
Efficient and Effective Filtering of Duplication
Detection in Large Database Applications

Ji Zhang
Department of Mathematics and Computing

University of Southern Queensland
Toowoomba, QLD 4350, Australia

Abstract— In this paper, a robust filtering technique, called
PC-Filter (PC stands for partition comparison), is proposed
for effective and efficient duplicate record detection in large
databases. PC-Filter distinguishes itself from all of existing
methods by using record partitions in duplicate detection.
PC-Filter operates in three steps. It first sorts the whole
database and splits the sorted database into a number of
record partitions. The Partition Comparison Graph (PCG) is
then generated by performing fast partition pruning. Finally,
duplicate records are effectively detected through internal
and external partition comparison based on PCG. Four
closure properties, used as heuristics, have been devised
to achieve a remarkable efficiency of the filter based on
triangle inequity of record similarity. The partition size is
well specified such that the time complexity of PC-Filter can
be optimized. By equipping existing detection methods with
PC-Filter, we are able to well solve the major problems that
the existing methods suffer.

I. INTRODUCTION

Data cleaning is of crucial importance for many indus-
tries over a wide variety of applications [5]. Aiming to
detect the duplicate or approximately duplicate records
that refer to the same real-life entity, duplicate record
elimination is a very important data cleaning task at-
tempting to make the database more concrete and achieve
higher data quality. The most naive method is to pair-
wisely compare all record pairs in the database in order
to detect the duplicate records. Obviously, this method is
practically infeasible due to its intolerable complexity of
O(N2), where N is the number of records in the database.
To lower the time complexity, various techniques have
been proposed. We can broadly classify the state-of-the-
art methods into two major categories in terms of their
high-level mechanism/framework used to bring poten-
tially similar records together for comparison: window-
based methods [7], [8], [13], [17] and clustering-based
method [11]. The window-based methods typically sort
the whole database based on a key and use an in-memory
sliding window to delimit the scope of record comparison.
Record comparison is only carried out within the scope
of sliding window. The clustering-based methods group
the records into clusters with unfixed sizes, and record
comparison is performed within each of the clusters
independently. Clustering-based methods normally do not
require database sorting.

Though they can, to some different degree, improve the
efficiency of the pari-wise comparison method, the exiting

methods suffer three major problems: the ”Key Selection”
problem, the ”Scope Specification” problem and the
”Low Recall” problem. Firstly, the existing methods
involving database sorting are very sensitive to the key
chosen to sort the database. Two truly duplicate records
may be far apart from each other in the sorting using
an improperly chosen key. Thus they cannot be detected
as duplicates because they simply cannot be contained
in the same window for comparison. In addition, the
optimal size of the window (for window-based methods)
or the clusters (for clustering-based methods) is hard to
determine, making it difficult to specify the optimal scope
for record comparison for the given database. Large-
sized windows or clusters generally improve effective-
ness, but this will simultaneously increase main memory
requirements and computational complexity. Small-sized
windows or clusters, on the other hand, will produce a
low recall for the detection result since many truly similar
records may fail to be compared, resulting in loss of many
true duplicate records. The third problem, ”Low Recall”
problem, is tightly related to the ”Scope Specification”
problem. Given the typically small size of the windows
or clusters, the existing methods cannot produce results
with a very satisfactory recall level as the limited scope of
record comparison leads to the failure of detecting many
true duplicates.

In addition, we have recently seen the application of
explicitly computing the transitive closure by means of
the discovered pair-wise ”is a duplicate of ” relationships
in the detection methods to save expensive string com-
putation involved [11]. It makes the assumption that if
record R1 is duplicate with record R2, and record is
R2 is duplicate with record R3, then by transitivity R1

is duplicate with R3. We term this as Naive Transitive
Closure. Using Naive Transitive Closure in duplication
detection suffers the following two major drawbacks.
First, naive transitive closure may propagate error. Two
record actually having very low similarity may be claimed
a duplicate pair by a long chain of pair-wise transition.
Second, two records having a high similarity to each other
may be regarded as a non-duplicate pair simply because
they are not quite similar to a third record the bridges
the transition. This is called the ”Transitive Closure”
problem in our work.

In order to solve the aforementioned problems, we
will propose PC-Filter, a novel filtering technique for

2424 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.11.2424-2436

effective and efficient duplicate record detection. The pre-
liminary version of PC-Filter was proposed in [20]. PC-
Filter consists of three major steps in detecting duplicate
records: database sorting, construction of Partition Com-
parison Graph (PCG) and record partition comparison.
The database is first sorted and sequentially split into a
number of partitions and the outer partitions needed to be
compared for each partition are found using fast partition
pruning. Such information is represented by Partition
Comparison Graph (PCG). Based on PCG, partitions
will be internally and externally compared in order to
detect duplicate records. The major contribution of our
proposed PC-Filter is that it is able to solve the four
major problems (i.e ”Key Selection” problem, ”Scope
Specification” problem, ”Low Recall” problem and
”Transitive Closure” problem) that the existing methods
suffer. Specifically:

(1) PC-Filter uses the notion of partition instead of
a window or cluster to detect duplicate records in the
database. PC-Filter will not only compare records within
each partition, but also compare records across some
different partitions, if necessary. This strategy enables
PC-Filter to detect duplicate records even when they are
located far apart from each other under a sorting based
on an improperly chosen sort key. Therefore, the result of
PC-Filter is not only insensitive to the sorting order of the
database but also able to achieve a very good recall that
is even comparable to the pair-wise comparison method;

(2) The partition size has been optimized to give the
best possible speed performance. This provides a good
solution to the ”Scope Specification” problem;

(3) Instead of using the naive transitive closure, PC-
Filter utilizes the transitive closure properties of record
similarity measures that satisfy the triangle inequity to
save expensive record comparison and achieve better
accuracy.

Besides being able to well solve the problems the
existing methods suffer, PC-Filter is characterized by
following advantages: (i) It is reasonably fast. Four prop-
erties, used as heuristics, have been devised based on
the transitive closure of record similarity to substantially
improve the efficiency of the filter by saving a huge
amount of record comparison workload in various stages
of the technique; (ii) PC-Filter also features good flex-
ibility as it can be seamlessly incorporated into most
existing detection methods: PC-Filter returns an initial set
of duplicate result and a post-processing process can be
performed to refine the result using another comparison
method.

The reminder of this paper is organized as follows.
Section 2 presets a survey of the state-of-the-art methods
for duplicate record detection. We discuss the transitive
closure of record similarity and the properties used for
fast partition pruning in Section 3. In Section 4, we will
discuss in details our filtering technique, PC-Filter. The
complexity analysis of PC-Filter is presented in Section
5. Experiments are conducted to evaluate the robustness
of PC-Filter under a wide spectrum of settings in Section

6. The last section concludes the whole paper.

II. RELATED WORK

There are two major branches of research efforts in
duplicate detection: the research work that proposes high-
level duplication detection frameworks to achieve better
performance of the whole system and the works that
focus on how to measure the similarity of records more
accurately. The major contribution of this paper is in the
direction of the first research effort.

In terms of high-level duplication detection frame-
works, the Sorted Neighborhood Method (SNM) is the
first proposed method [8], serving as the basis of many
existing duplicate detection methods. SNM involves three
major steps, that are, create key, sort data, and merge
records. Specifically, a key is firstly computed for each
record in the database by extracting relevant fields or
portions of fields for discriminating records. Then all
the records are sorted by the chosen key. Finally in
the step of record merging, a window of fixed size is
moved through the sequential order of records, limiting
the record comparison to be carried out only within the
window. SNM only compares a newly entered record with
all the records in the window. The first record in the
window will slide out upon the entry of a new record
into the window. SNM is able to speed up the duplication
detection process by only examining neighboring records
for a specific record. Among the variants of SNM are
Duplicate Elimination SNM (DE-SNM) [7], Multi-pass-
SNM [7], Clustering-SNM [8], SNM-IN/OUT [13] and
RAR [17]. In DE-SNM, the records are first divided into
a duplicate list and non-duplicate list. The SNM algorithm
is then performed on the duplicated list to produce the lists
of matched and unmatched records. The list of unmatched
records is merged with the original non-duplicate list
using SNM again. Multi-pass-SNM uses several different
keys to sort the records and perform SNM algorithm
several times, rather than only one pass of SNM based
on a single key. Generally, combination of the results
of several passes over the database with small window
sizes will be better than the result of the single pass
over the database. Clustering-based SNM clusters records
into a few clusters and the record comparison/merging
process is performed independently for every cluster
using SNM. SNM-IN/OUT and RAR, which are probably
the most related methods to our PC-Filter, use several
properties based on the lower and upper bounds of the
Longest Common Subsequence (LCS) Similarity and TI-
Similarity, to save record comparisons without impairing
accuracy under the framework of SNM.

Instead of using a fixed window in scanning the sorted
databases, the Priority Queue method [11] clusters the
records and uses the structure of priority queue to store
records belonging to the last few clusters already detected.
The database is sequentially scanned and each record
is tested as whether it belongs to one of the clusters
residing in the priority queue. The information-theoretic
metric and clustering technique have also been used to

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2425

© 2012 ACADEMY PUBLISHER

identify groups of similar tuples, which will be considered
duplicates [2].

In addition to the above window-based and clustering-
based methods, an on-the-fly detection scheme for de-
tecting duplicates when joining multiple tables [6]. This
method, however, is not directly applicable for detecting
duplicates in a single table where no join operations
will be involved. A fuzzy task-driven duplicate match
method is proposed to detect duplicates for online data
[1], [4]. Technique for detecting duplicate objects in XML
documents is also proposed [19].

Another important issue to address in duplicate record
detection is the similarity metrics used to measure
the similarity of records. So far, there have been two
broad classes of similarity metrics applied in measuring
similarity of records: domain-dependent and domain-
independent metrics. As for the domain-dependent met-
rics, an approach that uses an equational theory consisting
of a set of rules to decide whether two records are dupli-
cates is adopted [9]. This set of rules typically involves
human knowledge and therefore are highly application-
dependent. The major disadvantages of domain-dependent
metrics are: (i) the rules can only decide whether two
records are duplicate or not, and cannot reflect the degree
to which the two records are similar to each other; (ii) the
creation of such rules is time-consuming and must be up-
dated to allow for the data updates; and (iii) the rule-based
comparison is normally slow and cannot well scale up for
large databases. The domain-independent measures, such
as Edit Distance, LCS-Similarity and TI-Similarity, are
used to measure the similarity of two fields of records by
considering each field of the records as an alphanumeric
string [11], [12], [16]. N-Gram is used to measure record
similarity in [18]. These metrics are domain-independent
since they can be applied in a wide range of appli-
cations without any major modifications. The adaptive
combination of different domain-independent metrics is
also studied using machine learning technique in order
to achieve a higher level of accuracy than using each of
them alone [3].

We refer to [15] for a good survey and classification
of various approaches used in duplicate detection.

III. MEASUREMENTS OF RECORD SIMILARITY

A. Field and Record Similarity Measurements

In our work, the fields of records are treated as strings
and two similarity metrics, LCS-Similarity [13] and TI-
Similarity [17] are used. The reasons to use these two
metrics are two-fold: (i) They can be computed efficiently:
the complexity of computing the field similarity is O(m+
n) for both measures if the lengths of the two fields are m
and n, which is significantly less than the Edit Distance’s
O(m ∗ n); (ii) They have transitive closure properties,
which can potentially help save a huge amount of record
comparison in the detection process. We will first give
the definitions of the similarity metrics before discussing
their similarity-based transitive closure properties.

Longest Common Subsequence (LCS) Similarity. A
subsequence of a string s is any string, which can be
created from s by deleting some of its elements. The
longest common subsequence of two fixed strings is the
subsequence that appears in both the two strings and has
the maximum possible length. Let LCS(AF , BF) denote
the LCS of the field F of record A and B, the field
similarity of the field F for A and B is computed as:

LCS SimF (A,B) =
LCS(|AF |, |BF |)
max(|AF |, |BF |)

TI-Similarity. Suppose a field F in record A has the
character set AF = x1, x2, . . . , xm and the correspond-
ing field in record B has the character set BF =
y1, y2, . . . , yn, where xi, 1 ≤ i ≤ m, and yj , 1 ≤ j ≤ n,
are characters in the strings. The field similarity of the
field F for A and B is computed as:

TI SimF (A,B) = min(
|AF ∩BF |
|AF |

,
|AF ∩BF |
|BF |

)

Weighted Record Similarity. Suppose a table con-
sists of fields F1, F2, . . . , Fn, and the field weights are
W1,W2, . . . ,Wn, respectively,

∑
Wi = 1. The similarity

of two records, A and B, is computed as:
LCS Sim(A,B) =

∑n
i=1

Wi ∗ LCS SimF (A,B)
TI Sim(A,B) =

∑n
i=1

Wi ∗ TI SimF (A,B)

The field weights can be initially specified based on hu-
man users’ understanding of the discriminating capability
of the fields and can be adapted based on the detection
results.
Duplicate Record Pair. Two records are treated as a
duplicate pair by the filter if either their LCS-Similarity
or TI-Similarity or both exceed a user-defined threshold,
denoted as σ, and is treated as a non-duplicate pair
otherwise. This relaxed definition of the duplicate record
pair enables the filter to detect more potentially duplicate
record pairs.

B. Transitive Closure Properties of Record Similarity

In this part, we will discuss the transitive closure
properties of LCS-Similarity and TI-Similarity, which
will be intensively used in various stages of PC-Filter to
achieve a remarkable efficiency improvement. The Lower
Bound (LB) and Upper Bound (UB) of the similarity
between two records using the two metrics are unveiled
in Lemma 1. The detailed proof can be referred to [13]
and [17].
Lemma 1: When the distance measure satisfies the
triangle inequity, the LB and UB of the similarity be-
tween two records A and C, denoted as LBB(A,C) and
UBB(A,C), can be computed as follows using record B
as an Anchor Record:

LBB(A,C) = max(0, sim(A,B) + sim(B,C)− 1)

UBB(A,C) = 1− |sim(A,B)− sim(B,C)|

Note that, for sake of simplify, we will not distinguish
which similarity metric is involved when the notion of

2426 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

sim() is used, but sim(A,B) and sim(B,C) should use
the same similarity metric in Lemma 1.

Now, we will discuss the transitive closure properties
utilized by PC-Filter, based on LB and UB of the sim-
ilarity between two records using the two metrics. The
properties are called Record-Record (R-R) Properties
and Record-Partition (R-P) Properties. These proper-
ties provide heuristics for deciding the duplication or non-
duplication between two records and between a record and
a record partition, respectively.
Record-Record Properties (R-R Properties)

Record-Record Properties (R-R Properties) are the
properties used for deciding duplication/non-duplication
between two records using an Anchor Record (AR).
Suppose we have three records, A, B and C. B is chosen
as the Anchor Record. We have two R-R Properties
regarding duplication/ non-duplication between records A
and C.
Property 1: If sim(A,B) + sim(B,C) − 1 ≥ σ , then
A and C are duplicate records.
Property 2: If 1− |sim(A,B)− sim(B,C)| < σ, then
A and C are non-duplicate records.

The correctness of Property 1 and 2 can be easily
verified: if the lower bound of similarity between A and
C exceeds the threshold, then A and C are duplicate
and if the upper bound of similarity between A and
C is less than the threshold, then A and C are not
duplicate. Using record B as the AR, the duplication/non-
duplication between records A and C can be decided
immediately if they satisfy either Property 1 or 2, and
the expensive record comparison using LCS-Similarity or
TI-Similarity between A and C can thus be avoided.

Record-Partition Properties (R-P Properties)
Based on the two R-R Properties presented above,

we devise the following R-P Properties (Properties 3-4)
regarding the duplication/non-duplication decision for a
single record and a partition of records. The notations
used in R-P properties are given in Table I.

Notations Meaning
AR The Anchor Record of a record partition P
ri The record in the partition P

MinSim Minimum similarity between AR and ri
σ The user-defined similarity threshold

TABLE I.
NOTATIONS USED IN R-P PROPERTIES

Property 3: If sim(r,AR) + MinSim − 1 ≥ σ, then
the record r is definitely duplicate with all the records
residing in the partition P .
Proof: Since for any record ri in the partition P , we
have sim(r,AR) + sim(ri, AR) − 1 ≥ sim(R,AR) +
MinSim − 1 then if sim(r,AR) +MinSim − 1 ≥ σ,
then we have sim(r,AR) + sim(ri, AR)− 1 ≥ σ. From
Property 1, we can conclude that record r is duplicate
with all the records residing in the partition P . Property
3 is proved.

Property 4: If 1−min(|sim(r,AR)−sim(ri, AR)|) <
σ, then r is definitely not duplicate with any records
residing in the partition P .
Proof: We have min(|sim(r,AR)− sim(ri, AR)|)
≤ |sim(r,AR) − sim(ri, AR)|. So 1 −
min(|sim(r,AR)− sim(ri, AR)|) ≥ 1− |sim(r,AR)−
sim(ri, AR)|. If 1−min(|sim(r,AR)−sim(ri, AR)|) <
σ, then 1 − |sim(r,AR) − sim(ri, AR)| < σ, which
means that every record in the partition satisfies Property
2. Thus we conclude that r is definitely not duplicate
with any records in the partition P . Property 4 is proved.

The advantage of R-P Properties (Properties 3-4) is that
they provide heuristics greatly facilitating the decision of
duplication/non-duplication between a single record and
a whole partition of records, without directly comparing
this particular record with each record in the partition
using LCS-Similarity or TI-Similarity.

The algorithms for deciding the duplication or non-
duplication between two records (called RR Duplicate)
and between a record and a record partition (called
RP Duplicate) using R-R Properties and R-P Properties
are presented in Figure 1 and 2, respectively. Note that in
the algorithm of RR Duplicate, true or false are returned
when the two records are duplicate or non-duplicate.
While in the algorithm of RP Duplicate, ”1” is returned
when the record is duplicate with all the records in the
partition, and ”2” is returned when the record is not
duplicate with any records in the partition and ”3” is
returned when the duplication/non-duplication can not be
decided using Property 3 or 4.

Algorithm RR Duplicate (r1, r2, σ)
1. IF (sim(r1, AR) + sim(r2, AR)− 1 ≥ σ) THEN
2. RETURN(true);
3. IF (1− |sim(r1, AR)− sim(r2, AR)| < σ) THEN
4. RETURN(false);
5. IF (sim(r1, r2) ≥ σ) THEN
6. RETURN(true);
7. ELSE RETURN(false);

Figure 1. Algorithm for deciding duplication/non-duplication of a record
pair

Algorithm RP Duplicate (r, P, σ)
1. IF (sim(r,AR(P)) +MinSim(P)− 1 ≥ σ) THEN
2. RETURN(1);
3. NearestSim← NNSearch(r, P);
4. IF (1−NearestSim < σ) THEN
5. RETURN(2);
6. RETURN(3);

Figure 2. Algorithm for deciding duplication/non-duplication between
a record and a partition

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2427

© 2012 ACADEMY PUBLISHER

Remarks. The naive transitive closure stipulates that
two records are deemed to be duplicate when they are
simultaneously duplicate with the third record. This does
not necessarily hold in our transitive closure of similarity
measures. Consider an example in which the similarity
value between A and B and that between B and C are
0.8 and 0.9, respectively. The threshold σ is 0.75. In
the naive transitive closure, A and C are considered to
be duplicate. However, their duplication/non-duplication
cannot be instantly decided as their similarity fall into
the range of [0.7, 0.9] and, without actual comparison, it
is not clear whether their similarity can really exceed the
threshold.

C. Speed up the Evaluation of R-P Properties

The evaluation of R-P properties is non-trivial. Eval-
uating Property 3 requires the retrieval of the minimum
similarity value between the AR and records in the parti-
tion, and evaluation of Property 4 involves searching the
similarity value between AR and records in the partition
that is closest to the similarity between AR and the
given record r, which in fact is a Nearest Neighbor (NN)
searching problem.

Since Property 3 and 4 need to be evaluated frequently
in PC-Filter, it is worthwhile indexing the similarity list
of each partition to perform the evaluation of Property
3 and 4 efficiently. In PC-Filter, the middle record (i.e.
the record that locates in the middle of the partition) in
each partition is chosen as the Anchor Record. After the
database is sorted, the middle record in each partition
can be reasonably thought of as the representative of
the records in the partition. The similarity between each
record in the partition and the AR is pre-computed and
maintained in a sorted similarity list. The minimum simi-
larity value between the AR and records in the partition is
the first similarity value in the sorted list if the similarity
values are organized in an ascending order and the NN
searching problem can be performed efficiently using
binary search on the sorted list with only a logarithmic
cost.

IV. PC-FILTER

In this section, we will discuss in details our filtering
framework, PC-Filter. PC-Filter performs duplicate record
detection in 3 major steps as below: database sorting and
partitioning, construction of Partition Comparison Graph
(PCG) and partition comparison.

A. Database Sorting and Partitioning

Like most window-based methods, a key is first com-
puted for each record in the database by extracting
relevant fields or portions of fields for discriminating
records. The whole database is sorted based on the
chosen key. The selection of sort key is quite domain-
specific and human subjective, and is carried out based
on human’s understanding of the discriminating power of
the record fields. The sort key are expected to well, if

not uniquely, discriminate records in the database. Due
to the insensitivity of PC-Filter to the key chosen to sort
the database, this step only has to to be performed once
to sufficiently make PC-Filter to achieve its best possible
effectiveness.

We then divide the sorted database into a number
of sequential partitions. All partitions are set to have
an equal size in our work. This can not only make
database partitioning very fast but also help avoid skewing
the computation workload of record comparison in each
partition, which may seriously degrade the efficiency
performance otherwise. We understand that setting all the
partitions to be an equal size may lead to dividing the
similar records, which are close with each other in the
sorted database, into two or more neighboring partitions.
However, thanks to the process of Inter-PC (will be
discussed in the sequel), which detects duplicate record
across some different partitions, we do not need to worry
that the duplicate records possibly existing in these similar
records cannot be detected. Specifically, we set the size
of each partition to be s (a user-defined constant), thus
we have N = (p− 1) ∗ s+ q, where p is the number of
partitions obtained and q is the number of records in the
last partition, 0 ≤ q ≤ s. The partitions to which a record
r does not belong are called its outer partitions. There
are a total of (p−1) outer partitions for any record in the
database.

Finally, the pre-processing work involves choosing the
middle record in each partition as the Anchor Record of
the partition and computing the similarity between each
record in the partition and the AR. The similarity list is
then sorted in order to provide efficient support to the
evaluation of R-P Properties (Property 3 and 4) in PC-
Filter.

B. Construction of Partition Comparison Graph (PCG)

In most cases, the outer partitions that needed to com-
pare for records within the same partition actually falls
into a relatively small range. Based on this observation,
we will construct the Partition Comparison Graph (PCG)
for the whole database such that the records in a particular
partition will only be compared with the records of its
immediate neighboring outer partitions in this graph rather
than with all the partitions in the database.

We will first construct the Partition Comparison Set
(PCS) for each partition, the set containing the sequence
numbers of the outer partitions that each partition needs to
be compared in Inter-PC and then convert them to PCG.
To specify PCS, a few records, termed Delimiting Records
(DRs), will be randomly selected from each partition.
A quantitative measurement, called Partition Duplicate
Degree (PDD), is computed based on the Delimiting
Records selected to reflect the degree to which the records
of two partitions are similar. Two outer partition compar-
ison schemes, called the top-k outer partition comparison
method and PDD+ outer partition comparison method,
are also proposed. We will first introduce the definition
of Partition Duplicate Degree as follows.

2428 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

Definition 1. (Partition Duplicate Degree) Partition
Duplicate Degree between two partitions p1 and p2 is
defined as the ratio of the duplicate Delimiting Record
pairs detected against the total number of Delimiting
Record pairs of p1 and p2, i.e.

PDD(p1, p2) =
|{< dri, drj > |sim(dri, drj) ≥ σ, dri ∈ p1, drj ∈ p2}|

Ndr(Ndr − 1)/2

1) Top-k Outer Partition Comparison Method: The
top-k outer partition comparison method involves com-
paring each partition with its outer partitions that have k
highest PDD values with it. If a tie of PDD value occurs,
we will select one or more partitions (with the tied PDD
value) that are as close to the current partition as possible
based on the sorting order to break the tie. This is because
that the closer two partitions are from each other, the
higher chance that they contain duplicate records. These
k partitions are the k elements in the PCS of the current
partition, which are also its k neighboring partitions in
the corresponding PCG.

2) PDD+ Outer Partition Comparison Method: In the
PDD+ outer partition comparison method, any partition
with a positive PDD value with the current partition will
be compared with it, meaning that an outer partition will
be compared with the current partition as long as there
exits at least one pair of duplicate Delimiting Records
between them as we have the following mathematical
equivalence: PDD(p1, p2) > 0 ⇔ ∃dri ∈ p1, ∃drj ∈
p1, sim(dri, drj) ≥ 0.

Therefore, in order to know whether an outer partition
is in the PCS of the current partition, we only have to
check whether there is at least one duplicate Delimiting
Record pair between them. Unlike the top-k outer parti-
tion comparison method where we have to evaluate all the
Delimiting Record pairs of two partitions, the evaluation
process in PDD+ Partition Comparison method can be
early-stopping the moment a duplicate Delimiting Record
pair has been found.

3) Conversion of PCS to PCG: Using PCS directly
for partition comparison have some problems. First, PCS
is not space efficient. PCS is by nature redundant: two
partitions may appear in the PCSs of each other. Second,
PCS is not a convenient way used to keep track of pre-
vious computation in order to prevent duplicate partition
comparison. To solve these problems, we convert PCS to
Partition Comparison Graph (PCG), an undirected graph
which is more space economic and able to well keep
track of previous computation that has been done in the
comparison process.
Lemma 2: In PDD+ outer partition comparison method,
SequNo(p1) ∈ PCS(p2) iff SequNo(p2) ∈ PCS(p1),
where SequNo(p) denotes the sequence number of par-
tition p.
Proof: If SequNo(p1) ∈ PCS(p2), then
PDD(p1, p2) > 0, then SequNo(p2) ∈ PCS(p1).
Vice versa.

Note that Lemma 2 may not hold for top-k outer
partition comparison method. For two partitions p1 and

p2, it might be that SequNo(p1) ∈ PCS(p2) but
SequNo(p2)
∈ PCS(p1) simply because p2 might no
be in the top-k PDD list of p1 even though p1 is in the
top-k PDD list of p2.

Definition 2. (Partition Comparison Graph (PCG))
Partition Comparison Graph (PCG) is an undirected graph
G =< V,E >, where V denotes the non-empty finite
node set, representing all the partitions in the database,
and E denotes the edge set. Two nodes (partitions) p1
and p2 are directly connected (i.e. adjacent) if

1) For top-k outer partition comparison method, we
have SequNo(p1) ∈ PCS(p2) or SequNo(p2) ∈
PCS(p1) or both;

2) For PDD+ outer partition comparison method, we
have SequNo(p1) ∈ PCS(p2).

The order of any node in PCG in the top-k outer par-
tition comparison method is k, so the PCG G is regular,
with a degree of k as degree(G) = maxx∈V δ(x) = k.
In contrast, the order of any node in PCG will be in the
range of [0, p−1] in the PDD+ outer partition comparison
method. A node x is called a singleton if δ(x) = 0. A
singleton in PCG is the node that is not adjacent with any
other nodes in the graph, representing the partition whose
PCS is ∅.

1

4

62

53

Figure 3. The corresponding Partition Comparison Graph (PCG)

Example. Let’s suppose that we use PDD+ outer parti-
tion comparison method and there are 6 partitions in a
database and their PCSs, from Partition 1 to 6, are {2,
3, 4}, {1, 3}, {1, 2, 4, 5}, {1, 3, 5}, {3, 4} and ∅.
Their corresponding PCG is presented in Figure 3. The
6th partition is an example of singleton node that are not
adjacent with any other nodes in the PCG.

C. Selection Between the top-k and PDD+ outer partition
comparison method

PDD+ outer partition comparison method features bet-
ter effectiveness than the top-k outer partition comparison
method because it can compare a partitions with all
the outer partitions that potentially contain duplicates.
However, it is possible that the resulting PCG of PDD+
outer partition comparison method is a complete graph,
in which case the complexity will become O(N2). To
solve this problem, we adopt the following strategy to
select the suitable comparison method: First, k is set to
be the logarithmic order of the number of partitions (i.e.

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2429

© 2012 ACADEMY PUBLISHER

Algorithm Intra-PC (D,σ)
1. FOR each partition P in database D DO
2. FOR each pair of records r1 and r2 in partition P
DO
3. IF RR Duplicate (r1, r2, σ) = true THEN
4. DuplicatesDetected(r1, r2);

Figure 4. Algorithm of Intra-PC

k = log(Ns)). Second, if the average number of adjacent
nodes in the PCG for PDD+ outer partition comparison
method exceeds the value of k, we choose top-k outer
partition comparison method, otherwise we use PDD+
outer partition comparison method. This strategy gives
a speed performance guarantee while not compromising
the effectiveness in most cases.

D. Partition Comparison

After we obtain the PCG of each partition in the
database, partition comparison will be performed. The
record comparison in PC-Filter involves an Intra-Partition
Comparison process (Intra-PC) and an Inter-Partition
Comparison process (Inter-PC).

1) Intra-PC: Intra-PC involves the record comparison
in each of the partitions. R-R Properties (Property 1 and
2) are used in Intra-PC to avoid the record comparison
of two records if they can satisfy either Property 1 or
Property 2. Intra-PC is performed in 3 steps as follows
(see Figure 4 for the detailed algorithm):

(1) Using Property 1 and 2, pair-wise similarity eval-
uations are performed among all the records within each
partition. A record pair is detected duplicate (or not
duplicate) if Property 1 (or Property 2) is satisfied;

(2) All the records of the partition, whose duplication
or non-duplication decision cannot be made using Prop-
erty 1 and 2, are compared using LCS-Similarity and TI-
Similarity. Also, duplicate pairs of records are detected if
their similarities exceed the similarity threshold;

(3) Repeat Step (1) and (2) until all partitions of the
database have been compared internally.

One of the salient advantages of Intra-PC is that it
is performed within each partition independently, there-
fore it inherently features very good parallelism. The
equal-sized partitions can well balance the computation
workload of each processor and ensure the best speed
performance.

2) Inter-PC: Instead of finding duplicate records only
within partitions, Inter-PC globalizes the record com-
parison to find duplicate records across some different
partitions, if necessary. Based on the PCG constructed,
Inter-PC will compare the records of the partitions that
are directly connected in PCG. Given a record r, R-
P Properties are used in this phase to instantly detect
the partitions whose records are duplicate with r (using
Property 3), or prune away the partitions that do not
contain any duplicate records with r (using Property

Algorithm Inter-PC(D,σ)
1. FOR each partition P in database D DO {
2. FOR each record r in partition P DO {
3. Set of Neighbors← PCG Neighbors(P);
4. For each partition Q in Set of Neighbors DO
5. IF RP Duplicate (r,Q, σ) = 1 THEN {
6. DuplicatesDetected (r,Q);
7. Set of Neighbors− = Q; }
8. ELSE IF RP Duplicate (r,Q, σ) = 2 THEN
9. Set of Neighbors− = Q;
10. IF (Set of Neighbors
= ∅) THEN
11. FOR each partition Q in Set of Neighbors DO
12. FOR each record r

′
in partition Q DO

13. IF RR Duplicate (r, r
′
, σ) = true THEN

14. DuplicatesDetected(r, r
′
); }

15. Delete P and its associated edges from the PCG;}

Figure 5. Algorithm of Inter-PC

4). For those neighboring partitions that satisfy neither
Property 3 nor 4, we will evaluate r with each record
of these partitions. Similar to the record comparison in
Intra-PC, R-R Properties (Property 1 and 2) are used now
to save the record comparison of r and the records in the
neighboring partitions if the two records can satisfy either
Property 1 or 2.

Inter-PC performs 4 steps for the whole database (see
Figure 5 for the detailed algorithm):

(1) For each record r, the similarities are computed
between r and ARs of r’s immediate neighboring outer
partitions in the PCG. r is detected duplicate with all the
records in an outer partition if Property 3 is satisfied for
r and the outer partition. If Property 4 is satisfied for
r and an outer partition, the outer partition, which does
not contain any duplicate records with r, can be safely
pruned;

(2) For those neighboring partitions that do not satisfy
either Property 3 or 4, we will evaluate r with each
record in these partitions. r is detected duplicate (or not
duplicate) with a record in an outer partition if Property
1 (or Property 2) is satisfied for this pair of records. For
those records that cannot be evaluated using Property 3
or 4, Inter-PC will perform detailed comparisons between
r and these using LCS-Similarity and TI-Similarity;

(3) Repeat Step (1) and (2) until all the records in
a partition have been evaluated. When a whole record
partition has been evaluated, this partition will be deleted
from the PCG, together with all the edges associated with
this partition in the PCG.

(4) Repeat Step (1)-(3) until there are not any nodes
left in the PCG.

V. COMPLEXITY ANALYSIS

A. Notations

Let N be the number of records in the database, s be
size of each partition, p be the number of partitions, Nnei

2430 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

be the average number of neighboring outer partitions in
PCG of each partition, a, b and c be the percentage of
total record pairs that have to be compared using LCS-
Similarity or TI-Similarity in PCG construction, Intra-PC
and Inter-PC, respectively, 0 ≤ a, b, c ≤ 1, Csim be the
average cost of comparison of a pair of records using
LCS-Similarity or TI-Similarity and Cari be the cost other
than Csim for arithmetic operations such as additions,
deletions, multiplications, divisions and comparisons.

B. Complexity of the Major Steps

In database sorting, the cost will be N ∗ logN ∗ Cari

for a database of N records.
In the pre-processing step, similarities between AR and

other records within each partition will be computed, so
the cost will be N ∗ Csim. These similarity values will
be sorted within each of the partitions with a cost of p ∗
s ∗ logs ∗ Cari = N ∗ logs ∗ Cari. The total cost for this
step is thus approximately N ∗ Csim given s << N and
Cari << Csim.

To construct PCS of each partition, similarities be-
tween each DR of the partition and ARs of its outer
partitions will be computed, with a cost of Ndr∗p2∗Csim.
Then, pair-wise similarity evaluation among Delimiting
Records of two partition pairs is performed to construct
PCS of each partition, with a cost of a ∗N2

dr ∗ p2 ∗Csim.
Finally, one scan of the PCSs of all partitions is required
in converting PCS to PCG, which requires p∗k∗Cari for
the top-k outer partition comparison method and requires
p2∗Cari for the PDD+ outer partition comparison method
at most as the maximum value of Nnei is p. In sum,
the cost of constructing PCG for both methods can be
simplified as a ∗N2

dr ∗ p2 ∗ Csim given Cari << Csim.
In Intra-PC, the similarities of all record pairs will be

examined in terms of Property 1 and 2, which requires a
cost of s2∗Cari. The cost of comparing record pairs using
LCS-Similarity or TI-Similarity will be b ∗ s2 ∗ Csim. In
summary, the total cost to perform p such processes will
be p ∗ (s2 ∗ Cari + b ∗ s2 ∗ Csim). Given Cari << Csim

and N = p ∗ s, the cost of Intra-PC can be simplified as
p ∗ b ∗ s2 ∗Csim = b ∗ (p ∗ s2) ∗Csim = b ∗ s ∗N ∗Csim.

In Inter-PC, if the top-k outer partition comparison
method is used, then each record r will compare with
the ARs in its k neighboring outer partitions in PCG,
requiring a cost of k ∗ Csim. Inter-PC will then draw on
R-P and R-R Properties to evaluate pairs of records, with
a cost of k ∗Cari and k ∗ s ∗Cari, respectively. Finally, r
will compare with the records in the partitions that have
not been pruned using the similarity measure, with a cost
of c∗k ∗s∗Csim. In sum, the total cost for examining N
records in inter-PC will be N ∗(k∗Csim+k∗Cari+k∗s∗
Cari+c∗k ∗s∗Csim). Given Cari << Csim, the cost of
Inter-PC using top-k outer partition comparison method
can be simplified to c ∗ k ∗ s ∗ N ∗ Csim. Similarly, the
cost of Inter-PC using PDD+ outer partition comparison
method can be simplified to c ∗Nnei ∗ s ∗N ∗ Csim.

From the above analysis, we can see that (i) the cost of
the two outer partition comparison methods only differs

in the last step, and (ii) the value of s does not affect
the complexity of the first two steps, thus we will only
consider the effect of s on the total cost of the last three
steps.

The total cost C for the last three steps, when a = b =
c = 1 in the worst case, will be

C = (N2

dr ∗ p2 +N ∗ s+N ∗ k ∗ s) ∗ Csim

for top-k outer partition comparison method, and

C = (N2

dr ∗ p2 +N ∗ s+N ∗Nnei ∗ s) ∗ Csim

for PDD+ outer partition comparison method.
The partition size s is chosen such that the number of

record similarity computations using the similarity mea-
surement can be minimized, i.e. s∗ = minsC. Plugging
s∗ into the cost function, we can obtain the minimum
value of the total cost as:

Cmin = N ∗ (N2

dr ∗
N

s∗2
+ s∗(k + 1)) ∗ Csim

for top-k outer partition comparison method, and

Cmin = N ∗ (N2

dr ∗
N

s∗2
+ s∗(Nnei + 1)) ∗ Csim

for PDD+ outer partition comparison method.

C. Cost of PC-Filter Using Top-k Outer Partition Com-
parison Method

In the top-k outer partition comparison method, s is a
constant specified by human users, thus the cost of the last
three steps can be minimized to 1.89∗N

2
3

dr∗(1+k)
2
3 ∗N 4

3

when s = 1.26∗N
2
3

dr(1+k)−
1
3 ∗N 1

3 . This analysis shows
that the complexity of PC-Filter can be reduced to the
order of O(N

4
3) by picking an optimized value of s for

the top-k outer partition comparison method.

D. Cost of PC-Filter Using PDD+ Outer Partition Com-
parison Method

Unlike the top-k outer partition comparison method
that the number of outer partitions needs to be compared
for each node in PCG is of a fixed value k, Nnei in PDD+
outer partition comparison method may change from 0 to
N
s − 1. In our work, we devise the following statistical

model to estimate Nnei, which is important in analyzing
the total cost of the algorithm using PDD+ outer partition
comparison method.

Let ϕ denote the duplicate ratio of the database and ρ
denote the probability that a give record pair is duplicate.
Therefore we have the following approximation ρ = ϕ2.
The probability that a record pair is not duplicate is 1−ρ,
then the probability that none of the Delimiting Records
of two partitions are not duplicate is (1− ρ)N

2
dr , then the

probability that two partitions are considered to contain
duplicate records (i.e. immediately connected in PCG) is
1− (1− ρ)N

2
dr .

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2431

© 2012 ACADEMY PUBLISHER

Let t = 1 − (1 − ρ)N
2
dr , thus the expected value of

neighbors of each partition in PCG can be computed as:

E(Nnei) =
t+ 2t2 + 3t3 + · · ·+ (Ns − 1)t

N
s −1

t+ t2 + t3 + · · ·+ t
N
s −1

=
1

1− t
−

(Ns − 1)t
N
s −1

1− t
N
s −1

, t
= 0, t
= 1, N
= s

If t = 1, then E(Nnei) =
N
s −1. If t = 0, then E(Nnei) =

0. If N = s, then E(Nnei) = 0.

Plugging E(Nnei) =
1

1−t −
(
N
s −1)t

N
s

−1

1−t
N
s

−1
into the cost

function of the last three steps, we can obtain

C = (N2

dr∗p2+N∗s+N∗s∗(1

1− t
−
(Ns − 1)t

N
s −1

1− t
N
s −1

))∗Csim

E. Parameter Specification

In this subsection, we will elaborate on the speci-
fication of the partition size s and k in top-k outer
partition comparison method, the partition size s in PDD+
outer partition comparison method, and the number of
Delimiting Records, Ndr, for both top-k and PDD+ outer
partition comparison methods.

1) Specification of Partition Size s and k in top-k
Outer Partition Comparison Method: If we let k = logN

s ,

then based on s = 1.26∗N
2
3

dr(1+k)−
1
3 ∗N 1

3 , we can get
k = log(0.79∗N− 2

3

dr ∗N
2
3 ∗(1+k)

1
3). We can approximate

k as k ≈ log(0.79 ∗N− 2
3

dr ∗N
2
3). Plugging this into s =

1.26∗N
2
3

dr(1+k)−
1
3 ∗N 1

3 , we can get the optimal value of
s as s = 1.26∗N

2
3

dr(1+ log(0.79∗N− 2
3

dr ∗N
2
3))−

1
3 ∗N 1

3 .
2) Specification of Partition Size s in PDD+ Outer

Partition Comparison Method: It is impossible to explic-
itly compute the value of s by letting the first derivative of
cost function w.r.t s to be equal to 0. In addition, the cost
function does not only have one local minima. Therefore,
using the first derivative alone may not be sufficiently
to find the global minimum of the cost function. We
alternatively choose to adopt a search method to find
the optimal value of s such that the cost function can
be minimized.

Since the lower bound for searching the optimal parti-
tion size s∗ is Ndr (each partition should at least contains
Ndr records), thus the searching space for optimal value
of s will be [Ndr, N]. The exhaustive search for the
optimal value of s involves evaluating each integer from
Ndr to N against the cost function, requiring a complexity
of O(N). This search method is obviously not scalable
for large datasets. Therefore, we will explore the upper
bound for searching the optimal value of s so that the
search cost can be remarkably reduced. We will first prove
the following two lemmas.

Lemma 3. Given a database with a fixed size of N , the
optimal value of s, s∗, will increase as ρ decreases.
Proof: Intuitively, when the probability that two records
are duplicate decreases, the expected value of immedi-
ately connected neighbors of each partition in PCG will

decrease (or will remain unchanged). That is, Nnei will
be non-increasing when ρ decreases. Given the fixed
values of N and Ndr, we can consider the cost function
C = (N2

dr ∗ k2 + N ∗ s + N ∗ Nnei ∗ s) ∗ Csim as the
function of s and Nnei, thus the cost can be minimized to
1.89∗N

2
3

dr∗(1+k)
2
3 ∗N 4

3 when s∗ = 1.26∗N
2
3

dr(1+k)−
1
3 ∗

N
1
3 . We can see that when Nnei decreases, the optimal

value of s, s∗, will increase. Thus, s∗ will increase as ρ
decreases.

Lemma 4. The upper bound of searching the optimal
value of s is (2 ∗N2

dr ∗N)
1
3 .

Proof: Based on Lemma 1, we can see that the maximum
integer required to be evaluated in the search is the
asymptotic value of s when ρ is approaching to 0. When
is ρ approaching to 0, we have

limρ→0C = limt→0C = limNnei→0C = N ∗ (N2

dr ∗
N
s2 +s)∗Csim, which can be minimized to (N2

dr+1)∗N 4
3 ∗

Csim when s = (2∗N2

dr ∗N)
1
3 . Therefore (2∗N2

dr ∗N)
1
3

is the upper bound of s∗.
Furthermore, we will show that (2∗N2

dr ∗N)
1
3 > Ndr,

which ensures that the possible values for optimal parti-
tion size will exceed the number of Delimiting Record in
the partition. Since Ndr ≤ s and s ≤ N , thus Ndr ≤ N .
Therefore, we have (2∗N2

dr ∗N)
1
3 ≥ (2∗N2

dr ∗Ndr)
1
3 =

1.26 ∗Ndr > Ndr.
Based on Lemma 3 and 4, we establish that it is

only necessary to evaluate the integers from Ndr to
(2 ∗ N2

dr ∗ N)
1
3 , thus the complexity of searching the

optimal partition size can be reduced from O(N) to
O(N

1
3).

We further verify the correctness of our lemma by
calculating the optimal partition size under 28 different
dataset sizes (ranging from 103 to 106) and three varied
values of ρ and the corresponding upper bounds (i.e.
(2 ∗N2

dr ∗N)
1
3) in our model. The results are shown in

Figure 6. Figure 6 graphically shows that the upper bound
we establish theoretically provides sufficient searching
scope for the optimal partition size for different dataset
sizes and ρ values.

3) Specification of the Number of Delimiting Records
Ndr: The value of Ndr should be as small as possible
to lower the cost of specifying the PCS of the parti-
tions. However, when the value of Ndr is too small,
the calculation of PDD of two partitions will not be
accurate enough. To seek a good trade-off, we utilize the
hypothesis testing method to find a good value for Ndr.
We assume that the similarities between the Delimiting
Records and the Anchor Record in each partition satisfy
normal distribution and devise a technique to pick up De-
limiting Records based on the construction of confidence
interval of normal mean. A specific number of Delimiting
Records are randomly selected from each partition such
that the average similarity value between the Delimiting
Records and the Anchor Record in each partition will be
falling into the confidence interval with a certain offset
from the actual midvalue of the similarities between the
records and Anchor Record in the partition.

Specifically, to obtain a (1−α)-confidence interval, the

2432 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

5 10 15 20 25
0

200

400

600

800

1000

1200

1400

1600

Index # of the datasets

O
pt

im
al

 s
iz

e
of

 th
e

pa
rt

iti
on

p=0052

p=0.012

p=0.0052

Upper bound of s

Figure 6. Optimal size of partition under varying dataset sizes

minimum size of a random sample from each partition,
used as DRs, is given as follows [10]:

N∗
dr = [

tα/2 ∗ σ
′

δ∗
]2

where σ
′

denotes the estimated standard deviation of
the similarity values between the reocrds and AR in the
partition and δ∗ denotes the half-width of the confidence
interval.

Using the above theorem, we select 43 DRs from
each partition in PC-Filter so that one can expect that a
confidence interval for the mean similarity value between
the records and AR in the partition would be established at
the 90% probability level, which would have limits about
±1% from the midvalue of the confidence interval.

VI. EXPERIMENTAL RESULTS

0 2 4 6 8 10 12
10

20

30

40

50

60

70

80

90

100

ID of the key used to sort the database

R
ec

al
l (

%
)

Pair−wise Comparison
PC−Filter
Priority Queue
RAR

Figure 7. Recall results when varying the keys

Extensive experiments have been conducted to evaluate
the effectiveness and efficiency of PC-Filter in duplicate

10 20 30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

100

Number of records in the document

R
ec

al
l (

%
)

Pair−wise comparison
PC−Cleaner
Priority Queue
Multi−pass SNM
ARA

Figure 8. Recall results when varying size of database

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
30

40

50

60

70

80

90

100

Similarity threshold

R
ec

al
l (

%
)

Pair−wise Comparison
PC−Filter
Priority Queue
Multi−pass SNM
RAR

Figure 9. Recall results when varying threshold value

record detection/filtering. We investigate the performance
of PC-Filter on a large real-world company database and
large synthetic customer databases. The real-life company
dataset has 100,000 records and each of the records has 7
fields. The large synthetic dataset is generated by a record
generator, through which we can specify the dimension
of the record, the number of clean records and duplicate
records.

In our experiments, the pair-wise comparison method,
Multi-pass SNM, Priority Queue method and RAR are
used for comparative study on the performance in dupli-
cate record detection. Even though practically infeasible,
the pair-wise comparison is the most naive yet the most
effective method. SNM is the basic but probably the
most widely used method. Multi-pass SNM improves
SNM by performing multiple sorting and scanning of
the database. Priority Queue method, a typical clustering-
based method, clusters each record into the clusters that
are organized in a priority queue and merge records in
each cluster. RAR explicitly uses the transitive closure

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2433

© 2012 ACADEMY PUBLISHER

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

Number of records in the database (k)

Lo
ga

rit
hm

ic
 C

P
U

 r
un

tim
e

(s
ec

.)

Pair−wise Comparison
PC−Filter
Priority Queue
Multi−pass SNM
RAR

Figure 10. Logarithmic CPU runtime

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
30

40

50

60

70

80

90

100

Similarity threshold

R
ec

al
l /

 P
re

ci
si

on
 (

%
)

Recall of SNM
Recall of PC−Filter+SNM
Precision of PC−Filter
Precision of SNM
Precision of PC−Filter+SNM

Figure 11. Recall-Precision graph of SNM and PC-Filter+SNM

property of TI-Similarity to realize fast duplicate record
detection under the framework of SNM. Since PC-Filter
uses two similarity metrics, thus for a fair comparison, all
the methods involved in the comparative study use LCS-
Similarity and TI-similarity to measure the similarity of
records and averge the performance. ω, the size of the
window used in multi-pass SNM and RAR is set to be
10.

A. Effectiveness of PC-Filter

The first part will investigate the effectiveness of
PC-Filter. We will evaluate various methods against the
criteria of recall that measures the completeness of the
detection result. In the context of duplicate record de-
tection, recall is mainly decided by the scope of record
comparison/matching while precision is largely depended
on the robustness of the similarity metric in accurately
measuring the true similarity betwwen two records. The
precisions of these methods will not remarkably differ

from each other as long as the same metric is used.
However, the recalls of these methods, as you will see
from the experiments in this section, may differ by a large
margin since different methods specify varied scopes for
record comparison. Therefore, we will mainly focus on
the effectiveness analysis of different methods in terms
of recall.

Varying Key for Sorting the Database. We vary the
key to sort the database in order to evaluate its effect on
the recalls of different methods. Specifically, we sort the
database based on each of the 11 fields in the synthetic
dataset and compute the corresponding recall levels. All
the keys are shown in Figure 7. We can see that the
recalls of PC-Filter, pair-wise comparison method and
Priority Queue method have very stable recalls while
RAR is very sensitive to the sort key. The pair-wise
comparison method and Priority Queue method do not
require database sorting, thus their recalls are not affected
by the sort key at all. Using a fix-sized window in RAR,
the recall will be relatively higher when using more
discriminating keys to let the truly duplicate records locate
close to each other, but will be lower when using less
discriminating ones in which the truly duplicate records
will probably stay far apart from each other. PC-Filter
is able to compare two records even when they are far
apart from each other in the sorting list. This experiment
justifies that PC-Filter is able to solve the ”Key Selection”
problem the existing methods suffer.

Varying Number of Records in the Database. The recall
results when varying the number of records in database
are shown in Figure 8. As these results show, PC-Filter
outperforms Multi-pass SNM, Priority Queue method and
RAR in terms of recall by a large margin for databases
with different sizes. The recall level of PC-Filter is very
close to that of the pair-wise comparison method. One
of the salient advantages of PC-Filter is its ability to
reliably achieve high recall levels even when the size of
the dataset varies, while Multi-pass SNM, Priority Queue
method and RAR feature a decline in recall when the size
of the dataset increases. As database size increases, the
distance of duplicate record pairs in the sorted dataset
stands a higher chance to exceed the window size, in
which case Multi-pass SNM and RAR will fail to detect
these duplicate pairs due to the limited size of the window.
For the Priority Queue method, the accuracy of the cluster
center in representing all the points in the cluter will
also be compromised when the database size increases,
leading to a decline in recall. This problem is obviated in
PC-Filter by comparing records globally among necessary
outer partitions.

Varying Similarity Threshold σ. Next, we will study
the recall of various methods under different similarity
thresholds. The threshold is varied from 0.1 to 0.9, with
0.1 increments each time. The result of recall is shown in
Figure 9. As shown in Figure 9, the recall of all the five
methods will be decreased as σ increases. However, for a
given σ, the corresponding recall of PC-Filter is very close

2434 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

to that of the pair-wise comparison method and is much
higher than those of other three methods. This is because
PC-Filter uses the Inter-PC process to compare records
across some partitions in the database, so the detection
result of PC-Filter contains more truly duplicate records
than the results of the other three methods.

Using Different Transitive Closure Properties. We
evaluate the robustness of the transitive closure properties
of record similarity used in PC-Filter. We compare the
effectiveness of the naive and similarity-based transitive
closure. On the real-life dataset, the recall and precision
of PC-Filter using the similarity-based transitive closure
properties are approximately 90% and 85%, while the
recall and precision of PC-Filter using the naive transitive
closure are only 79% and 74%. The relatively low recall
and precision when using the naive transitive closure is
because that the detector not only includes many false-
positives into the final result and but also excludes many
true-negatives from the final result. Clearly, the transitive
closure properties of record similarity utilized in PC-Filter
are more robust.

B. Efficiency of PC-Filter

We also explore the efficiency of PC-Filter against
other four methods. Figure 10 shows the logarithmic CPU
runtime of different methods. The CPU time of PC-Filter
is higher than the time of Multi-pass SNM (O(k∗ω∗N))
and RAR (O(ω ∗ N)), but somewhat comparable to the
time of Priority Queue method (O(NlogN) and signif-
icantly less than the time of the pair-wise comparison
method (O(N2)). By taking advantage of the transitive
closure properties of record similarity, PC-Filter saves a
noticeable amount of expensive record comparisons and
therefore is able to well scale to large databases.

C. Effectiveness of PC-Filter+X

In this part, we will experimentally show that the
framework of PC-Filter+X, i.e. incorporating PC-Filter
into another detection method X with a different similarity
measure, such as Edit Distance, will enable us to achieve
better recall and precision than only using X. The result
is shown in Figure 11. Recall that the major role of PC-
Filter is to return a relatively small set of duplicate records
efficiently with a high recall level. However, there may
be many false-positives in this result, thus the method
X is used to refine the result by pruning away these
false-positives from the result. In our experiment, we
choose X as SNM using Edit Distance and compare the
effectiveness of PC-Filter+SNM and SNM. The recall-
precision graph is presented in Figure 13. We can see,
from the figure, that (i) The recall of PC-Filter+SNM
is much higher than SNM, this is because PC-Filter
outperforms SNM in terms of recall; (ii) The precision
of the result of PC-Filter is slightly lower than that of
SNM. This is understandable since when more record
are needed to compare, there will be a higher chance
for some false-positives to be included in the result. (iii)

The precision of the result of PC-Filter+SNM is, however,
higher than that of SNNM. This is because using three
similarity measures, LCS-Similarity and TI-Similarity in
PC-Filter and Edit Distance in SNM, PC-Filter+SNM
can be more effective in detecting duplicate records than
only using one kind of similarity measure. Put simply,
by incorporating PC-Filter to SNM, we can achieve both
better recall and precision performance than performing
SNM alone.

VII. CONCLUSIONS

To solve a number of critical problems the exist-
ing duplication detection methods suffer, we propose
an effective and efficient filtering technique, called PC-
Filter, in this paper for duplicate record detection in large
databases. In PC-Filter, data partitions will be internally
and externally compared in order to detect duplicate
records. We utilize the transitive closure of record similar-
ity and devise four properties, used as heuristics, based on
such transitive closure to achieve a remarked efficiency of
the filter. The partition size is well specified such that the
time complexity of PC-Filter can be minimized. Extensive
experimental results verify the better effectiveness and
efficiency of PC-Filter than the existing methods.

ACKNOWLEDGEMENT

We would like to acknowledge Prof. Ken Sevcik from
University of Toronto, Prof. Tok Wang Ling from Na-
tional University of Singapore and Robert M. Bruckner
from Microsoft, Seattle, USA and Mr. Han Liu from John
Hopkins University, USA for their useful thoughts and
comments on this paper.

REFERENCES

[1] R. Ananthakrishna, S. Chaudhuri and V. Ganti. Eliminating
Fuzzy Duplicates in Data Warehouses. In Proceedings of
VLDB’02, pages 586-597, Hong Kong, China, 2002.

[2] P. Andritsos, R. J. Miller and P. Tsaparas. Information-
Theoretic Tools for Mining Database Structure from Large
Data Sets. In Proceedings of ACM SIGMOD’04, pages
731-742, Paris, France 2004.

[3] M. Bilenko and R. J. Mooney. Adaptive Duplicate De-
tection Using Learnable String Similarity Measures. In
Proceedings of SIGKDD’03, pages 39-48, Washington,
DC, USA, 2003.

[4] S. Chaudhuri, K. Ganjam, V. Ganti and R. Motwani. Ro-
bust and Efficient Fuzzy Match for Online Data Cleaning.
In Proceedings of ACM SIGMOD’03, pages 313-324, San
Diego, USA, 2003.

[5] L. P. English: Improving Data Warehouse and Business
Information Quality. J. Wiley and Sons, New York, 1999.

[6] L. Gravano, P. G. Ipeirotis, N. Koudas, D. Srivastava: Text
Joins for Data Cleansing and Integration in an RDBMS. In
Proceedings of ICDE’03, pages 729-731, Bangalore, India,
2003.

[7] M. Hernandez. A Generation of Band Joins and the
Merge/Purge Problem. Technical Report CUCS-005-1995,
Columbia University, Feb 1995.

[8] M. A. Hernandez and S. J. Stolfo. The Merge/Purge
Problem for Large Databases. In Proceedings of the ACM
SIGMOD’95, pages 127-138, San Jose, California, 1995.

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2435

© 2012 ACADEMY PUBLISHER

[9] W. L. Low, M. L. Lee and T. W. Ling. A Knowledge-
Based Framework for Duplicates Elimination. In Informa-
tion Systems: Special Issue on Data Extraction, Cleaning
and Reconciliation, Volume 26, Issue 8, Elsevier Science,
2001.

[10] A. E. Mace. Sample-size Determination. Reinhold Publish-
ing Corporation, New York, 1964.

[11] A. E. Monge and C. P. Elkan. An Efficient Domain-
independent Algorithm for detecting Approximately Du-
plicate Database Records. In Proceedings of SIGMOD
Workshop on Research issues and Data Mining and Knowl-
edge Discovery, Tucson, Arizona, 1997.

[12] A. E. Monge and C. P. Elkan. The Field Matching
Problem: Algorithms and Application. In Proceedings of
SIGKDD’96, pages 267-270, Portland, USA, 1996.

[13] Z. Li, S. Y. Sung, P. Sun and T. W. Ling, A New Efficient
Data Cleansing Method. In Proceedings of DEXA’02,
pages 484-493, Aix-en-Provence, France, 2002.

[14] E.J Otoo, D, Rotem, and S. Seshadri. Efficient Algorithm
for Multi-file Caching. In Proceedings of DEXA’04,, pages
707-719, Zaragoza, Spain, 2004.

[15] E. Rahm and H. H. Do. Data Cleaning: Problems and Cur-
rent Approaches. In IEEE Bulletin on Data Engineering,
2000.

[16] T. F. Smith and M. S. Waterman. Identification of Common
Molecular Subsequences. In Journal of Molecular Biology,
147, pages 195-197, 1981.

[17] S. Y. Sung, Z. Li and S. Peng. A Fast Filtering Scheme
for Large Database Cleansing. In Proceedings of CIKM’02,
pages 76-83, 2002.

[18] Z. Tian, H. Lu, W. Ji, A. Zhou and Z. Tian: An N-gram-
based Approach for Detecting Approximately Duplicate
Database Records. In International Journal on Digital
Libraries, 3(4): 325-331, 2002.

[19] M. Weis and F. Naumann: Detecting Duplicate Objects in
XML Documents. In Proceedings of IQIS’04, pages 10-19,
Paris, France, 2004.

[20] Ji Zhang, Tok Wang Ling, Robert. M. Bruckner, Han
Liu. PC-Filter: A Robust Filtering Technique for Dupli-
cate Record Detection in Large Databases. In DEXA’04,
Zaragoza, Spain, 2004.

2436 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

