
which are really fulfilled by the monitored execution.

On line 4 and line 5 of this program, variable e and avg
are added to the set V in the automaton state according to
the transition function (T-ASSIGN-sec) and (T-
DECLASSIFY-sec) respectively. Additionally, on the last
line, the program tries to output the value of variable avg
which contains extra confidential information which is
unexpectedly declassified. According to the function (T-
OUTPUT-DEFAULT), the automaton disallows the
output of this value, and outputs a default value , which
represents that an output command has been denied for
security reasons.

Example 2 (Electronic Wallet Attack [4]). Consider an
electronic shopping scenario. Suppose variable h stores
the amount of money in a customer’s electronic wallet;
variables l and k stores the amount of money spent during
the current session and the cost of the item to be
purchased, respectively. We assume that (h)=high and

(l)= (k)=low. The following program C4 transfers the
amount k of money from a customer’s electronic wallet to
the variable l:

e:= declassify(h k);
if e then h:=h-k; l:=l+k else skip end;
output(l).

The above program satisfy two security conditions of
Definition 2. Below is an variation C4' of the program C4:

l:=0;
while (n 0) do

k:=2n-1;

e:= declassify(h k);
if e then h:=h-k; l:=l+k else skip end;
n:=n-1;

end
output(l).
This variation C4' contains the information

laundering attack code that abuses the declassification
command to release the information of variable h bit-by-
bit to l. We assume that h is a n-bit integer and (n)=low.
It is not difficult to see that variation C4' is rejected by the
Definition 2. Figure 8 lays out the monitored execution of
the electronic wallet attack. Suppose the initial value of
the variables n and h is 3 and 5 respectively, so the loop
statement in the program is executed three rounds. In the
second round, variable e and l are added to the set V
according to the transition function (T-DECLASSIFY-sec)
and (T-ASSIGN-sec) respectively. In the last round,
variable e is excluded from the set V according to the
transition function (T-DECLASSIFY-pub), but variable l
remains in the set V. Hence at the execution of the last
command output(l), the automaton outputs a default
value instead of the actual value of l, preventing the
leak of unexpected confidential information release. D.
Soundness of Automaton-based Monitoring

The security of automaton-based monitoring of the
declassification policy is guaranteed by the following
soundness theorem.
Theorem 1. Any monitored execution of a program C
based on the automaton defined above satisfies fine-
granularity delimited declassification policy.
Proof. We sketch a proof by induction on the length of
the sequence of the input of the automaton; this sequence
is denoted by .
1) Base n=0. The two security conditions in Definition 2
trivially hold.
2) Induction step. We assume the theorem holds for
and need to prove that the theorem also holds for . We
consider the following cases for the input .
Case = d(x, e). There are two subcases:

Subcase 1: if w {L}* or m(e) m0(e), the security level
of variable x is upgraded to confidential level according
to the transition function (T-DECLASSIFY-sec). Hence,
there is no insecure direct and indirect flow and the low
memory is unchanged. The two security conditions in
Definition 2 are satisfied.

Subcase 2: if w {L}* and m(e)= m0(e), the security
level of variable x is downgraded to public level
according to the transition function (T-DECLASSIFY-

Program C1

Proposed action:
m0(h1)=2,m0(h2)=3
i {3,4}. m0(hi)=0.

Automaton
input

Automaton
output

Automaton
 state (V, w) Executed

h2:=h1;
h3:=h1;
h4:=h1;
e:= (h1+h2+h3+h4)/4;
avg:= declassify(e);
output(avg).

h2:=h1;
h3:=h1;
h4:=h1;
e:= (h1+h2+h3+h4)/4;
avg:= declassify(e);
output(avg).

a(h2, h1)
a(h3, h1)
a(h4, h1)

a(e, (h1+h2+h3+h4)/4))
d(avg, e)
o(avg)

OK
OK
OK
OK
OK
o()

({h1, h2, h3, h4},)
({h1, h2, h3, h4},)
({h1, h2, h3, h4},)

({h1, h2, h3, h4, e},)
({h1, h2, h3, h4, e, avg},)
({h1, h2, h3, h4, e, avg},)

h2:=h1;
h3:=h1;
h4:=h1;
e:= (h1+h2+h3+h4)/4;
avg:= declassify(e);
output().

Figure 7. Monitored executions of program C1

2484 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

pub). We assume that m1
0 and m2

0 are initial memories
satisfying m1

0 =low m2
0. The corresponding declassifying

expression of is denoted by en, and m1
n and m2

n
denotes the current memories when the declassification
command x:=declassify(en) is exactly executed from
initial memories m1

0 and m2
0 respectively. By the premise

of the function (T-DECLASSIFY-pub), we have
 m1

0(en) = m1
n(en), (1)

m2
0(en) = m2

n(en). (2)
By the premise of (ii) of Definition 2, we have m1

0(en)
=m2

0(en), and by (1) and (2), we infer
m1

n(en)= m2
n(en). (3)

By the induction hypothesis, we have
m1

n-1=low m2
n-1. (4)

Between input and , there is no any command
that will convey confidential information to the low
memory, so by (3) and (4), we have m1

n=low m2
n, hence

the two security conditions in Definition 2 are satisfied. If
any two initial memories are not low equivalent, i.e., m1

0
 m2

0, then the left-hand side of the implication in the
item (ii) of Definition 2 is false, i.e., there is no demand
on the equivalence of current memories (m1

n=low m2
n).

Case =a(x,e). Consider two subcases:
Subcase 1: if w {L}* or FV(e) V , the subcase is

similar to Subcase 1 of Case =d(x,e).

Subcase 2: if w {L}* and FV(e) V= , obviously there
is no insecure direct and indirect flow from e to x, so the
two security conditions of Definition 2 is satisfied.
Case {b(e), f, not C, nop, o(e)}. According to the
corresponding transition function in Figure 5, there exists
no insecure direct and indirect flow, so the security
condition (i) is satisfied. Due to under these inputs, the
automaton does not change low memory, the security
condition (ii) hold trivially. □

V. RELATED WORK

Declassification policies have been an active area of
research in language-based information flow security. In
the following discussion, we focus on the most relevant
work that targets the control of WHAT and WHERE
dimensions. For other dimensions of declassification, we
refer to the survey of declassification in [3].

Mantel and Sands [18] introduce a declassification
policy based on intransitive non-interference [17]. In their
policy, the release of confidential information can take
place only at specific program points, but this policy
ignores what is released.

Almeida Matos and Boudol [19] propose the non-
disclosure policy, which is a generalization of non-
interference. They introduce a flow declaration construct
(flow F in M) for directly manipulating flow relations,
where F is a flow policy, i.e. a binary relation on security

Program C4'
Proposed action:

n:=3; m0(h)=5
Automaton

input
Automaton
output

Automaton
 state (V, w) Executed

l:=0;
while (n 0) do

k:=2n-1;
e:= declassify(h k);
if e then

h:=h-k;
l:=l+k;

else
skip

end;
n:=n-1;

end;

output(l).

l:=0;

k:=2n-1;
e:= declassify(h k);

h:=h-k;
l:=l+k;

n:=n-1;

(the second round)
k:=2n-1;
e:= declassify(h k);

skip

n:=n-1;

(the third round)
k:=2n-1;
e:= declassify(h k);

h:=h-k;
l:=l+k;

n:=n-1;

output(l).

a(l, 0)
b(n 0)
a(k, 2n-1)
d(e, h k)

b(e)
a(h, h-k)
a(l, l+k)

not skip

f
a(n, n-1)

f
b(n 0)
a(k, 2n-1)
d(e, h k)

b(e)
nop

not h:=h-k; l:=l+k;
f

a(n, n-1)
f

b(n 0)
a(k, 2n-1)
d(e, h k)

b(e)
a(h, h-k)
a(l, l+k)
not skip

f
a(n, n-1)

f
o(l)

OK
ACK
OK
OK

ACK
OK
OK

ACK
ACK
OK

ACK
ACK
OK
OK

ACK
OK

ACK
ACK
OK

ACK
ACK
OK
OK

ACK
OK
OK

ACK
ACK
OK

ACK
o()

({h},)
({h}, L)
({h}, L)
({h}, L)

({h}, LL)
({h}, LL)
({h}, LL)

({h}, LL)
({h}, L)
({h}, L)
({h},)
({h}, L)
({h}, L)

({h, e}, L)
({h, e}, LH)
({h, e}, LH)

({h, e, l}, LH)
({h, e, l}, L)
({h, e, l}, L)
({h, e, l},)
({h, e, l}, L)
({h, e, l}, L)
({h, l}, L)

({h, l}, LL)
({h, l}, LL)
({h, l}, LL)
({h, l}, LL)
({h, l}, L)
({h, l}, L)
({h, l},)
({h, l},)

l:=0;

k:=2n-1;
e:= declassify(h k);

h:=h-k;
l:=l+k;

n:=n-1;

k:=2n-1;
e:= declassify(h k);

skip

n:=n-1;

k:=2n-1;
e:= declassify(h k);

h:=h-k;
l:=l+k;

n:=n-1;

output().

Figure 8. Monitored executions of program C4'

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2485

© 2012 ACADEMY PUBLISHER

levels, and M is a language expression. The meaning is
that M is executed in the context of the current flow
policy extended with F. Non-disclosure is classified as a
declassification policy of the WHERE dimension.

Sabelfeld and Myers [4] propose the delimited release
policy that declassifies confidential information only
through the special language operator declassify(e). The
policy of delimited release is only concerned with the
WHAT dimension, and ignores where information is
released. Later, Askarov and Sabelfeld [5] extend the
policy of delimited release into the localized delimited
release policy, which strengthens the demands of the
delimited release by location sensitivity. The rationale of
localized delimited release disallows the release of the
confidential information before its declassification, but it
allows release of the confidential information to take
place after declassification.

Gradual release [20] is on the WHERE-dimension, and
it specifies the refinement of attacker knowledge about
the confidential information is only via declassification
statements, but it ignores what information is released
and allows an attacker to release more confidential
information in the legal declassification statements.
Banerjee et al. [15] use gradual release as a starting point
for combining the WHAT and WHERE dimensions, but
their treatment of WHAT differs from ours: their policy
ignores the initial state. This can be illustrated in the
following example:

h:= h' ; l:=declassify(h).
where (h')= (h)=high and (l)=low. This program is
rejected by Definition 2 while their policy accepts it since
they ignore the fact that the actual value released is
variable h' instead of variable h.

As for the monitoring mechanisms of information flow
policies, Volpano [21] proposes a monitor that only
checks direct flows, and indirect flows are ignored.
Recently, Chudnov and Naumann [14] propose an flow-
sensitive in-lining approach to monitoring information
flow. The soundness of the in-lining approach is ensured
by bi-simulation of the in-lined monitor and the original
monitor. Magazinius et al. [9] presents a framework for
in-lining dynamic information-flow monitors on the fly:
security checks are injected into the source code as the
computation goes along. The language they considered
includes the statement of dynamic code evaluation of
strings, whose content might not be known until runtime.
Le Guernic et al. [8] presents an automaton-based
approach to monitoring information flow. However, these
monitoring mechanisms of information flow policies lack
support for declassification policies. The baseline policy
they considered is the noninterference policy. In this
paper, we extended the noninterference monitoring to the
declassification policy.

VI. CONCLUSION

In this paper, we have proposed the fine-granularity
delimited declassification policy which combines WHAT
and WHERE dimensions of the confidential information
release. This declassification policy prevents the leak of
confidential information through the immediate memory

state of the program execution, and correct insecure
factor introduced by the localized delimited release [5]
which allows the release of confidential information after
its declassification. Then we proposed a flow-sensitive
automaton-based dynamic monitoring mechanism to
enforce this declassification policy. The automaton is in
charge of two main jobs. The first one is to track the
information flows between the confidential input and the
current value of the variables used by the program. The
second one is to check the execution of atomic commands
to ensure that there is no information flow violating the
declassification policy. Moreover, we have proved the
automaton-based enforcement is sound with respect to the
fine-granularity delimited declassification policy.

Much future work is possible in this area. It would be
desirable to integrate three dimensions of declassification
(e.g., WHAT, WHERE and WHO) and enforce it by
dynamic monitoring mechanism. Additionally, the fine-
granularity delimited declassification policy and its
enforcement are given for a rudimentary programming
language, the extension of the formal results to richer
languages will be a topic for future research.

ACKNOWLEDGMENT

This work is partially supported by the Aviation
Foundation of China under Grant No. 2010ZC13012, the
Jiangsu Innovation Program for Graduate Education
Foundation under Grant No. CXLX11_0205.

REFERENCES

[1] D. E. Denning, “A lattice model of secure information
flow,” Communications of the ACM, vol. 19, no. 5, pp.
236-243, 1976.

[2] J. A. Goguen and J. Meseguer, “Security policies and
security models,” In Proceedings of IEEE Symposium on
Security and Privacy, pp. 11-20, 1982.

[3] A. Sabelfeld and D. Sands, “Declassification: dimensions
and principles,” Journal of Computer Security, vol. 17, no.
5, pp. 517-548, 2009.

[4] A. Sabelfeld, and A. C. Myers, “A model for delimited
information release,” Software Security-Theories and
Systems, vol. 3233, pp. 174-191, 2004.

[5] A. Askarov and A. Sabelfeld, “Localized delimited release:
combining the what and where dimensions of information
release,” In Proceedings of Programming Languages and
Analysis for Security, pp. 53-60, 2007.

[6] A. Russo and A. Sabelfeld, “Dynamic vs. Static Flow-
Sensitive Security Analysis,” In Proceedings of the IEEE
Computer Security Foundations Symposium, pp. 186-199,
2010.

[7] A. Sabelfeld and A. Russo, “From dynamic to static and
back: Riding the roller coaster of information-flow control
research,” Perspectives of Systems Informatics, Lecture
Notes in Computer Science, vol. 5947, pp. 352-365, 2010.

[8] G. Le Guernic, A. Banerjee and D. A. Schmidt,
“Automata-based confidentiality monitoring,” Advances
in Computer Science-ASIAN 2006. Secure Software and
Related Issues, Lecture Notes in Computer Science, vol.
4435, pp. 75-89, 2007.

[9] J. Magazinius, A. Russo and A. Sabelfeld, “On-the-fly
inlining of dynamic security monitors,” Security and
Privacy–Silver Linings in the Cloud, IFIP Advances in

2486 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

Information and Communication Technology, vol. 330, pp.
173-186, 2010.

[10] A. Sabelfeld and A. C. Myers, “Language-based
information flow security,” Selected Areas in
Communications, vol. 21, no. 1, pp. 5-19, 2003.

[11] A. Askarov and A. C. Myers, “A semantic framework for
declassification and endorsement,” Programming
Languages and Systems, Lecture Notes in Computer
Science, vol. 6012, pp. 64-84, 2010.

[12] M. Pistoia and Ú. Erlingsson, “Programming languages
and program analysis for security: a three-year
retrospective,” ACM SIGPLAN Notices, vol. 43, pp. 32-39,
2009.

[13] Hong Mei and Dong-gang Cao, “Reliability of software:
the challenges of the Internet,” Communication of the
CCF, vol. 6, no. 2. pp. 20-24, 2010.

[14] A. Chudnov and D. A. Naumann, “Information flow
monitor inlining,” In 2010 23rd IEEE Computer Security
Foundations Symposium, pp. 200-214, 2010.

[15] A. Banerjee, D. A. Naumann and S. Rosenberg,
“Expressive declassification policies and modular static
enforcement,” In 2008 IEEE Symposium on Security and
Privacy, pp. 339-353, 2008.

[16] G. Barthe, S. Cavadini, and T. Rezk, “Tractable
enforcement of declassification policies,” In 2008 IEEE
21st Computer Security Foundations Symposium, pp. 83-
97, 2008.

[17] A. W Roscoe and M. H. Goldsmith, “What is intransitive
noninterference?,” In Proceedings of the 12th IEEE

Computer Security Foundations Workshop, pp. 228-238,
1999.

[18] H. Mantel and D. Sands, “Controlled declassification
based on intransitive noninterference,” Programming
Languages and Systems, vol. 3302, pp. 129-145, 2004.

[19] A. Almeida Matos and G. Boudol, “On declassification
and the non-disclosure policy,” Journal of Computer
Security, vol. 17, pp. 549-597, 2009.

[20] A. Askarov, A. Sabelfeld, “Gradual release: unifying
declassification, encryption and key release policies,” In
IEEE Symposium on Security and Privacy, pp. 207-221,
2007.

[21] D. Volpano, “Safety versus secrecy” Static Analysis,
Lecture Notes in Computer Science, Vol. 1694/1999, pp.
847-848, 1999.

Hao Zhu (searain@nuaa.edu.cn) holds a Master’s Degree in
Computer Science and technology from the Jiangsu University,
China and is currently a PhD candidate at the Nanjing
University of Aeronautics and Astronautics, China. He is now a
lecturer of computer science in Nantong university, China. His
research interests include information flow security, trusted
computing and intelligent computing.

Yi Zhuang (zhuangyi@263.net) is PhD supervisor in computer
science in the Nanjing University of Aeronautics and
Astronautics, China. Her research interests include information
security, trusted computing and distributed computing.

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2487

© 2012 ACADEMY PUBLISHER

