

Multi-agent Oriented Policy-based Management
System for Virtual Enterprise

Jun Hu

College of Information Science and Engineering, Hunan University, Changsha, China
Email: hujun_111@126.com

Yinghui Song, Ye Sun

College of Information Science and Engineering, Hunan University, Changsha, China
Email: songyinghui2868@163.com, sunyeforever@126.com

Abstract—Virtual enterprise is a temporary organization
consists of some independent enterprises, aiming to share
technology, cost and other resource. It is predicted to be the
most important business organizational patterns in the 21st
century. To up speed the development of virtual enterprise,
this paper presented a policy-based multi-agent
management system to simulate the manipulation of virtual
enterprise. Firstly, a hierarchical policy specification is
proposed to control the behavior of agent. Secondly, the
detection algorithms and resolution strategies are described
for the conflicts that may be brought about by hierarchical
policy. Thirdly, a policy admin tool to simplify the
operations of policies is presented. Each enterprise
registered in this tool is assigned an agent; policies made by
enterprises are executed by agents correspondingly.
Subdivision of application level and representation scope of
policy leads to that policy-based mechanism not only
provides good system control on autonomy agents, but also
ensures the flexibility of agents; and gives the solution for
policy conflicts at the same time. Finally, the main
characteristics of this system are discussed by an example.

Index Terms—virtual enterprise, hierarchical policy
specification, multi-agent system, policy conflict

I. INTRODUCTION

The concept of virtual enterprise (VE) is generated
along with the agile manufacturing, which is proposed on
the purpose of improving competitive position and
cultivating the competitive advantage of manufacturing.
With the rapid development of Internet, VE will be one of
the most important business organizational patterns in the
21st century because it’s unique advantages of
optimization and integration of resources and rapid
response to market [1]. Members of VE join in or quit a
VE freely — they join up to get more benefit for
themselves, and once the target achieved, they quit. In
this case, the alliance is readily to achieve resource

complementary, and amass the best capacity of design,
productive and marketing. How to obtain more useful
resource becomes the biggest problem.

In view of autonomy, sociability, pro-activeness and
other features of agents, some scholars have proposed
multi-agent system combining policy specification to
simulate the manipulation of VE to help participants to
get more resource and improve their competitive ability
[2~5]. The behaviors of agents are so identical to VE
members, that it couldn’t be better to use agents to
simulate VE members. But sometimes policies are too
strict for agents and they prevented the flexibility of
agents. Therefore, some adjustment is necessary for
policy specification to fit VE system well.

This paper gives full consideration on the characters of
VE, and proposes the concept of “organizer”, which are
also members of VE but have higher credit than normal
VE members. Organizers should make policies on the
view of the overall benefit of VE. In this way, the policy
mechanism subdivides the representation scope and
application level of policy, so it is not only providing VE
good control on autonomy agents, but also ensuring
flexibility of agents.

In this paper, we firstly present the application
environment in part II. Then, a hierarchical policy
specification is displayed in part III and methods to detect
and resolve policy conflicts which may be brought about
by policy are showed in part IV. In part V, a policy admin
tool introduced to supervise users, policies, agents, and
materials in integrate. In part VI, the related works are
introduced. Conclusions and future work are represented
in the last part.

II. STRUCTURE OF VIRTUAL ENTERPRISE

VE consists of various enterprises including vendors,
customers, partners or even competitors, they ally to get
more benefit and spend less cost. The most significant
feature of VE is dynamic — individual enterprise joins in
the alliance for its own purpose, once its target achieved,
it exits the alliance. Besides, VE is a competitive
organization. Members of VE share resources in the
condition that all members are kindly and resources are
adequate. The overall benefit of VE will surely be

Supported by the National Natural Science Foundation of China
under Grant No.60773208; the Hunan Provincial Natural Science
Foundation of China under Grant No.11JJ3065; the Specialized
Research Fund for the Doctoral Program of Higher Education under
Grant No.20070532075; Hunan Province Young Core teacher training
project.

JOURNAL OF SOFTWARE, VOL. 7, NO. 10, OCTOBER 2012 2357

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.10.2357-2364

improved. But resources are not always adequate, so it is
likely that two or more members compete on a same
resource. If such competitions are not controlled, the
organization may soon paralyses for resource exhaustion.
Further more, control force of VE is very weak for
lacking of unified management. So, it is very easily to be
attacked by unscrupulous members. Therefore, it is
essential to improve management ability of VE.

To assure the character of autonomic for VE, this
paper takes multi-agent system to simulate its behavior,
in which, each member joins in VE is assigned an agent
in the system. Member of VE makes policies on its own
agent; and the agent follows the instructions that policies
indicate it to do or prevent it to do.

To assure security and stability of VE, the concept of
“organizer” is proposed in this paper to control the
behaviors of volatile members. Organizers are assumed to
be honest, integrity, justice, and they make policies from
overall interest of VE. The policies made by organizers
are called organizational-level policies (OLP). In contrast,
normal members of VE are called individuals; and the
policies made by individuals are called individual-level
policies (ILP). ILP are always on behalf of individuals.
So, the structure of application environment for VE is
shown in Fig.1. In this system, all behaviors are acted by
agents; they receive demands of ILP to get interests for
individual on one hand, and they must not violate the
instructions of OLP on the other hand.

Figure 1. Application environment of hierarchical policy for VE

III. HIERARCHICAL POLICY SPECIFICATION

According to the maker, policies are categorized to ILP
and OLP. In order to increase the flexibility of system,
this paper classifies the ILP into two layers — low layer
and high layer: policies of low layer (LILP) are used to
control the concrete behaviors of individual agent, which
are enforced to do or not to do. ILP of high layer (HILP)
are used to guide agent to generate appropriate plans on
low layer policies, and prevent agent from executing
actions blindly. Situations of system are always
unpredictable, so policies of high layer are very useful in
this case.

A Types of Hierarchical Policy
According to the analysis above, policies are classified

into 3 categories 8 types (TABLE I).

LILP include authorization policies (APolicy),
obligation policies (OPolicy), and prohibition policies
(PPolicy). APolicy specify performance that the subject
must do; OPolicy identify actions that are obliged; and
PPolicy indicate motions that are prohibited to do. They
are all direct order.

There are two types of HILP: target policies (TPolicy)
and utility policies (UPolicy). TPolicy specify the goal of
an agent, they are made up of obligation policies;
UPolicy are used to evaluate the utility of policies. Utility
relates to resource that individual enterprise care about,
such as price and time. Different enterprises have
distinctive demands on various resources, so “weights”
on disparate resources are different. On the basis of
UPolicy, agents can generate plans to fulfill TPolicy at
maximum utility.

ILP often perform the interests of individual, while
OLP are designed to restrict the behaviors of individuals.

OLP include role policies (RPolicy), grant policies
(GPolicy) and withdraw policies (WPolicy). RPolicy are
used to assign roles for VE members. GPolicy are used to
grant agents authorizations or obligations, while WPolicy
are used to revoke authorizations or obligations from
agents.

B Hierarchical Policy Attributes
There are several basic attributes which almost all

policies have, such as subject, object, action, cons, time,
maker, status, etc. So, before policy specification, some
attributes are introduced briefly as follows to help readers
to understand.

“Type” can take any value of the eight types above.
Usually, the role of policy owner restricted types of
policies he owns.

“Subject” indicates the actor of policy, and “object”
indicates recipient. Subject and object may be a single
enterprise or a role in VE. “Role” is associated with a set
of obligation policies and authorization policies. When
playing a role, an agent inherits the set of policies related
to this role.

“Action” describes operations that policy subject is
about to do on the object. It has two elements: name and
effects. When a policy is employed, actions that indicated
by “name” are trigged and system status are changed
responding to “effects”.

“Time” is an ordered binary array: ,s et t< > , where
st indicates the effective start time of a policy, and
et indicates the effective end time of a policy. The policy

is to be executed only if, it lies in the interval of st and et .
 “Cons” specifies requirements that must be satisfied

before a policy is executed; it consists of a series of
Boolean expressions. An atomic cons expression has the

TABLE I.
TYPE OF POLICIES

Application\
Abstract Low layer policies High layer policies

Individual-level
policies(ILP)

APolicy,
OPolicy, PPolicy UPolicy, TPolicy

Organizational-
level policies(OLP) GPolicy, WPolicy, RPolicy

2358 JOURNAL OF SOFTWARE, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER

form of ix τ> , which is remarked as C. ix are property
variables of entity or resource in system, τ are items of
predicate logic, they might be constants, variables or even
functions of other properties. ix and τ are connected by> ,
where {= }∈ ≠ < ≤ > ≥> ， ，，， ， . Cons also may be
compound expressions of composed atomic expression,
which composed of atomic expressions, using ¬ , ∧ or
∨ and braces recursively.

“Maker” is the editor of the policy. The role of makers
limited the types of policies. In other words, individual
enterprise managers could only make policies of ILP, and
OLP could only be made by organizers. Usually, the role
of a maker determines the priority of a policy. When
conflicts happen, the results always depend on the maker
who has high priority.

“Status” indicates the status of a policy. At any time,
“status” may take one of the enumeration values:
{INITIALIZED, READY, EXECUTING, DONE}. When
a policy inserted into the system justly, the status is
“INITIALIZED”, when the current time is equal or
greater than st , the status is triggered to “READY”, when
the current time is equal or greater than et , the status is
triggered to “DONE”. A policy is to be executed only in
the status “READY”. The detailed procedure of policy
execution will be described later.

C Hierarchical Policy Specification
APolicy, OPolicy and PPolicy are LILP. They have the

same attributes like: subject, object, acts, time, cons, and
status. If a department of assembling cell phones called
Assembler1, is obligated to buy charger4 and if the stock
count of charger4 is less than 50, then he can make a
OPolicy to his agent. The policy made in object-oriented
language is shown in Policy1. According to that, we can
get that Assembler1 makes this policy to be effective
from 2011-12-12 00:00:00 to 2012-12-12 00:00:00, and
it is going to buy charger4 from a producer, if and only if,
the stock count of charger4 is less than 50, the price of

OPolicy1{

Subject: Assembler1
Object: producer
Acts: buy charger4
Time: <2011-12-12 00:00:00, 2012-12-12 00:00:00>
Cons: this.charger4.count<50 &&

producer.charger4.price<10 &&
!（producer.credit<2）

Maker: Assembler1
}

Policy1. Example of OPolicy

APolicy1{

Subject: Assembler1
Object: vendor
Acts: sell Phone1
Time: <null, null>
Cons: this.Phone1.count>1000

&& this.Phone1.price>=800
Maker: Assembler1

}

Policy 2. Example of APolicy

charger4 which belongs to producer is less than ￥10,
and the credit of producer is no less than 2.

Policy2 describes an APolicy of Assembler1 to sell
Phone1 on internet from with the condition that his store
count is bigger than 1000, and price is more than ￥800.

The main attributes of UPolicy is a valuation function.
The evaluation function is composed of pairs of
parameters and values. The parameters may take the
value of price, time and other resources that the
individuals care about. For different enterprises, they
have different demands for different resource. So,
different individuals will assign different values on
different resources. But there is a rule that all users
should comply with: the sum of all values equal 1. The
following formula is a valuation function made by
Assembler1.

Fun1 = 0.5*price+0.2*size + producer.credit*0.3
TPolicy has same attributes as OPolicy, but the

execution of TPolicy and OPolicy are different. In the
policy-based multi-agent system, OPolicy are bounded to
be executed only if the conditions are satisfied; APolicy
are not bounded to be executed. Whether an APolicy is to
be executed depends on TPolicy and UPolicy, that is to
say, according to TPolicy, only when the value of an
APolciy is high that it is to be executed.

GPolicy and WPolicy have the same form as LILP, but
the value of action can only be “authorize”, “obligate” or
“prohibit”. For GPolicy, system not only stores it to
database, but also generates a corresponding LILP for the
related subject. Similarly, system stores WPolicy to
database, and checks if there are policies that satisfy the
conditions. If such policies exist, the system will call
appropriate executions.

RPolicy are used to assign roles for VE members. Its
representation form is: P= (type, subject, role, cons,
maker). When cons are satisfied, subject is given the
“role”. This brings convince for the system to separate
different types of users.

IV. CONFLICT DETECTION AND RESOLUTION

Enterprises in VE may be interested in a same resource.
So, policies made by different enterprise are readily to
conflict. How to detect and resolve conflicts has become
a most important criterion for evaluation of policy-based
system. This part we will begin with policy conflict
definition, and then conflict detection algorithms and
conflict resolution methods are introduced.

A Definition Of Conflicts
When an agent is running in the system and executing

a policy, it will violate one or more policies in the system,
and then conflicts happen.

Definition 1: policy p1 = (type1, subject1, object1,
action1, cons1, maker1, time1) and p2 = (type2, subject2,
object2, action2, cons2, maker2, time2) conflict if the
following conditions are true:

a) subject1= subject2 and object1= object2;
b) action1 = action2;
c) type1 =F and type2 ∈ {O,A} or type2=F and

type1∈{O,A};

JOURNAL OF SOFTWARE, VOL. 7, NO. 10, OCTOBER 2012 2359

© 2012 ACADEMY PUBLISHER

d) overlap(time1, time2);
e) cons1 cons2∧ ≠ ∅
Usually, it is easy to detect conditions (a) ~ (d), but

cons consists of complex Boolean expressions, so
optimization is necessary before (e) is detected.

B Optimization For Cons
Cons consist of complex Boolean expressions,

with¬ , ∧ , ∨ in between. Cons are of much importance
in policy specification. A policy is to be taken only if the
cons are true. Further more, when comparing two policies,
the most difficult part is to compare the cons. So, before
conflicts detection, optimization is necessary. The
optimization algorithm described in the main 5 steps:

Step 1: Eliminate operation “¬ ”;
If iC is a atomic formula, then> : = ≠ < ≤ > ≥， ，，， ， is

been transformed to =≠ ≥ > ≤ <，，， ，， ;
If iC is a compound expression, then use Morgan Law

to process the expression recursively, as formula (1) and
(2):

()X Y X Y¬ ∨ ⇒ ¬ ∧¬ （1）
()X Y X Y¬ ∧ ⇒ ¬ ∨¬ （2）

Step2: Remove inequality operator “ ≥ ” , “ ≤ ” and
“ ≠ ”;

Expressions iS τ≥ , iS τ≤ and iS τ≠ was transformed
as formula（3）~（5）

i i iS (S) (S)τ τ τ≥ ⇒ > ∨ = （3）
i i iS (S) (S)τ τ τ≤ ⇒ < ∨ = （4）
i i iS (S) (S)τ τ τ≠ ⇒ < ∨ > （5）

Step3: Transform the whole expression into disjunctive
normal forms (DNF);

If there is an expression:
C (()) (())P Q R S R T= ∧ ∨ ∧ ∧ ∨ , in which P, Q, R, S,
T are all atomic formulas, the steps of transformation
are as follows:

(()) (() ())P Q R S R S T∧ ∨ ∧ ∧ ∨ ∧ （6）
(() ()

() ())
P Q S R P Q S T
R S R R S T
∧ ∧ ∧ ∨ ∧ ∧ ∧

∨ ∧ ∧ ∨ ∧ ∧ （7）

Step4: Eliminate the redundant items.
There may be the same item in a condition expression,

so when it was transformed to a DFN, there might be
more than one copy of a variable in the same conjunctive
formula. So, elimination of the redundant items is
necessary for avoiding duplicate computation in future
work. The elimination of (7) is as follows:

(() ()
() ())
P Q S R P Q S T
R S R S T
∧ ∧ ∧ ∨ ∧ ∧ ∧

∨ ∧ ∨ ∧ ∧ （8）

Step5: Sort each CNF in alphabetical order, and then
sort the whole DNF.

The expression above is already in alphabetical order,
so there is nothing more to do with it.

Through these optimizations, the cons are transformed
to DNF, whose sub expressions are conjunctives of
atomic formulas. There are several reasons for
transforming cons to this form. Firstly, comparing the
cons of two policies is much more readily than comparing
the original cons; secondly, the DNF are easily for
checking whether the cons of a policy is satisfied—as

long as one conjunctive of the DNF is true, the cons is
satisfied; Last but not least, to judge the value of a
conjunctive is actually to judge whether the conjunctives
of atomic formulas have solutions, as a matter of fact, the
atomic formulas are inequalities or equalities, so the
problem is finally translated to solvable mathematical
questions.

C Conflicts Detection Algorithm
As shown in definition 1, conflicts arise in two policies

when their attributes are same or overlap. Conflicts are
classified to “static conflicts” and “dynamic conflicts” in
line with inevitability of them.

If two policies have contrast type, and all other
conditions are the same, then conflicts are bounded to
happen, we call these conflicts static conflicts; But when
there are only interactions on each condition, conflicts
may not happen, we call these conflicts dynamic conflicts.

As for static conflicts, detection will be taken before a
policy is inserted into system. Presuming that the P is the
policy that will be inserted, and Pi (i =1, 2,…, n) are
policies which are already exist in a system. Then, check
each Pi with P to make sure whether there are conflicts. If
conflicts exist, the system will do treatment according to
conflicts resolution strategy; otherwise insert P into the
system. The algorithm of detecting P and Pi are presented
in Algorithm 1, in which C and Ci are optimized cons
expressions of P and Pi.

isStaticConflict(P,Pi){
 if(either the subject, object, action or time of P and Pi are not the

same) return false;
 if(C.length!=Ci.length) return false;

else{
 while(!C.end()){
 A=C.next();
 While(!C.end()){
 B=C.next();
 if(A.equals(B)){C.reset();break}//out the loop
 }
 If (C.end()) return false;

}
If (C.end()) return true;
Else return false;

}
}

Algorithm 1. The algorithm of detecting static conflicts

Detection of dynamic conflict is more difficult, this
paper creates a running time monitoring thread to solve
this problem. Right before a policy is executed, the thread
checks if conflicts will happen. As a matter of fact, values
of all policy variables are mostly assumed before
executed. So, the algorithm of detection is the same with
static conflict detection.

D Conflict Resolution
Various policies result in various conflicts, there are

three types: conflicts between OLP and OLP (OOC),
conflicts between ILP and ILP (IIC), and conflicts
between OLP and ILP (OIC). To ensure the flexibility of
multi-agent systems, different approaches are taken to
deal with different types of conflicts.

2360 JOURNAL OF SOFTWARE, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER

Because all organizers considered from the overall
interest of the system, so this paper take harmonization
algorithm, which is provided in [6], to resolve OOC. The
algorithm changes the policy of low priority to one or
more policies to avoid collision. For space limitation,
details of the algorithm were not described here.

According to the simulation system we built,
organizers are used to guarantee the safety of the system
that given an OLP a higher priority. When OIC happens,
the policy of ILP is deleted and the policy of OLP is kept.

Because individual enterprises of VE usually have
interest conflict, IIC are more than OOC and OIC. One
way to resolve these conflicts is to use harmonization
algorithm; but the simplest one is to delete low priority
policy. Because there are so many conflicts of IIC,
sometimes it is more preferable to use the latter approach.
Which options to choose depends on the requirements of
the system users.

V. POLICY ADMIN TOOL

This policy admin tool bases on multi-agent system to
simulate the behaviors of virtual enterprises. All members
of VE are assigned an agent. This system takes
production-demand-sales integration of phones as an
application scenario to make and manage policies.

A Architecture
The architecture of policy admin system is divided into
four parts: User Supervise Module, Policy Management
Module, Agent Management Module, and Material
Management Module. The architecture is shown in Fig.2.

According to the division of system logic structure, the
user is divided into two classes: ordinary enterprise users
(called individuals in the article) and administrators. The
policy management tools have two different clients. This
module implemented four sub-modules: register module,
log in module, information management module and log
out module. Every logged in users are of authorization to
administrate policies, supervise agents and manage
materials information. But for different users, the
operations that they can perform are not the same which
depends on the role of user.

Policy Management Module contains Policy
Specification, Policy Info Management, Policy Execution,

Conflict Detection, and Conflict Resolution. Most of
these modules have been represented in part III and IV.

Agent Management Module is used to manage agents’
information and control behaviors of agents. It includes
several parts: agent naming, agent life cycling
management, agent behaviors management, and agent
role management, etc. The most important parts are agent
assignment, agent start/stop, and agent revoke. Only
when the agent is started, he could execute policies.

Material Management Module is used for users to store
the materials of his company or department. It is only a
subsidiary module in this system. The only thing we
should know is that, it stores some attributes of a material
such as material name, material code, color, price, and
quantity. Some of these attributes are useful when
executing a policy.

B Key Technology
The key technology of this paper mainly includes policy
specification, policy conflict detection and resolution,
policy execution, and management of multi-agent.

This paper takes object-oriented language as policy
specification language. That is, any object-language is
able to implement policy discussed in this paper.

The policy conflict detection and resolution are
described in part IV.

An existing plug-in – Java Agent Development
Framework (JADE) – is taken in this paper as work
bench. JADE is a software development framework
aimed for developing multi-agent systems and
applications conforming to FIPA [7] standards for
intelligent agents.

As we know in part III, the status value of a policy
indicates the status of a policy. In Fig. 3, we’ll see how
“value” changes in the system.

When a policy is inserted into a database, the status is
defined INITIALIZED. When the current time is bigger
than start time of a policy, the database will trigger an
event to change the policy status to READY. When the
current time is bigger than end time of a policy, the
database will trigger an event to change the policy status
to DONE. The figure simplified the change of status from
READY to EXECUTING, because the changing process
involves behaviors of agents.

Figure 2. The architecture of policy admin tool

Policy Admin Tool

User Supervise Policy Management Agent Management Material Management

Individual

Administrator

Policy Specification

Policy Info Management

Policy Excursion

Conflicts Detection

Agent Assignment

Agent Monitoring

Policy Annul

Conflicts Resolution

JOURNAL OF SOFTWARE, VOL. 7, NO. 10, OCTOBER 2012 2361

© 2012 ACADEMY PUBLISHER

Figure 3. The changing procedure of policy status

As a matter of fact, the changing process of policy
status is played by agent; and the execution procedure of
an activated agent is shown in the next pseudo-code.
Further more, other actions acted by agents are showed in
this figure.

A term called ReadyPolicyQueue is used in this
pseudo-code. It is a global queue that stores policies
which have the status READY. When the status of a
policy is READY, it is added to the ReadyPolicyQueue.
An agent stops executing this cycle until it is terminated.

Agent executing procedure:
Procedure1: agent view ReadyPolicyQueue to ensure

that whether the policy is READY. If the queue is not
null, agent choose a policy, go to Procedure 2; else wait a
given interval and go to procedure1.

 Procedure2: check the cons of the policy; if cons are
not satisfied, go to procedure3; else go to procedure4.

Procedure3: insert this policy to the end of
ReadyPolicyQueue, wait a given interval and go to
procedure1

Procedure4: change the policy status to EXECUTING,
and execute the policy, go to procedure5.

Procedure5: if the policy is executed successfully,
change the policy status to DONE; go to procedure1.

C Case Study
There are 3 types of roles in production-demand-sales

integration of phones scenario: mobile phone components
manufacturer (Manufacturer), mobile phone assembler
(Assembler) and mobile vendors (Vendor). In the system,
users make policies to his agent; observe the interactions
of agent in time; and make new policies to agent timely to
change the behavior of agent.

As we all know, mobile phones consist of many
components, such as IC card, battery, charger, Bluetooth
adapter, data cable, LCD screen, etc. Assemblers buy
different components from different manufacturers and
assemble them to various available mobile phones that

are in different type, color, and price; and sell these
phones to separate vendors.

Recently, Assembler1 has assembled excess quantity
of Phone1, and his production team has consumed so
many chargers and he want to buy some charger4 on
internet, so he made an OPolicy by the admin tool. The
implementation to insert this policy is shown in Fig.4.

Figure 4. The portal of policy admin tool

In order to ensure the interests of all manufactures in
VE, the administrator is going to make a GPolicy that
allows all manufactures to sell charger4 at price that more
than 12. Then, this GPolicy conflicts with OPolicy1
which is made in the system (see Policy1). When the
administrator clicked the button “Conflict ?”, the admin
tool system starts conflict detection algorithm to detect
whether conflicts will happen; button “Submit !” is used
to starts the algorithm of inserting a policy. If conflicts
exist, a warning message will be sent to the user, but
whether a policy is inserted into the system, it depends on
the priority of user and conflict type. If a potential
conflict is exists, a warning message is sent to the user
using FIPA with the ACLMessage.INFORM (To get
more information, please refer to [7]).

VI. RELATED WORK

Most of substantial systems have taken policy
mechanisms to control the behavior of agents; but only a
few of them have proposed conflict detection methods
and resolutions means to resolve the side effect of
policies mechanism. These systems are categories into
two groups: policy-driven systems and norm-governed
systems.

KAoS, Rei, and Ponder are three typical and popular
policy languages of policy-driven systems [8]. KAoS
uses OWL as its basic language; but OWL is an
incomprehensible machine language, so the
implementation of KAoS is hard to be promoted. The
advantage of Rei is its clear expression; it departed the
specification of ontology and policy [9]. Ponder is an
object oriented policy language for the management of
distributed systems and networks [10~12]. yLopez and
Grossi[13~14] provide norm-governed languages for

2362 JOURNAL OF SOFTWARE, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER

MAS. yLopez thought that the ability of a single agent is
limited, they join in the society to obtain his own profit.
yLopez takes an abstract language like human laws to
specify policies, but it doesn’t describe the policy
language in detail, so it is impracticable. Grossi views
norms from two implementing aspects: regimentation and
enforcement [15], but it doesn’t provide policy
specification.

KAoS proposed a method called “harmonization
algorithm” to solve policy conflicts at a minimum cost.
But the algorithm to detect conflict pays no attention to
reasoning of conflict condition, so it brings certain
miscalculation. Rei takes an algorithm similar with KAoS
to detect conflicts and has same defaults as KAoS.
Ponder defines conflicts as user type defined by users. It
did not modify conflicted policies, but execute them at
different time or different space. But it still changes the
attributes of policies. Up to now, there are more and
more researchers done in conflict detection and resolution
methods, such as researchers in article [16-17].

There is little research on policy graphic user interface.
A most successful graphic user interface is designed by
team of Ponder researchers. Ponder supplied a tool of
graphic user interface to manage policy. It has brought
much convenience to policy users, but there is a little
problem: to make policies using this platform, users have
to know specialized knowledge of Ponder. For this reason,
that Ponder is hard to be a popular policy admin tool in
real world.

To simulate the manipulation of VE, intelligent agents
must be adopted to help make decisions for system
participants. Many articles have introduced multi-agent to
simulate the actions of VE. But almost all of them take
VE system as a harmonious distributed system and do not
notice that there might be wicked members in VE.
Therefore, this paper takes “hierarchical” policy to
restrict the actions of agent. The idea of “hierarchical”
origin from our former research: PRAL (Policy
Representation and Assignment Language) and LPRF
(Layered Policy Representation Framework) [18~19].
PRAL defines policy as a concept of embedded ontology;
it has three types of policies: Authorization policies,
Obligation policies, and Negotiation policies, the former
two policies are basic policies for agent to execute, and
the last are used to direct the agent’s behavior during
negotiations. LPRF promoted the concept of “layer”
formally. It divides policies into three layers: constrained
behavior layer, strategy layer and autonomy layer.
Constrained behavior policies display the external
behavior of subject of policy from the view of macro, and
strategy layer policies that allow agent to take decision
according to internal conditions or states of itself, it is
micro policies. Autonomy layer policies are built on the
other two types of policies, which are used to guide the
behaviors of agents more intelligently.

VII. CONCLUSIONS

To get more service and resource from internet, policy
mechanism combined with multi-agent system is a good
choice. But most policy mechanisms lack of detailed

formalized description and don’t take the specific
application environment into account. Especially, little
research takes these parts as integration.

This paper provided a multi-agent oriented policy-
based management system for virtual enterprise. By
giving full consideration to the characters of virtual
enterprises, hierarchical policy describes the policies in
two application levels and two abstract layers, and it not
only keeps the flexibility of agents, but also controlled
their behaviors well. For the conflicts which may be
brought about by policy specification, conflicts detection
and resolution methods are applied. Also, a policy admin
tool that using multi-agent system to simulate the
behaviors of enterprises has been presented.

In conclusion, there are still many theoretical studies
need to be improved in spite of the valuable or useful part
in the paper. For example, trustworthy evaluation in
policy-based system will be future work.

ACKNOWLEDGMENT

This work was supported by the National Natural
Science Foundation of China under Grant No.60773208;
the Hunan Provincial Natural Science Foundation of
China under Grant No.11JJ3065 the Specialized Research
Fund for the Doctoral Program of Higher Education
under Grant No.20070532075”; Hunan Province Young
Core teacher training project. Also, we would like to give
special thanks to Lei Deng for the useful comments on
the manuscript.

REFERENCES

[1] Heping Zhong. C.: Research on Incentive Contracts for
Partners within a Virtual Enterprise[C]. //In: 2010
International Conference on Networking and Digital
Society. 2010:384--387

[2] Basile C, Cappadonia A, Lioy A. C.: Geometric
Interpretation of Policy Specification[C]. //In: Proceedings
of the IEEE Workshop on Policies for Distributed Systems
and Networks. Washington, DC: IEEE Computer Society.
2008:78--81

[3] Jingfan Tang, Ming Xu, Ming Jiang. C.: Towards
Workflow Oriented Virtual Enterprise Based on Policy
Driven and Multi-agent Service Composition[C]. //In: Fifth
International Conference on Fuzzy Systems and
Knowledge Discovery. 2008:495-499

[4] Jun Hu. Research on Autonomic Computing Oriented
Policy-based Multi-agent Cooperation System[D]
Hangzhou, China, 2006

[5] Yathiraj B. Udupi, Munindar P. Singh. C.: Multiagent
Policy Architecture for Virtual Business Organizations. In:
IEEE International Conference on Services Computing
Piscataway, NJ: IEEE ,2006

[6] Uszok A, Bradshaw J, Jeffers R, et al. C.: KAoS Policy
and Domain Services: Toward a Description-Logic
Approach to Policy Representation, deconfliction and
enforcement[C]. //In: Proceedings of IEEE Workshop on
Policy. Washington, DC: IEEE Computer Society.
2003:93--96

[7] The Foundation for Intelligent Physical Agents[G/OL].
Available at http://www.fipa.org . 2010-1-15

[8] Tonti G, Bradshaw J M, Renia J, et al. J.: Semantic Web
Languages for Policy Representation and Reasoning: A

JOURNAL OF SOFTWARE, VOL. 7, NO. 10, OCTOBER 2012 2363

© 2012 ACADEMY PUBLISHER

Comparison of KAos, Rei, and Ponder [G]. Lecture Notes
in Computer Science. Berlin: Springer-Verlag. 2003:419--
437

[9] Kagal L, Finin T, Joshi A. A Policy Language for a
Pervasive Computing Environment [A]. In: Proceedings of
the 4th IEEE International Workshop on Policies for
Distributed Systems and Networks[C]. Washington, DC:
IEEE Computer Society. 2003:63-75

[10] Lymberopoulos L, Lupu E, Sloman M. PONDER Policy
Implementation and Validation in a CIM and
Differentiated Services Framework [A]. In: Network
Operations and Management Symposium[C]. South Korea.
2004:31--44

[11] Dulay N, Lupu E, Sloman M, et al. A Policy Deployment
Model for the Ponder Language [A]. In: Network
Management Proceedings[C]. Seattle, WA. 2001:529-543

[12] Dulay N, Lupu E, Sloman M, et al. C.: A Policy
Deployment Model for the Ponder Language. In: Network
Management Proceedings. Seattle, WA. 529--543(2001)

[13] Lopez F L, Marquez A A. An Architecture for
Autonomous Normative Agents[C]. //In: Proceedings of
the Fifth Mexican International Conference in Computer
Science. Washington, DC: IEEE Computer Society, 2004:
96-103

[14] Lopez F L, Luck M, Dinverno M. A Normative
Framework for Agent-Based Systems [J]. Computational
& Mathematical Organization Theory, 2006, 12(2): 227-
250

[15] Grossi D, Aldewereld H, Dignum F. Ubi Lex Ibi Poena:
Designing Norm Enforcement in Electronic Institutions
[A]. In: Lecture Notes In Artificial Intelligence[C]. Berlin:
Springer-Verlag. 2007:101--114

[16] Yi Ren, Fangquan Cheng, Zhiyong Peng, Xiaoting Huang,
Wei Song. A privacy policy conflict detection method for
multi-owner privacy data protection. Electronic Commerce
Research. 2011,11(1):103-121

[17] Apurva Mohan, Douglas M. Blough. An attribute-based
authorization policy framework with dynamic conflict
resolution[C]. //Proceedings of the 9th Symposium on
Identity and Trust on the Internet. New York: ACM,
2010:37-50

[18] Jun Hu, Wang Baiyun. C.: LPRF: A Layered Policy
Representation Framework[C]. //In: 2009 World Congress
on Computer Science and Information Engineering.
Washington, DC: IEEE Computer Society. 402-406(2009)

[19] Jun Hu, Ye Sun, Baiyun Wang. Research on Policy
Conflict Based on Layered Policy Representation
Framework[C]. //Proceedings of the Fifth International
Conference on Semantics, Knowledge and Grid. Los
Alamitos, CA: IEEE Computer Society Press. 2009:144-
151

Jun Hu born in 1971 and received M.Sc.
in Computer Application from Kunming
University of Science and Technology,
Kunming, China, and Ph.D. in Computer
Science and Technology from Zhejiang
University, Hangzhou, China. In 2010,
he was an academic visitor at University
of Southampton working on multi-agent
system. Currently, he is an associate
professor of Hunan University, Changsha,
China. His research interests are in multi-

agent system, distributed artificial intelligence and software
engineering.

Yinghui Song born in 1985 and is a
Master of Computer Application from
Hunan University. Her main research
interests include distributed artificial
intelligence, multi-agent systems, and
machine learning.

Ye Sun born in 1983 and received
M.Sc. in Computer Application from
Hunan University, Changsha, China.
His main research interests include
artificial intelligence, multi-agent
systems and Virtual reality. He holds a
post in SuperMap from July, 2007 until
now, and mainly works on developing
software for three-dimensional effects
and Virtual reality.

2364 JOURNAL OF SOFTWARE, VOL. 7, NO. 10, OCTOBER 2012

© 2012 ACADEMY PUBLISHER

