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Abstract—Declassification policies aim to guarantee trusted 
release of confidential information. The semantic security 
conditions of declassification policies focus on different 
dimensions. In order to prevent the special attacks aiming to 
compromise the mechanisms of declassification, it is 
important for a declassification policy to combine different 
dimensions. Moreover, current body of work on the 
enforcement of the declassification policy focuses on static 
and flow-insensitive information-flow analysis, which is 
over-restrictive and imprecise. Dynamic and flow-sensitive 
information flow analysis techniques offer distinct 
advantages in permissiveness and precision. As a step in 
these directions, this paper first presents a declassification 
policy combining two dimensions, which control the amount 
and the location of confidential information release 
respectively, based on the security-typed language proposed. 
Then we presents an automaton-based monitoring 
mechanisms of the declassification policy. Abstractions of  
events occurring during the execution of a program are sent 
to the automaton as inputs, and the automaton uses these 
inputs to track the information flows and controls the 
execution of the program by forbidding or editing insecure 
commands that violate the declassification policy. 
Additionally, we prove the monitoring mechanism proposed 
is sound.   
 
Index Terms—automaton, confidentiality, declassification 
policy, information flow security, noninterference 

I.  INTRODUCTION 

One of the most fundamental information security 
issues is how to verifiably protect the confidentiality of 
sensitive information [13]. The standard way to protect 
confidentiality is access control, which constrains the 
release of confidential information, but not propagation 
of information once released [10]. Other common ways 
such as firewalls, encryption, and antivirus software are 
useful for protecting confidential information. However, 
these ways do not provide end-to-end confidentiality 
security.  

Information-flow controls ensure that the information 
propagates through program constructs without security 
violations such that no confidential information is leaked 
to public outputs, thus, provides a promising approach to 
achieve the end-to-end confidentiality security. 

The baseline policy of information-flow controls is 
noninterference [2], which states that public outputs do 
not depend on confidential inputs. However, achieving 
noninterference is often not possible because  computing 
systems often deliberately release information that 
depends on the confidential inputs. For example, the 
password checking program needs to reject an incorrect 
password, but this operation reveals some information 
about the password. Hence, over-restrictiveness of the 
noninterference needs relaxing, and proper release of 
confidential information to public outputs is allowable. 
Thus, the mechanism of declassification is introduced 
[12], which downgrades the given information with high-
level confidentiality to low-level confidentiality.  

The information laundering attacks can exploit the 
mechanism of declassification to leak extra confidential 
information which is unexpectedly declassified [4]. 
Hence, security policies of declassification should be 
enforced to prevent these attacks. Sabelfeld and Sands [3] 
classify declassification policies according to four 
dimensions: WHAT (what information is released), WHO 
(who releases information), WHERE and WHEN (where 
and when information is released). Declassification 
policies of different dimensions tend to address only one 
aspect of the information release, exposing the other 
aspects for possible attacks. In order to avoid these 
attacks, it is desirable to combine defense along different 
dimensions. However, different dimensions are largely 
orthogonal to each other. The tight integration of these 
dimensions remains an open challenge [3]. This paper 
only focuses on the WHAT and WHERE dimensions. 

The enforcement of declassification policies mostly 
use static information-flow analysis techniques which are 
often realized by the typing system, restrict the insecure 
information flow at the compile time once for all, and do 
not incur the performance overheads at the runtime of a 
program [4, 5, 11, 16, 19]. However, static analysis 
concerns all execution paths of a program, therefore, if a 
single execution path of a program violates the 
declassification policy, then the program is rejected. 
Moreover, some typing systems use effect systems that 
over-approximate the declassification policy [4, 5]. 
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e::=n | x | e ©  e  
A::= skip | x:=e | x:=declassify(e) | output(e) 
B::=  if e then C else C end | while e do C end 
C::= A | B | C;C  

Figure 1.  Syntax of the language 

Hence, the static analysis is imprecise and over-restrictive 
for declassification policies. 

Dynamic information-flow analysis techniques which 
are often realized by the monitoring mechanism, check 
the information flow at the runtime of a program, and 
verify security conditions for a single execution path of a 
program, independent of the behavior of other execution 
paths [8]. Moreover, dynamic analysis can gain more 
precise information flow of a program than a static 
analysis would [6]. The main drawback to the dynamic 
analysis is the decrease in the execution speed because 
the monitor must be run with every execution, while 
static analysis is run once for all prior to the execution. 
However, with the improvement of the computer 
hardware, this drawback can be weakened. Furthermore, 
driven by the need for permissiveness in dynamic and 
distributed applications, dynamic information-flow 
analysis techniques become increasingly popular [9].  

The enforcement of declassification policies proposed 
to date suffers from another common drawback, which is 
flow-insensitive [6]. In this paper, the automaton-based 
monitoring proposed is flow-sensitive, i.e., it is possible 
for variables to update values of different confidentiality 
levels on each assignment in the following way. The 
confidentiality level of the assigned variable is set to high 
in case there is a variable of high confidentiality on the 
right-hand side of the assignment or in case the 
assignment appears inside of a high context (i.e. the guard 
expression of the conditional or loop statement is of high 
confidentiality). The confidentiality level of the variable 
is set to low in case there are no high confidentiality 
variables in the right-hand side of the assignment and the 
assignment does not appear in high context. Under other 
circumstances, the confidentiality level of the assigned 
variable is not updated. The goal of flow-sensitive 
enforcements is to accept more programs without 
jeopardizing security [6,7].  

The main contributions of the paper include: (i) We 
propose a fine-granularity delimited declassification 
policy combining WHAT and WHERE dimensions; (ii) 
We give the  flow-sensitive automaton-based monitoring 
mechanisms of the declassification policy; (iii) We prove 
the soundness of the enforcement mechanisms. 

The remainder of the paper is structured as follows. In 
Section II, we present the syntax and semantics of 
language model, and then propose the fine-granularity 
declassification policy in Section III. Subsequently we 
state the automaton-based monitoring mechanisms for the 
declassification policy in Section IV. Section V skims 
through the related works. The conclusions are made in 
Section VI. 

II.  SECURITY-TYPED LANGUAGE 

A.  Security Lattice 
In the security-typed language, each piece of data is 

labeled an initial confidentiality level. For simplicity, but 
without loss of generality, we consider two levels of 
confidentiality: low (public) and high (confidential). The 
partial order ( ) specifies the relationship between 

different confidentiality levels. If a1 a2 then data at level 
a1 is less confidential than data at level a2. Let SC={low, 
high}, then (SC, ) constitutes security lattice. (SC, , ) 
is the algebraic system induced from (SC, ), where the 
join operation  (meet operation ) is used to calculate 
the least upper bound (greatest lower bound) of two 
expressions. The confidentiality level of an expression 
that combines sub-expressions at different confidentiality 
levels is the least upper bound of these sub-expressions. 
For example, if two variables x and y are labeled a1 and 
a2 respectively, the confidentiality level of expression x+y 
is a1  a2.   

B. Security Lattice Policy 
There are two basic kinds of information flows through 

program constructs [1,8]: direct and indirect flows, where 
direct flow represents that information is passed explicitly 
from the right-hand to the left-hand side of an assignment. 
For example, the assignment statement p:=s exhibits a 
direct flow from s to p. This direct flow is secure only if 

(s) (p), where  is a mapping from variables to 
confidentiality levels. Indirect flow denotes that 
information is passed via the control-flow structure 
(conditional or loop statement). There are two types of 
indirect flows: explicit indirect flow and implicit indirect 
flow, where the former appears when an assignment 
command is executed and the latter appears when an 
assignment is not executed. For instance, if a statement: if 
b then p:=s else skip end is executed with b=true, then 
there exists an explicit indirect flow from b to p; if this 
statement is executed with b=false, then an implicit 
indirect flow from b to p is generated. These indirect flow 
are secure only if (b) (p). As another example: if x y 
then z:=w else i:=i+1 end, the indirect flow is secure 
only if ( (x) (y)) ( (z) (i)). In all, the fundamental 
principle of the security lattice policy is to prevent 
insecure direct or indirect flow. 

C.  Language Syntax and Semantics 

To illustrate the declassification policy, we present a 
simple imperative language extended with both output 
and declassification commands. The language syntax 
given in Figure 1 is composed of the expression and 
command. Expression e consists of constant n, variable x, 
and composite expressions e1  e2, where  is a binary 
operation. Command C is either atomic command A, 
branching command B, or sequential composition 
command C; C.  

There are two special commands: x:=declassify(e) and 
output(e), where the former is the only command that is 
not standard, and it downgrades the confidentiality level 
of expression e (called declassifying expression) 
containing only high variables to low level, and then 
assigns it to the variable x. At the semantic level, 
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(S-SKIP):                                     (S-ASSIGN):  

(S-SEQ1):                                             (S-SEQ2):   

(S-IF1):                      (S-IF2):  

(S-WHILE1):    (S-WHILE2):  

(S-OUTPUT):    (S-END):   

(S-DECLASSIFY):  

 
Figure 3. Semantics of commands 

x:=declassify(e) is equivalent to x:=e, and the intention is 
used for controlling the confidential level of information 
without affecting the execution of the command. The 
latter command output(e) is used to represent any kind of 
public output of expression e containing only low 
variables. Confidential output is simply ignored because 
it does not influence the security check. In this paper we 
suppose values of variables in the program state can not 
be directly observed, and values of expression e can be 
learned only through the command output(e). Hence, any 
confidential information which needs output must be 
declassified to the low level first.  

Expression configurations have the form cfge= m, e , 
where m is a memory mapping variables to values and e 
is an expression. Expression evaluation rules have the 
form m, e m(e), where m(e) is the result of evaluating 
expression e in memory m. We write m[x v] when the 
updating variable x with value v in memory m. Figure 2 
presents the semantics of expressions.  

Figure 3 displays the structural operational semantics 

of commands. Command configurations have the form  
cfgc= m, C , which indicates that the command C is to be 
executed from the memory m. A terminating command 
configuration with memory m is denoted by m, stop . A  
transition between command configurations has the form 

, where  is a transition event and  
stands for an externally observable event which can be 
represented as obs(e) (an output of expression e) or be 
omitted (empty event, which is also notated  as ). 

Among all transition events, event nop signals that the 
program performs a command skip, event a(x,e) 
represents an assignment to variable x of expression e, 
event d(x,e) records the declassification of expression e 
into variable x, event b(e) denotes that the program 
branches on guard expression e, event f indicates that the 
structure block of a conditional or loop command has 
finished execution, and event o(e) stands for that the 

command output(e) is executed.  

III.  DECLASSIFICATION POLICY 

We consider the confidentiality of the program in two 
aspects. On the one aspect, the program must satisfy the 
security lattice policy to prevent insecure direct and 
indirect information flows, however, the program still 
may leak extra confidential information which is 
unexpectedly declassified, even if this program satisfies 
the security lattice policy; the reason is that attackers may 
launch information laundering attacks. Therefore, on the 
other aspect, we should define some other security 
conditions to prevent information laundering attacks.  

Let us define the information laundering attack. In 
general, active attackers may change system behavior by 
injecting the new code into the program. However, in 
order to make the attack code difficult to detect, the data 
access by the attack code must satisfy certain conditions.  
Definition 1. The information laundering attack is a 
command T satisfying security lattice policy, and it is 
formed according to the following grammar: 

T::= skip | x:=e | output(e) | if e then T else T end  
| while e do T end 

The declassification command is excluded from the 
grammar in order to prohibit the attacker from learning 
any confidential information. This exclusion can be 
realized by integrity restriction [11]. 

Based on the delimited release policy proposed by 
Sabelfeld and Myers [4] and the security lattice policy, 
we propose a fine-granularity delimited declassification 
policy, which guarantees the declassification mechanism 
cannot be exploited to construct information laundering 
attacks from the WHAT and WHERE dimensions. The 
policy is defined as follows:  
Definition 2. Let  be the set of all 
declassifying expressions in declassification commands 
within the program C;  denotes memories m1 
and m2 are indistinguishable in all the low variables in the 
program;  ( ) denotes the memory when the 
command x:=declassify(ei) is executed exactly from 
initial memory . A program C satisfies the fine-
granularity delimited declassification policy if  
(i) C satisfies security lattice policy. 

(S-CON):  (S-VAR):           
(S-OP):  

 

 
Figure 2.  Semantics of expressions 
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(ii) , ,  
. 

The security provided by the fine-granularity delimited 
declassification policy can be illustrated with some 
examples. Consider the following program C1: 

h2:=h1;h3:=h1;h4:=h1; 
avg:= declassify((h1+h2+h3+h4)/4); 
output(avg). 

Where h1~h4 are confidential variables and avg is public 
one. Assume initial memories m1 and m2 satisfying: 

m1=lowm2, m1(h1)=m2(h2)=2, m1(h2)=m2(h1)=3, 
 i {3,4}. m1(hi)= m2(hi)=0. 

We have  
m1((h1+h2+h3+h4)/4)=m2((h1+h2+h3+h4)/4)=5/4. 

Assume m1' and m2' are two memories when the 
command avg:= declassify((h1+h2+h3+h4)/4) of program 
C1 is just executed from two initial memories m1 and m2, 
respectively. We have m1' (avg)=2 and m2' (avg)=3, so (ii) 
of Definition 2 is not satisfied. Therefore, program C1 is 
rejected by Definition 2. In fact, program C1 suffers from 
an information laundering attack. Suppose the average of 
confidential variables h1~h4 is intended to be released but 
no other information about h1~h4 is allowed be released 
to public variable avg, but attackers can inject the attack 
code: h2:=h1;h3:=h1;h4:=h1 to exploit the command: avg:= 
declassify((h1+h2+h3+h4)/4) to reveal entire information 
of secret variable h1. Hence, program C1 is insecure. Now 
consider a variation C1' of the command C1: 

h2:=h1;h3:=h1;h4:=h1; 
avg:= declassify((h1+h2+h3+h4)/4); avg:=0; 
output(avg). 

where all the variables and memories are the same as the 
above program C1. By the same analysis as above we can 
infer that Definition 2 also rejects variation C1', but the 
delimited release policy [4] accepts C1' because delimited 
release only demands the equivalence of low memories in 
termination and ignores the mediate difference of low 
memories that can leak confidential information; 
Definition 2 corrects it by requiring equivalence of low 
memories on each declassification point. Now consider 
another program C2: 

p:=s ; output(p); p:=declassify(s). 
where s is confidential variable and p is public one.  This 
program ignores where confidential information should 
be released, i.e., information of variable s is released to 
variable p before its declassification. The insecure direct 
flow in command p:=s is detected by the security lattice 
policy, so program C2 is rejected by (i) of Definition 2, 
but is accepted by delimited release policy, which ignores 
the WHERE dimension of the declassification policy. 
Askarov and Sabelfeld [5] extended delimited release 
into localized delimited release policy, which 
strengthening the demands of delimited release by 
location sensitivity. The rationale of localized delimited 
release disallows confidential information release before 
its declassification; however, it allows release to take 
place any time after declassification. Now consider the 
following program C3:  

h2:=h1; h1:=0; 
l:= declassify(h1);  

h1:=h2; l:=h1;  
output(l) 

Due to the release of confidential information (l:=h1) 
takes place after its declassification (l:= declassify((h1)), 
localized delimited release policy deems program C3 is 
secure and accepts it. In fact, this program is insecure, for 
the actual release occurs at the command l:=h1. However, 
Definition 2 can rejects program C3 because there exists 
insecure direct flow violating the security lattice policy.  

IV.  MONITORING AUTOMATON 

A. Definition of  Automaton 
For any program P, whose variables belongs to the set 

Vars(P) and the set of confidential input variables is S(P) 
(S(P)  Vars(P)), the monitoring automaton A(P), which 
enforces the fine-granularity delimited declassification 
policy on program P, is defined as a 5-tuple (Q, , , , 
q0), where Q is a set of states,  is a set of the input 
alphabet,  is a set of the output alphabet,  is a 
transition function Q× ×Q,  and q0 is the initial state. 
Detailed description of each part above is as follows. 

A state of the automaton is a pair (V, w), where the first 
element V is a set of variables belonging to Vars(P). At 
any step of the execution of program P, V contains all the 
variables whose values may have been influenced by the 
initial values of the variables in S(P), indicating that 
confidential level of variables in set V is upgraded to high 
due to the flow-sensitivity. The second element w of the 
pair is a word belonging to the language described by the 
regular expression (L+H)*. The word w simulate a stack 
to tracks the explicit indirect flow. The initial state of the 
automaton is q0=(S(P), ). 
  The set of input alphabet is composed of an abstraction 
of events occurring during the execution of program P. 
On the one hand, the input alphabet of atomic command 
A (cf. Figure 1) is the same as the transition event of 
corresponding command, i.e., input nop corresponds to 
command skip, input a(x,e) represents command x:=e, 
input d(x,e) indicates command x:=declassify(e), and 
input o(e) denotes command output(e); on the other hand, 
the input alphabet of the branching command B (cf. 
Figure 1) not only includes the corresponding transition 
events (i.e. b(e) and f) but also contains an special input 
not C, which represents the branching statement C has 
not been executed due to the value of the previous guard 
expression, and this input is used to track the implicit 
indirect flow. 
  The set of output alphabet includes the following:   

• OK is used to authorize the execution of an atomic 
command.  

• NO is used to forbid the execution of an atomic 
command. 

• ACK is used to acknowledge the reception of 
information useful for tracking indirect flow.  

An automaton transition is written (q, ) q' indicates 
that the automaton moves from state q to state q' and 
output  on reception of the input . The transition 
function uses two syntactic analysis functions: FV(e) 
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((V,w), a(x, e)) (V {x}, w)  iff w {L}*  or FV(e) V   (T-ASSIGN-sec) 
((V,w), a(x, e)) (V\{x}, w)  iff w {L}*  and FV(e) V=   (T-ASSIGN-pub) 
((V,w), d(x, e)) (V\{x}, w)  iff w {L}*  and m(e)=m0(e)  (T-DECLASSIFY-pub) 
((V,w), d(x, e)) (V {x}, w ) iff w {L}*  or m(e) m0(e)  (T-DECLASSIFY-sec) 
((V,w), b(e)) (V, wH)  iff FV(e) V    (T-BRANCH-high) 
((V,w), b(e)) (V, wL)  iff FV(e) V=    (T-BRANCH-low) 
((V,wa), f) (V, w)      (T-EXIT) 
((V,w), not C) (V modified(C), w) iff w {L}*     (T-NOT-high) 
((V,w), not C) (V, w)  iff w {L}*     (T-NOT-low) 
((V,w), nop) (V, w)       (T-SKIP) 
((V,w), o(e)) (V, w)  iff w {L}*  and FV(e) V=   (T-OUTPUT-OK) 

((V,w), o(e)) (V, w)  iff w {L}*  and FV(e) V   (T-OUTPUT-DEFAULT) 
((V,w), o(e)) (V, w)  iff w {L}*     (T-OUTPUT-NO) 
 

Figure 5. Transition function of monitoring automaton 

modified(x:=e)={x} 
modified(x:=declassify(e))={x} 
modified(output (e))=  
modified(skip)=  
modified(if e then C1 else C2 end )= modified(C1)  modified(C2)
modified(while e do C end)= modified(C) 
modified(C1;C2)=modified(C1)  modified(C2) 
 

Figure 4. Definition of the function modified(C) 

returns the set of variables occurring in expression e; 
modified(C) returns the set of  variables modified by the 
execution of command C. A formal definition of 
modified(C) is shown in Figure 4. Additionally, m0 is 
used to denote the initial memory corresponding to initial 
state of the automaton and m is used to indicate the 
current memory corresponding to the current state of the 
automaton. 

The transition rules of the monitoring automaton are 
presented as Figure 5, where the rule forbids or edits only 
the transition on the reception of the input o(e). For other 
inputs, the only thing done by the transition is to keep 
track in the sets V and w.  

Flow-sensitivity of the automaton-based monitoring is 
embodied by the following two functions. In the function 
(T-ASSIGN-sec), the assigned variable is added to the set 
V in the case there is a high variable on the right-hand 
side of assignment (i.e. FV(e) V  ) or in the case the 
assignment appears inside of a high context (i.e. w {L}*). 
On the other hand, in the function (T-ASSIGN-pub), the 
assigned variable is removed from the set V in the case 
there are no high variables in the right-hand side of the 
assignment (i.e. FV(e) V= ) and the assignment does not 
appear in the high context (i.e. w {L}*). 

Declassification is controlled by the transition function 
for the input d(x,e). As described in the function (T-
DECLASSIFY-pub), the declassifying expression e is 
allowed to be released to a public variable x only if the 
value of e in current memory is the same as it was in the 
initial memory, and the variable x is removed from the set 
V for the automaton is flow-sensitive.  This prevents 
information laundering attacks because we only release 
the value of declassifying expression with respect to the 
initial memory at the time of declassification. Revisiting 

the  program C1 of Section III: 
h2:=h1;h3:=h1;h4:=h1; 
avg:= declassify((h1+h2+h3+h4)/4); 
output(avg). 

where h1~h4 are confidential variables and avg is public 
one as they were in Section III. Assume initial memory 
m0 satisfying m0(h1)=2, m0(h2)=3 and i {3,4}. m0(hi)=0. 
We have m0((h1+h2+h3+h4)/4)=5/4. At the time of 
declassification in program C1, the current memory m 
after the execution of three assignment commands (i.e. 
h2:=h1;h3:=h1;h4:=h1) is  

m((h1+h2+h3+h4)/4)=2  m0((h1+h2+h3+h4)/4) =5/4. 
Therefore the declassification in program C1 releases the 
extra confidential information than expected. This case 
will be dealt with by the rule (T-DECLASSIFY-sec), 
which states that when the declassification command is 
executed in the high context or the value of declassifying 
expression is not same in both initial memory and current 
memory, then variable x is added to the set V to denote 
that there exists unexpected confidential information 
flowing to assigned variable x. Consider a variation C1' of 
the program C1: 

t:=h1; h1:=h2;h2:=t;  
avg:= declassify((h1+h2+h3+h4)/4); 
output(avg). 

The automaton accepts runs of this program because at 
the time of declassification the declassifying expression 
(i.e. (h1+h2+h3+h4)/4) has the same value in both initial 
memory and current memory. 

On the reception of the input b(e) in the state (V,w), the 
automaton would verify if the branching command is 
executed in the high context, i.e., whether the guard 
expression e may have been influenced by the initial 
values of S(P). To do so, it computes the intersection of 
variables in e with the set V. In the rule (T-BRANCH-
low), the intersection is empty, i.e., the value of e is not 
influenced by initial values of S(P). Then the transition 
adds L at the end of the word w. In the function (T-
BRANCH-high), the intersection is not empty, and then 
the transition adds H at the end of w.  

In the function (T-EXIT), on the reception of the input 
f, the transition removes the last letter of w to restore w to 
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   (M-ASSIGN) 

  (M-DECLASSIFY) 

    (M-OUTPUT-edit) 

    (M-OUTPUT-no) 

 (M-SEQ) 

 

  (M-IF-false) 

 

  (M-IF-true) 

 

    (M-WHILE-false) 

 

 (M-WHILE-true) 

 
Figure 6.  Natural semantics of monitored executions 

its value before this branching command. 
On the reception of the input not C in the state (V,w),  

the automaton would check if the command C may have 
been executed with different values for S(P). In the 
function (T-NOT-high), the execution context of the 
command C contains the confidential variable (i.e. w does 
not belong to {L}*), and then variables whose values are 
modified by an execution of command C are added to the 
set V. In the function (T-NOT-low), the automaton does 
nothing else but to authorize its execution by outputting 
OK.  

Due to atomic command skip is safe, the function (T-
SKIP) states that the automaton authorize the execution 
of skip on the reception of the input nop. 
   The transition functions for the input o(e) are of  three 
cases. The first one is the function (T-OUTPUT-OK), 
which states that in the public execution context, the 
automaton authorize the output of expression e which 
contains no confidential information. The other two 
functions are used to prevent insecure flows through the 
output command. The function (T-OUTPUT-DEFAULT) 
presents that in a public execution context, if the 
transition tries to output the value of a confidential 
expression e, then the value of the output is replaced by a 
default value . The function (T-OUTPUT-NO) states 
that the output command must be forbidden in the high 
execution context. 

B.  Monitored Semantics  
The monitor runs alongside the program in a lockstep 

fashion. The natural semantics merging the standard 
semantics of commands and the monitoring automaton is 
presented in Figure 6. We use  to denote a sequence of 
transition events and use  to represent a 
concatenation of  and ; similar form is for event . 

There are four rules for atomic commands, where rules 
(M-ASSIGN) and (M-DECLASSIFY) indicate that the 
automaton authorizes the execution of assignment and 
declassification commands respectively, the rule (M-
OUTPUT-edit) presents that the monitoring semantics 
executes output( ) instead of output(e), and the rule (M-
OUTPUT-no) omits the execution of output(e) as if 
output(e) was a skip command. 

As for rules for the branching commands, i.e., (M-IF-
false), (M-IF-true), (M-WHILE-false) and (M-WHILE-
true), the input b(e) is sent to the automaton firstly. Then, 
the branch determined by guard expression e is executed 
(in the case where the branching command is a while 
statement and the condition is false, the branch executed 
can be looked as skip). The step followed is that the input 
not C is sent to the automaton, where C is the branch not 
executed due to the previous value of the guard 
expression e (in the case where the branching command 
is a while statement and the condition is true,  the input is 
not skip). Finally, the input f is sent to the automaton. In 
the case of a while statement with a condition equals to 
true, the execution proceeds by executing the while 
statement once again.  
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C.  Monitored Example 
The security provided by the monitoring automaton 

can be demonstrated by some examples. 
Example 1 (Average Salary Attack) This attack is 

described as program C1 in Section III. Figure 7 presents 
the monitored execution of this program. Program C1 is 
given in the first column in Figure 7. The execution 
monitored is the one for which initial memory m0 
satisfying m0(h1)=2, m0(h2)=3 and  i {3,4}. m0(hi)=0. 
The set of confidential input variables of program C1 (i.e. 
S(P)) is {h1, h2, h3, h4}. The atomic actions that the 
program will attempt to execute without the automaton-
based monitoring are give in the column “Proposed 
action”. The next column contains the input which is sent 
to the automaton for the security check. The transition 
function is applied on the automaton input of the same 
line and the automaton state of the previous line. The two 
following columns contain the result of the automaton 
transition. Finally, the last column shows the commands 
which are really fulfilled by the monitored execution.  

On line 4 and line 5 of this program, variable e and avg 
are added to the set V in the automaton state according to 
the transition function (T-ASSIGN-sec) and (T-
DECLASSIFY-sec) respectively. Additionally, on the last 
line, the program tries to output the value of variable avg 
which contains extra confidential information which is 
unexpectedly declassified. According to the function (T-
OUTPUT-DEFAULT), the automaton disallows the 
output of this value, and outputs a default value , which 
represents that an output command has been denied for 
security reasons. 

Example 2 (Electronic Wallet Attack [4]). Consider an 
electronic shopping scenario. Suppose variable h stores 
the  amount of money in a customer’s electronic wallet; 
variables l and k stores the amount of money spent during 
the current session and the cost of the item to be 
purchased, respectively. We assume that (h)=high and 

(l)= (k)=low. The following program C4 transfers the 
amount k of money from a customer’s electronic wallet to 
the variable l: 

e:= declassify(h k);  
if e then  h:=h-k; l:=l+k else skip end; 
output(l). 

The above program satisfy two security conditions of 
Definition 2. Below is an variation C4' of the program C4: 

l:=0; 
while (n 0) do  

k:=2n-1; 

e:= declassify(h k);  
if e then  h:=h-k; l:=l+k else skip end; 
n:=n-1; 

end 
output(l). 
This variation C4' contains the information 

laundering attack code that abuses the declassification 
command to release the information of variable h bit-by-
bit to l. We assume that h is a n-bit integer and (n)=low. 
It is not difficult to see that variation C4' is rejected by the 
Definition 2. Figure 8 lays out the monitored execution of 
the electronic wallet attack. Suppose the initial value of 
the variables n and h is 3 and 5 respectively, so the loop 
statement in the program is executed three rounds. In the 
second round, variable e and l are added to the set V 
according to the transition function (T-DECLASSIFY-sec) 
and (T-ASSIGN-sec) respectively. In the last round, 
variable e is excluded from the set V according to the 
transition function (T-DECLASSIFY-pub), but variable l 
remains in the set V. Hence at the execution of the last 
command output(l), the automaton outputs a default 
value  instead of the actual value of l, preventing the 
leak of unexpected confidential information release. D. 
Soundness of Automaton-based Monitoring 

The security of automaton-based monitoring of the 
declassification policy is guaranteed by the following 
soundness theorem. 
Theorem 1. Any monitored execution of a program C 
based on the automaton defined above satisfies fine-
granularity delimited declassification policy. 
Proof. We sketch a proof by induction on the length of 
the sequence of the input of the automaton; this sequence 
is denoted by .  
1) Base n=0. The two security conditions in Definition 2 
trivially hold. 
2) Induction step. We assume the theorem holds for  
and need to prove that the theorem also holds for . We 
consider the following cases for the input . 
Case = d(x, e). There are two subcases: 

Subcase 1: if w {L}* or m(e)  m0(e), the security level 
of variable x is upgraded to confidential level according 
to the transition function (T-DECLASSIFY-sec). Hence, 
there is no insecure direct and indirect flow and the low 
memory is unchanged. The two security conditions in 
Definition 2 are satisfied. 

Subcase 2: if w {L}* and m(e)= m0(e), the security 
level of variable x is downgraded to public level 
according to the transition function (T-DECLASSIFY-

Program C1 
  

Proposed action: 
m0(h1)=2,m0(h2)=3 
i {3,4}. m0(hi)=0. 

Automaton  
input  

Automaton 
output  

Automaton 
 state (V, w) Executed 

h2:=h1; 
h3:=h1; 
h4:=h1; 
e:= (h1+h2+h3+h4)/4; 
avg:= declassify(e);  
output(avg). 

h2:=h1; 
h3:=h1; 
h4:=h1; 
e:= (h1+h2+h3+h4)/4; 
avg:= declassify(e);  
output(avg). 

a(h2, h1) 
a(h3, h1) 
a(h4, h1) 

a(e, (h1+h2+h3+h4)/4))
d(avg, e) 
o(avg) 

OK 
OK 
OK 
OK 
OK 
o( ) 

({h1, h2, h3, h4}, ) 
({h1, h2, h3, h4}, ) 
({h1, h2, h3, h4}, ) 

({h1, h2, h3, h4, e}, ) 
({h1, h2, h3, h4, e, avg}, ) 
({h1, h2, h3, h4, e, avg}, ) 

h2:=h1; 
h3:=h1; 
h4:=h1; 
e:= (h1+h2+h3+h4)/4;
avg:= declassify(e);  
output( ). 

 
Figure 7. Monitored executions of program  C1 
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pub). We assume that m1
0 and m2

0 are initial memories 
satisfying m1

0 =low m2
0. The corresponding declassifying 

expression of  is denoted by en, and m1
n and m2

n 
denotes the current memories when the declassification 
command x:=declassify(en) is exactly executed from 
initial memories m1

0 and m2
0 respectively. By the premise 

of the function (T-DECLASSIFY-pub), we have  
                              m1

0(en) = m1
n(en),      (1) 

m2
0(en) = m2

n(en).   (2) 
By the premise of (ii) of Definition 2, we have m1

0(en) 
=m2

0(en), and by (1) and (2), we infer 
m1

n(en)= m2
n(en).    (3) 

By the induction hypothesis, we have  
m1

n-1=low m2
n-1.     (4) 

Between input  and , there is no any command 
that will convey confidential information to the low 
memory, so by  (3) and (4), we have m1

n=low m2
n, hence 

the two security conditions in Definition 2 are satisfied. If  
any two initial memories are not low equivalent, i.e., m1

0 
 m2

0,  then the left-hand side of the implication in the 
item (ii) of Definition 2 is false, i.e., there is no demand 
on the equivalence of current memories (m1

n=low m2
n).  

Case =a(x,e). Consider two subcases: 
Subcase 1: if w {L}* or FV(e) V , the subcase is 

similar to Subcase 1 of Case =d(x,e). 

Subcase 2: if w {L}* and FV(e) V= , obviously there 
is no insecure direct and indirect flow from e to x, so the 
two security conditions of Definition 2 is satisfied.  
Case {b(e), f, not C, nop, o(e)}.  According to the 
corresponding transition function in Figure 5, there exists 
no insecure direct and indirect flow, so the security 
condition (i) is satisfied. Due to under these inputs, the 
automaton does not change low memory, the security 
condition (ii) hold trivially. □ 

V.  RELATED WORK 

Declassification policies have been an active area of 
research in language-based information flow security. In 
the following discussion, we focus on the most relevant 
work that targets the control of WHAT and WHERE 
dimensions. For other dimensions of declassification, we 
refer to the survey of declassification in [3].  

Mantel and Sands [18] introduce a declassification 
policy based on intransitive non-interference [17]. In their 
policy, the release of confidential information can take 
place only at specific program points, but this policy 
ignores what is released.  

Almeida Matos and Boudol [19] propose the non-
disclosure policy, which is a generalization of non-
interference. They introduce a flow declaration construct 
(flow F in M) for directly manipulating flow relations, 
where F is a flow policy, i.e. a binary relation on security 

Program  C4' 
Proposed action: 

n:=3; m0(h)=5 
Automaton  

input  
Automaton 
output  

Automaton 
 state (V, w) Executed 

l:=0; 
while (n 0) do  

k:=2n-1; 
e:= declassify(h k);  
if e then  

h:=h-k;  
l:=l+k; 

else 
skip  

end; 
n:=n-1; 

end; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
output(l). 
 

l:=0; 
 
k:=2n-1; 
e:= declassify(h k);  
 
h:=h-k; 
l:=l+k; 
 
 
 
n:=n-1;  
 
( the second round ) 
k:=2n-1; 
e:= declassify(h k);  
 
skip  
 
 
n:=n-1;  
 
( the third round ) 
k:=2n-1; 
e:= declassify(h k);  
 
h:=h-k;  
l:=l+k; 
 
 
n:=n-1;  
 
output(l). 

 

a(l, 0) 
b(n 0)  
a(k, 2n-1) 
d(e, h k) 

b(e) 
a(h, h-k) 
a(l, l+k) 

 
not skip 

f 
a(n, n-1) 

f 
b(n 0)  
a(k, 2n-1) 
d(e, h k) 

b(e) 
nop 

not h:=h-k; l:=l+k;
f 

a(n, n-1) 
f 

b(n 0)  
a(k, 2n-1) 
d(e, h k) 

b(e) 
a(h, h-k) 
a(l, l+k) 
not skip 

f 
a(n, n-1) 

f 
o(l) 

 

OK 
ACK 
OK 
OK 

ACK 
OK 
OK 

 
ACK 
ACK 
OK 

ACK 
ACK 
OK 
OK 

ACK 
OK 

ACK 
ACK 
OK 

ACK 
ACK 
OK 
OK 

ACK 
OK 
OK 

ACK 
ACK 
OK 

ACK 
o( ) 

 

({h}, ) 
({h}, L) 
({h}, L) 
({h}, L) 

({h}, LL) 
({h}, LL) 
({h}, LL) 

 
({h}, LL) 
({h}, L) 
({h}, L) 
({h}, ) 
({h}, L) 
({h}, L) 

({h, e}, L) 
({h, e}, LH) 
({h, e}, LH) 

({h, e, l}, LH) 
({h, e, l}, L) 
({h, e, l}, L) 
({h, e, l}, ) 
({h, e, l}, L) 
({h, e, l}, L) 
({h, l}, L) 

({h, l}, LL) 
({h, l}, LL) 
({h, l}, LL) 
({h, l}, LL) 
({h, l}, L) 
({h, l}, L) 
({h, l}, ) 
({h, l}, ) 

 

l:=0; 
 
k:=2n-1; 
e:= declassify(h k); 
 
h:=h-k; 
l:=l+k; 
 
 
 
n:=n-1; 
 
 
k:=2n-1; 
e:= declassify(h k); 
 
skip  
 
 
n:=n-1;  
 
 
k:=2n-1; 
e:= declassify(h k); 
 
h:=h-k;  
l:=l+k; 
 
 
n:=n-1;  
 
output( ). 

 
Figure 8. Monitored executions of program C4' 
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levels, and M is a language expression. The meaning is 
that M is executed in the context of the current flow 
policy extended with F. Non-disclosure is classified as a 
declassification policy of the WHERE dimension.       

Sabelfeld and Myers [4] propose the delimited release 
policy that declassifies confidential information only 
through the special language operator declassify(e). The 
policy of delimited release is only concerned with the 
WHAT dimension, and ignores where information is 
released. Later, Askarov and Sabelfeld [5] extend the 
policy of delimited release into the localized delimited 
release policy, which strengthens the demands of the 
delimited release by location sensitivity. The rationale of 
localized delimited release disallows the release of the 
confidential information before its declassification, but it 
allows release of the confidential information to take 
place after declassification.  

Gradual release [20] is on the WHERE-dimension, and 
it specifies the refinement of attacker knowledge about 
the confidential information is only via declassification 
statements, but it ignores what information is released 
and allows an attacker to release more confidential 
information in the legal declassification statements. 
Banerjee et al. [15] use gradual release as a starting point 
for combining the WHAT and WHERE dimensions, but 
their treatment of WHAT differs from ours: their policy 
ignores the initial state. This can be illustrated in the 
following example:  

h:= h' ; l:=declassify(h). 
where (h')= (h)=high and (l)=low. This program is 
rejected by Definition 2 while their policy accepts it since 
they ignore the fact that the actual value released is 
variable h' instead of variable h. 

As for the monitoring mechanisms of information flow 
policies, Volpano [21] proposes a monitor that only 
checks direct flows, and indirect flows are ignored. 
Recently, Chudnov and Naumann [14] propose an flow-
sensitive in-lining approach to monitoring information 
flow. The soundness of the in-lining approach is ensured 
by bi-simulation of the in-lined monitor and the original 
monitor. Magazinius et al. [9] presents a framework for 
in-lining dynamic information-flow monitors on the fly: 
security checks are injected into the source code as the 
computation goes along. The language they considered 
includes the statement of dynamic code evaluation of 
strings, whose content might not be known until runtime. 
Le Guernic et al. [8] presents an automaton-based 
approach to monitoring information flow. However, these 
monitoring mechanisms of information flow policies lack 
support for declassification policies. The baseline policy 
they considered is the noninterference policy. In this 
paper, we extended the noninterference monitoring to the 
declassification policy.  

VI.  CONCLUSION 

In this paper, we have proposed the fine-granularity 
delimited declassification policy which combines WHAT 
and WHERE dimensions of the confidential information 
release. This declassification policy prevents the leak of 
confidential information through the immediate memory 

state of the program execution, and correct insecure 
factor introduced by the localized delimited release [5] 
which allows the release of confidential information after 
its declassification. Then we proposed a flow-sensitive 
automaton-based dynamic monitoring mechanism to 
enforce this declassification policy. The automaton is in 
charge of two main jobs. The first one is to track the 
information flows between the confidential input and the 
current value of the variables used by the program. The 
second one is to check the execution of atomic commands 
to ensure that there is no information flow violating the 
declassification policy. Moreover, we have proved the 
automaton-based enforcement is sound with respect to the 
fine-granularity delimited declassification policy.  

Much future work is possible in this area.  It would be 
desirable to integrate three dimensions of declassification 
(e.g., WHAT, WHERE and WHO) and enforce it by 
dynamic monitoring mechanism. Additionally, the fine-
granularity delimited declassification policy and its 
enforcement are given for a rudimentary programming 
language, the extension of the formal results to richer 
languages will be a topic for future research.  
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